Search Results

Search found 17469 results on 699 pages for 'spatial query'.

Page 86/699 | < Previous Page | 82 83 84 85 86 87 88 89 90 91 92 93  | Next Page >

  • OperationalError "unable to open database file" processing query results with SQLAlchemy and SQLite3

    - by Peter
    I'm running into this little problem that I hope is just a dumb user error. It looks like some sort of a size limit with a query to a SQLite database. I managed to reproduce the issue with an in-memory DB and a simple script shown below. I can make it work by either reducing the number of records in the DB; or by reducing the size of each record; or by dropping the order_by() call. I am using Python 2.5.5 and SQLAlchemy 0.6.0 in a Cygwin environment. Thanks! #!/usr/bin/python from sqlalchemy.orm import sessionmaker import sqlalchemy import sqlalchemy.orm class Person(object): def __init__(self, name): self.name = name engine = sqlalchemy.create_engine('sqlite:///:memory:') Session = sessionmaker(bind=engine) metadata = sqlalchemy.schema.MetaData(bind=engine) person_table = sqlalchemy.Table('person', metadata, sqlalchemy.Column('id', sqlalchemy.types.Integer, primary_key=True), sqlalchemy.Column('name', sqlalchemy.types.String)) metadata.create_all(engine) sqlalchemy.orm.mapper(Person, person_table) session = Session() session.add_all([Person("012345678901234567890123456789012") for i in range(5000)]) session.commit() persons = session.query(Person).order_by(Person.name).all() print "count =", len(persons) session.close() The all() call to the query result fails with the OperationalError exception: Traceback (most recent call last): File "./stress.py", line 27, in <module> persons = session.query(Person).order_by(Person.name).all() File "/usr/lib/python2.5/site-packages/sqlalchemy/orm/query.py", line 1343, in all return list(self) File "/usr/lib/python2.5/site-packages/sqlalchemy/orm/query.py", line 1451, in __iter__ return self._execute_and_instances(context) File "/usr/lib/python2.5/site-packages/sqlalchemy/orm/query.py", line 1456, in _execute_and_instances mapper=self._mapper_zero_or_none()) File "/usr/lib/python2.5/site-packages/sqlalchemy/orm/session.py", line 737, in execute clause, params or {}) File "/usr/lib/python2.5/site-packages/sqlalchemy/engine/base.py", line 1109, in execute return Connection.executors[c](self, object, multiparams, params) File "/usr/lib/python2.5/site-packages/sqlalchemy/engine/base.py", line 1186, in _execute_clauseelement return self.__execute_context(context) File "/usr/lib/python2.5/site-packages/sqlalchemy/engine/base.py", line 1215, in __execute_context context.parameters[0], context=context) File "/usr/lib/python2.5/site-packages/sqlalchemy/engine/base.py", line 1284, in _cursor_execute self._handle_dbapi_exception(e, statement, parameters, cursor, context) File "/usr/lib/python2.5/site-packages/sqlalchemy/engine/base.py", line 1282, in _cursor_execute self.dialect.do_execute(cursor, statement, parameters, context=context) File "/usr/lib/python2.5/site-packages/sqlalchemy/engine/default.py", line 277, in do_execute cursor.execute(statement, parameters) sqlalchemy.exc.OperationalError: (OperationalError) unable to open database file u'SELECT person.id AS person_id, person.name AS person_name \nFROM person ORDER BY person.name' ()

    Read the article

  • NHibernate (3.1.0.4000) NullReferenceException using Query<> and NHibernate Facility

    - by TigerShark
    I have a problem with NHibernate, I can't seem to find any solution for. In my project I have a simple entity (Batch), but whenever I try and run the following test, I get an exception. I've triede a couple of different ways to perform a similar query, but almost identical exception for all (it differs in which LINQ method being executed). The first test: [Test] public void QueryLatestBatch() { using (var session = SessionManager.OpenSession()) { var batch = session.Query<Batch>() .FirstOrDefault(); Assert.That(batch, Is.Not.Null); } } The exception: System.NullReferenceException : Object reference not set to an instance of an object. at NHibernate.Linq.NhQueryProvider.PrepareQuery(Expression expression, ref IQuery query, ref NhLinqExpression nhQuery) at NHibernate.Linq.NhQueryProvider.Execute(Expression expression) at System.Linq.Queryable.FirstOrDefault(IQueryable`1 source) The second test: [Test] public void QueryLatestBatch2() { using (var session = SessionManager.OpenSession()) { var batch = session.Query<Batch>() .OrderBy(x => x.Executed) .Take(1) .SingleOrDefault(); Assert.That(batch, Is.Not.Null); } } The exception: System.NullReferenceException : Object reference not set to an instance of an object. at NHibernate.Linq.NhQueryProvider.PrepareQuery(Expression expression, ref IQuery query, ref NhLinqExpression nhQuery) at NHibernate.Linq.NhQueryProvider.Execute(Expression expression) at System.Linq.Queryable.SingleOrDefault(IQueryable`1 source) However, this one is passing (using QueryOver<): [Test] public void QueryOverLatestBatch() { using (var session = SessionManager.OpenSession()) { var batch = session.QueryOver<Batch>() .OrderBy(x => x.Executed).Asc .Take(1) .SingleOrDefault(); Assert.That(batch, Is.Not.Null); Assert.That(batch.Executed, Is.LessThan(DateTime.Now)); } } Using the QueryOver< API is not bad at all, but I'm just kind of baffled that the Query< API isn't working, which is kind of sad, since the First() operation is very concise, and our developers really enjoy LINQ. I really hope there is a solution to this, as it seems strange if these methods are failing such a simple test. EDIT I'm using Oracle 11g, my mappings are done with FluentNHibernate registered through Castle Windsor with the NHibernate Facility. As I wrote, the odd thing is that the query works perfectly with the QueryOver< API, but not through LINQ.

    Read the article

  • 301 Redirect and query strings

    - by icelizard
    I am looking to create a 301 redirect based purely on a query string see b OLD URL: olddomain.com/?pc=/product/9999 New URL: newurl.php?var=yup My normal way of doing this would be redirect 301 pc=/product/9999 newurl.php?var=yup But this time I am trying to match a URL that that only contains the domain and a query string... What is the best way of doing this? Thanks

    Read the article

  • MySQL: how to enable Slow Query Log?

    - by Continuation
    Can you give me an example on how to enable MySQL's slow query log? According to the doc: As of MySQL 5.1.29, use --slow_query_log[={0|1}] to enable or disable the slow query log, and optionally --slow_query_log_file=file_name to specify a log file name. The --log-slow-queries option is deprecated. So how do I use that option? Can I put it in my.cnf? An example would be greatly appreciated. Thank you very much

    Read the article

  • HP Proliant Servers - WMI query for system health

    - by Mike McClelland
    Hi, I want to query lots of HP servers to determine their overall health. I don't want to use any packages, or even SNMP - I want to query the server health from WMI and understand if a box is Green/Amber/Red - just like the HP Management Home Page. This MUST be possible - but I can't find any documentation... Oh yes, and the servers are running Windows Server 2003/8. Help!! Mike

    Read the article

  • Slow Query log for just one database

    - by Jason
    can I enable the slow query log specifically for just one database? What I've done currently is to take the entire log into excel and then run a pivot report to work out which database is the slowest. So i've gone and done some changes to that application in the hope of reducing the slow query occurence. rather than running my pivot report again which took a bit of time to cleanse the data i'd rather just output slow queries from the one database possible?

    Read the article

  • How do I make a LDAP query-based dynamic distribution group in Exchange 2010

    - by blsub6
    I see that there were ways in Exchange 2003 and Exchange 2007 to just put in an LDAP query and it would populate the group for you. Is there any way to do that in Exchange 2010? I know there's dynamic distribution groups but I don't want to create the group based on one of their pre-set queries and I don't want to mess around with "custom attributes". I just want to put an LDAP query in there and make it run it to populate the distribution group.

    Read the article

  • Replace a SQL Server query with another before execution

    - by Kiranu
    I am trying to work with a legacy application in SQL Server which at some point does the following query SELECT serverproperty('EngineEdition') as sqledition The server replies with 2 (which is the correct edition), but the application closes since the app demands to be run over SQL Server Express which is 4. We don't have access to the code and the developer is long gone. Is there a way to configure SQL Server so that when this query is received it simply returns 4 and not the value of the property? Thanks

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • distance between two points across land using sql server

    - by dpwb
    I am looking to calculate the shortest distance between two points inside SQL Server 2008 taking into account land mass only. I have used the geography data type along with STDistance() to work out point x distance to point y as the crow flies, however this sometimes crosses the sea which i am trying to avoid. I have also created a polygon around the land mass boundary I am interested in. I believe that I need to combine these two methods to ensure that STDistance always remains within polygon - unless there is a simpler solution. Thanks for any advice

    Read the article

  • Calculating distance from latitude, longitude and height using a geocentric co-ordinate system

    - by Sarge
    I've implemented this method in Javascript and I'm roughly 2.5% out and I'd like to understand why. My input data is an array of points represented as latitude, longitude and the height above the WGS84 ellipsoid. These points are taken from data collected from a wrist-mounted GPS device during a marathon race. My algorithm was to convert each point to cartesian geocentric co-ordinates and then compute the Euclidean distance (c.f Pythagoras). Cartesian geocentric is also known as Earth Centred Earth Fixed. i.e. it's an X, Y, Z co-ordinate system which rotates with the earth. My test data was the data from a marathon and so the distance should be very close to 42.26km. However, the distance comes to about 43.4km. I've tried various approaches and nothing changes the result by more than a metre. e.g. I replaced the height data with data from the NASA SRTM mission, I've set the height to zero, etc. Using Google, I found two points in the literature where lat, lon, height had been transformed and my transformation algorithm is matching. What could explain this? Am I expecting too much from Javascript's double representation? (The X, Y, Z numbers are very big but the differences between two points is very small). My alternative is to move to computing the geodesic across the WGS84 ellipsoid using Vincenty's algorithm (or similar) and then calculating the Euclidean distance with the two heights but this seems inaccurate. Thanks in advance for your help!

    Read the article

  • Importing ShapeFiles into Oracle XE

    - by WeeJames
    Hi, I'm looking to import one of the Shapefiles supplied with the Ordnance Survey Boundary-Line opensource set into Oracle XE. http://data.gov.uk/dataset/os-boundary-line Unfortunately I'm completely unsure how to go about this, despite much Googling. Anyone got any pointers or tips or a link to a guide? Cheers James

    Read the article

  • How to very efficiently assign lat/long to city boundary described by shape ?

    - by watcherFR
    I have a huge shapefile of 36.000 non-overlapping polygones (city boundaries). I want to easily determine the polygone into which a given lat/long falls. What would the best way given that it must be extremely computationaly efficient ? I was thinking of creating a lookup table (tilex,tiley,polygone_id) where tilex and tiley are tile identifiers at zoom levels 21 or 22. Yes, the lack of precision of using tile numbers and a planar projection is acceptable in my application. I would rather not use postgres's GIS extension and am fine with a program that will run for 2 days to generate all the INSERT statements.

    Read the article

  • How to use an adjacency matrix to determine which rows to 'pass' to a function in r?

    - by dubhousing
    New to R, and I have a long-ish question: I have a shapefile/map, and I'm aiming to calculate a certain index for every polygon in that map, based on attributes of that polygon and each polygon that neighbors it. I have an adjacency matrix -- which I think is the same as a "1st-order queen contiguity weights matrix", although I'm not sure -- that describes which polygons border which other polygons, e.g., POLYID A B C D E A 0 0 1 0 1 B 0 0 1 0 0 C 1 1 0 1 0 D 0 0 1 0 1 E 1 0 0 1 0 The above indicates, for instance, that polygons 'C' and 'E' adjoin polygon 'A'; polygon 'B' adjoins only polygon 'C', etc. The attribute table I have has one polygon per row: POLYID TOT L10K 10_15K 15_20K ... A 500 24 30 77 ... Where TOT, L10K, etc. are the variables I use to calculate an index. There are 525 polygons/rows in my data, so I'd like to use the adjacency matrix to determine which rows' attributes to incorporate into the calculation of the index of interest. For now, I can calculate the index when I subset the rows that correspond to one 'bundle' of neighboring polygons, and then use a loop (if it's of interest, I'm calculating the Centile Gap Index, a measure of local income segregation). E.g., subsetting the 'neighborhood' of the Detroit City Schools: Detroit <- UNSD00[c(142,150,164,221,226,236,295,327,157,177,178,364,233,373,418,424,449,451,487),] Then record the marginal column proportions and a running total: catprops <- vector() for(i in 4:19) { catprops[(i-3)]<-sum(Detroit[,i])/sum(Detroit[,3]) } catprops <- as.data.frame(catprops) catprops[,2]<-cumsum(catprops[,1]) Columns 4:19 are the necessary ones in the attribute table. Then I use the following code to calculate the index -- note that the loop has "i in 1:19" because the Detroit subset has 19 polygons. cgidistsum <- 0 for(i in 1:19) { pranks <- vector() for(j in 4:19) { if (Detroit[i,j]==0) pranks <- append(pranks,0) else if (j == 4) pranks <- append(pranks,seq(0,catprops[1,2],by=catprops[1,2]/Detroit[i,j])) else pranks <- append(pranks,seq(catprops[j-4,2],catprops[j-3,2],by=catprops[j-3,1]/Detroit[i,j])) } distpranks <- vector() distpranks<-abs(pranks-median(pranks)) cgidistsum <- cgidistsum + sum(distpranks) } cgi <- (.25-(cgidistsum/sum(Detroit[,3])))/.25 My apologies if I've provided more information than is necessary. I would really like to exploit the adjacency matrix in order to calculate the CGI for each 'bundle' of these rows. If you happen to know how I could started with this, that would be great. and my apologies for any novice mistakes, I'm new to R!

    Read the article

  • ShapeFile with Z Co-ordinates

    - by ace_mccloud
    I have 3 shapefiles, two of them wihtout the Z Co-ordinates elevation but 1 of them has a Z co-ordinate elevation. I can load two ShapeFiles into my SQL Server Database which does not have Z Co-ordinates. But I am having issue loading the Z Co-ordinate file into the database. I have been reading different forums and got a suggestion that I need to trim the Z coordinates(chnage 3D to 2D) to load into the database. I was just wondering how can I achieve this? Can anyone suggest free tools or any method to do the same? Cheers, Rushir

    Read the article

  • Query specific logs from event log using nxlog

    - by user170899
    Below is my nxlog configuration define ROOT C:\Program Files (x86)\nxlog Moduledir %ROOT%\modules CacheDir %ROOT%\data Pidfile %ROOT%\data\nxlog.pid SpoolDir %ROOT%\data LogFile %ROOT%\data\nxlog.log <Extension json> Module xm_json </Extension> <Input internal> Module im_internal </Input> <Input eventlog> Module im_msvistalog Query <QueryList>\ <Query Id="0">\ <Select Path="Security">*</Select>\ </Query>\ </QueryList> </Input> <Output out> Module om_tcp Host localhost Port 3515 Exec $EventReceivedTime = integer($EventReceivedTime) / 1000000; \ to_json(); </Output> <Route 1> Path eventlog, internal => out </Route> <Select Path="Security">*</Select>\ - * gets everything from the Security log, but my requirement is to get specific logs starting with EventId - 4663. How do i do this? Please help. Thanks.

    Read the article

  • Query Execution Failed in Reporting Services reports

    - by Chris Herring
    I have some reporting services reports that talk to Analysis Services and at times they fail with the following error: An error occurred during client rendering. An error has occurred during report processing. Query execution failed for dataset 'AccountManagerAccountManager'. The connection cannot be used while an XmlReader object is open. This occurs sometimes when I change selections in the filter. It also occurs when the machine has been under heavy load and then will consistently error until SSAS is restarted. The log file contains the following error: processing!ReportServer_0-18!738!04/06/2010-11:01:14:: e ERROR: Throwing Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'., ; Info: Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'. ---> System.InvalidOperationException: The connection cannot be used while an XmlReader object is open. at Microsoft.AnalysisServices.AdomdClient.XmlaClient.CheckConnection() at Microsoft.AnalysisServices.AdomdClient.XmlaClient.ExecuteStatement(String statement, IDictionary connectionProperties, IDictionary commandProperties, IDataParameterCollection parameters, Boolean isMdx) at Microsoft.AnalysisServices.AdomdClient.AdomdConnection.XmlaClientProvider.Microsoft.AnalysisServices.AdomdClient.IExecuteProvider.ExecuteTabular(CommandBehavior behavior, ICommandContentProvider contentProvider, AdomdPropertyCollection commandProperties, IDataParameterCollection parameters) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.System.Data.IDbCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.DataExtensions.AdoMdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.OnDemandProcessing.RuntimeDataSet.RunDataSetQuery() Can anyone shed light on this issue?

    Read the article

  • Query Execution Failed in Reporting Services reports

    - by Chris Herring
    I have some reporting services reports that talk to Analysis Services and at times they fail with the following error: An error occurred during client rendering. An error has occurred during report processing. Query execution failed for dataset 'AccountManagerAccountManager'. The connection cannot be used while an XmlReader object is open. This occurs sometimes when I change selections in the filter. It also occurs when the machine has been under heavy load and then will consistently error until SSAS is restarted. The log file contains the following error: processing!ReportServer_0-18!738!04/06/2010-11:01:14:: e ERROR: Throwing Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'., ; Info: Microsoft.ReportingServices.ReportProcessing.ReportProcessingException: Query execution failed for dataset 'AccountManagerAccountManager'. ---> System.InvalidOperationException: The connection cannot be used while an XmlReader object is open. at Microsoft.AnalysisServices.AdomdClient.XmlaClient.CheckConnection() at Microsoft.AnalysisServices.AdomdClient.XmlaClient.ExecuteStatement(String statement, IDictionary connectionProperties, IDictionary commandProperties, IDataParameterCollection parameters, Boolean isMdx) at Microsoft.AnalysisServices.AdomdClient.AdomdConnection.XmlaClientProvider.Microsoft.AnalysisServices.AdomdClient.IExecuteProvider.ExecuteTabular(CommandBehavior behavior, ICommandContentProvider contentProvider, AdomdPropertyCollection commandProperties, IDataParameterCollection parameters) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.AnalysisServices.AdomdClient.AdomdCommand.System.Data.IDbCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.DataExtensions.AdoMdCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.ReportingServices.OnDemandProcessing.RuntimeDataSet.RunDataSetQuery() Can anyone shed light on this issue?

    Read the article

  • SSRS2008R2 report times out, but the underlying query executes in the Management Studio

    - by Matthew Belk
    A customer of mine recently moved servers and the new server has SQL2008R2. His old server was SQL2005. The new server has substantially better CPU, RAM, and disk performance than the old, but several reports time out while executing. When I run the underlying query in the SQL Management Studio, the query executes in sub-second time. The exact error message returned via the Report Manager UI is: An error occurred within the report server database. This may be due to a connection failure, timeout or low disk condition within the database. (rsReportServerDatabaseError) Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding. It must be noted that this database is not just analytical; it's also fairly transactional, although the transaction volume is not exceptionally high. What can I do to improve the performance of the SSRS query engine? Are there settings in the data source I can adjust, or in the SSRS config files?

    Read the article

  • Mysql Query - That Is Returning Blatanty Incorrect Result

    - by user866190
    I am building a VPS node that is running Ubuntu 10.10LTS, Apache2, Mysql 5.1 and php5. I could not log in to my website admin through the browser, even though I am using the correct login details. So I logged in from the command line to check the results. When I run this query I get expected results: mysql> select * from users; +----+----------+-----------------------+----------+ | id | username | email | password | +----+----------+-----------------------+----------+ | 1 | myUserName | [email protected] | myPassword | +----+----------+-----------------------+----------+ And the same goes for this query: mysql> select * from users where id = 1; +----+----------+-----------------------+----------+ | id | username | email | password | +----+----------+-----------------------+----------+ | 1 | myUserName | [email protected] | myPassword | +----+----------+-----------------------+----------+ 1 row in set (0.00 sec) But when I run this query I get this 'unexpected response': mysql> select * from users where username = 'myUserName' and password = 'myPassword'; Empty set (0.00 sec) I am not sure why this is happening. Any help would be greatly appreciated. BTW.. I will be encrypting the user details but for now I just want to get it set up. Please help, Thanks

    Read the article

  • Automating Access 2007 Queries (changing one criteria)

    - by Graphth
    So, I have 6 queries and I want to run them all once at the end of each month. (I know a bit about SQL but they're simply built using Access's design view). So, in the next few days, perhaps I'll run the 6 queries for May, as May just ended. I only want the data from the month that just ended, so the query has Criteria set as the name of the month (e.g., May). Now, it's not hugely time consuming to change all of these each month, but is there some way to automate this? Currently, they're all set to April and I want to change them all to May when I run them in a few days. And each month, I'd like to type the month (perhaps in a textbox in a form or somewhere else if you know a better way) just once and have it change all 6 queries, without having to manually open all 6, scroll over to the right field and change the Criteria. Note (about VBA): I have used Excel VBA so I know the basics of VBA but I don't really know anything specific to Access (other than seeing code a few times). And, others will use this who do not know anything about Access VBA. So, I think I have found a similar question/answer that could do this in VBA, but I'd rather do it some other way. If the query needs to be slightly redesigned later, probably by someone who doesn't know Access VBA at all, it'd be nice to have a solution not involving VBA if that is even possible.

    Read the article

  • Hibernate Query Exception

    - by dharga
    I've got a hibernate query I'm trying to get working but keep getting an exception with a not so helpful stack trace. I'm including the code, the stack trace, and hibernate chatter before the exception is thrown. If you need me to include the entity classes for MessageTarget and GrpExclusion let me know in comments and I'll add them. public List<MessageTarget> findMessageTargets(int age, String gender, String businessCode, String groupId, String systemCode) { Session session = getHibernateTemplate().getSessionFactory().openSession(); List<MessageTarget> results = new ArrayList<MessageTarget>(); try { String hSql = "from MessageTarget mt where " + "not exists (select GrpExclusion where grp_no = ?) and " + "(trgt_gndr_cd = 'A' or trgt_gndr_cd = ?) and " + "sys_src_cd = ? and " + "bampi_busn_sgmnt_cd = ? and " + "trgt_low_age <= ? and " + "trgt_high_age >= ? and " + "(effectiveDate is null or effectiveDate <= ?) and " + "(termDate is null or termDate >= ?)"; results = session.createQuery(hSql) .setParameter(0, groupId) .setParameter(1, gender) .setParameter(2, systemCode) .setParameter(3, businessCode) .setParameter(4, age) .setParameter(5, age) .setParameter(6, new Date()) .setParameter(7, new Date()) .list(); } catch (Exception e) { System.err.println(e.getMessage()); e.printStackTrace(); } finally { session.close(); } return results; } Here's the stacktrace. [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R java.lang.NullPointerException [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.util.SessionFactoryHelper.findSQLFunction(SessionFactoryHelper.java:365) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.tree.IdentNode.getDataType(IdentNode.java:289) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.tree.SelectClause.initializeExplicitSelectClause(SelectClause.java:165) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.HqlSqlWalker.useSelectClause(HqlSqlWalker.java:831) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.HqlSqlWalker.processQuery(HqlSqlWalker.java:619) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.query(HqlSqlBaseWalker.java:672) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.collectionFunctionOrSubselect(HqlSqlBaseWalker.java:4465) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.comparisonExpr(HqlSqlBaseWalker.java:4165) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1864) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1839) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.whereClause(HqlSqlBaseWalker.java:818) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.query(HqlSqlBaseWalker.java:604) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.selectStatement(HqlSqlBaseWalker.java:288) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.statement(HqlSqlBaseWalker.java:231) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.QueryTranslatorImpl.analyze(QueryTranslatorImpl.java:254) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.QueryTranslatorImpl.doCompile(QueryTranslatorImpl.java:185) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.QueryTranslatorImpl.compile(QueryTranslatorImpl.java:136) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.engine.query.HQLQueryPlan.<init>(HQLQueryPlan.java:101) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.engine.query.HQLQueryPlan.<init>(HQLQueryPlan.java:80) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.engine.query.QueryPlanCache.getHQLQueryPlan(QueryPlanCache.java:94) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.impl.AbstractSessionImpl.getHQLQueryPlan(AbstractSessionImpl.java:156) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.impl.AbstractSessionImpl.createQuery(AbstractSessionImpl.java:135) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.impl.SessionImpl.createQuery(SessionImpl.java:1651) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.bcbst.bamp.ws.dao.MessageTargetDAOImpl.findMessageTargets(MessageTargetDAOImpl.java:30) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.bcbst.bamp.ws.common.AlertReminder.findMessageTargets(AlertReminder.java:22) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:37) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at java.lang.reflect.Method.invoke(Method.java:599) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.jaxws.server.dispatcher.JavaDispatcher.invokeTargetOperation(JavaDispatcher.java:81) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.jaxws.server.dispatcher.JavaBeanDispatcher.invoke(JavaBeanDispatcher.java:98) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.jaxws.server.EndpointController.invoke(EndpointController.java:109) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.jaxws.server.JAXWSMessageReceiver.receive(JAXWSMessageReceiver.java:159) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.engine.AxisEngine.receive(AxisEngine.java:188) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.transport.http.HTTPTransportUtils.processHTTPPostRequest(HTTPTransportUtils.java:275) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.websvcs.transport.http.WASAxis2Servlet.doPost(WASAxis2Servlet.java:1389) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at javax.servlet.http.HttpServlet.service(HttpServlet.java:738) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at javax.servlet.http.HttpServlet.service(HttpServlet.java:831) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1536) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:829) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:458) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapperImpl.handleRequest(ServletWrapperImpl.java:175) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.webapp.WebApp.handleRequest(WebApp.java:3742) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.webapp.WebGroup.handleRequest(WebGroup.java:276) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.WebContainer.handleRequest(WebContainer.java:929) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.WSWebContainer.handleRequest(WSWebContainer.java:1583) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.channel.WCChannelLink.ready(WCChannelLink.java:178) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleDiscrimination(HttpInboundLink.java:455) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleNewInformation(HttpInboundLink.java:384) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.ready(HttpInboundLink.java:272) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.tcp.channel.impl.NewConnectionInitialReadCallback.sendToDiscriminators(NewConnectionInitialReadCallback.java:214) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.tcp.channel.impl.NewConnectionInitialReadCallback.complete(NewConnectionInitialReadCallback.java:113) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.tcp.channel.impl.AioReadCompletionListener.futureCompleted(AioReadCompletionListener.java:165) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.AbstractAsyncFuture.invokeCallback(AbstractAsyncFuture.java:217) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.AsyncChannelFuture.fireCompletionActions(AsyncChannelFuture.java:161) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.AsyncFuture.completed(AsyncFuture.java:138) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.ResultHandler.complete(ResultHandler.java:204) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.ResultHandler.runEventProcessingLoop(ResultHandler.java:775) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.ResultHandler$2.run(ResultHandler.java:905) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java:1550) Here's the hibernate chatter. [5/6/10 15:05:20:651 EDT] 00000017 XmlBeanDefini I org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDefinitions Loading XML bean definitions from class path resource [beans.xml] [5/6/10 15:05:20:823 EDT] 00000017 Configuration I org.slf4j.impl.JCLLoggerAdapter info configuring from url: file:/C:/workspaces/bampi/AlertReminderWS/WebContent/WEB-INF/classes/hibernate.cfg.xml [5/6/10 15:05:20:838 EDT] 00000017 Configuration I org.slf4j.impl.JCLLoggerAdapter info Configured SessionFactory: java:hibernate/Alert/SessionFactory1.0.3 [5/6/10 15:05:20:838 EDT] 00000017 AnnotationBin I org.hibernate.cfg.AnnotationBinder bindClass Binding entity from annotated class: com.bcbst.bamp.ws.model.MessageTarget [5/6/10 15:05:20:838 EDT] 00000017 EntityBinder I org.hibernate.cfg.annotations.EntityBinder bindTable Bind entity com.bcbst.bamp.ws.model.MessageTarget on table MessageTarget [5/6/10 15:05:20:854 EDT] 00000017 AnnotationBin I org.hibernate.cfg.AnnotationBinder bindClass Binding entity from annotated class: com.bcbst.bamp.ws.model.GrpExclusion [5/6/10 15:05:20:854 EDT] 00000017 EntityBinder I org.hibernate.cfg.annotations.EntityBinder bindTable Bind entity com.bcbst.bamp.ws.model.GrpExclusion on table GrpExclusion [5/6/10 15:05:20:854 EDT] 00000017 CollectionBin I org.hibernate.cfg.annotations.CollectionBinder bindOneToManySecondPass Mapping collection: com.bcbst.bamp.ws.model.MessageTarget.exclusions -> GrpExclusion [5/6/10 15:05:20:885 EDT] 00000017 AnnotationSes I org.springframework.orm.hibernate3.LocalSessionFactoryBean buildSessionFactory Building new Hibernate SessionFactory [5/6/10 15:05:20:901 EDT] 00000017 ConnectionPro I org.slf4j.impl.JCLLoggerAdapter info Initializing connection provider: org.springframework.orm.hibernate3.LocalDataSourceConnectionProvider [5/6/10 15:05:20:901 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info RDBMS: Microsoft SQL Server, version: 9.00.4035 [5/6/10 15:05:20:901 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info JDBC driver: Microsoft SQL Server 2005 JDBC Driver, version: 1.2.2828.100 [5/6/10 15:05:20:901 EDT] 00000017 Dialect I org.slf4j.impl.JCLLoggerAdapter info Using dialect: org.hibernate.dialect.SQLServerDialect [5/6/10 15:05:20:916 EDT] 00000017 TransactionFa I org.slf4j.impl.JCLLoggerAdapter info Transaction strategy: org.springframework.orm.hibernate3.SpringTransactionFactory [5/6/10 15:05:20:916 EDT] 00000017 TransactionMa I org.slf4j.impl.JCLLoggerAdapter info No TransactionManagerLookup configured (in JTA environment, use of read-write or transactional second-level cache is not recommended) [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Automatic flush during beforeCompletion(): disabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Automatic session close at end of transaction: disabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Scrollable result sets: enabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info JDBC3 getGeneratedKeys(): enabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Connection release mode: auto [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Default batch fetch size: 1 [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Generate SQL with comments: disabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Order SQL updates by primary key: disabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Order SQL inserts for batching: disabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Query translator: org.hibernate.hql.ast.ASTQueryTranslatorFactory [5/6/10 15:05:20:932 EDT] 00000017 ASTQueryTrans I org.slf4j.impl.JCLLoggerAdapter info Using ASTQueryTranslatorFactory [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Query language substitutions: {} [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info JPA-QL strict compliance: disabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Second-level cache: enabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Query cache: disabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Cache region factory : org.hibernate.cache.impl.bridge.RegionFactoryCacheProviderBridge [5/6/10 15:05:20:932 EDT] 00000017 RegionFactory I org.slf4j.impl.JCLLoggerAdapter info Cache provider: org.hibernate.cache.NoCacheProvider [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Optimize cache for minimal puts: disabled [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Structured second-level cache entries: disabled [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Statistics: disabled [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Deleted entity synthetic identifier rollback: disabled [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Default entity-mode: pojo [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Named query checking : enabled [5/6/10 15:05:20:979 EDT] 00000017 SessionFactor I org.slf4j.impl.JCLLoggerAdapter info building session factory [5/6/10 15:05:21:010 EDT] 00000017 SessionFactor I org.slf4j.impl.JCLLoggerAdapter info Factory name: java:hibernate/Alert/SessionFactory1.0.3 [5/6/10 15:05:21:010 EDT] 00000017 NamingHelper I org.slf4j.impl.JCLLoggerAdapter info JNDI InitialContext properties:{} [5/6/10 15:05:21:010 EDT] 00000017 NamingHelper I org.slf4j.impl.JCLLoggerAdapter info Creating subcontext: java:hibernate [5/6/10 15:05:21:010 EDT] 00000017 NamingHelper I org.slf4j.impl.JCLLoggerAdapter info Creating subcontext: Alert [5/6/10 15:05:21:010 EDT] 00000017 SessionFactor I org.slf4j.impl.JCLLoggerAdapter info Bound factory to JNDI name: java:hibernate/Alert/SessionFactory1.0.3 [5/6/10 15:05:21:026 EDT] 00000017 SessionFactor W org.slf4j.impl.JCLLoggerAdapter warn InitialContext did not implement EventContext [5/6/10 15:05:21:041 EDT] 00000017 PARSER E org.slf4j.impl.JCLLoggerAdapter error <AST>:0:0: unexpected end of subtree

    Read the article

  • SUBSONIC 3.0.0.3 Subsonic.Query.SqlQuery

    - by dancingn27
    New to subsonic and having issues figuring it out. I am simply just trying to do a distinct search and any documentation I find is telling me to use the class/method SubSonic.SqlQuery Though I am finding out that since I am using the newest version, a lot of the documentation I am finding does not apply. For example, I am getting this query working beautifully using Subsonic.Query.SqlQuery though there is NO distinct method hanging off of it as suggested by what I have seen. Please advice! SubSonic.Query.SqlQuery query = brickDB.SelectColumns(new string[] { "DomainName" }).From<Web.Data.DB.WebLog>() .Where(Web.Data.DB.WebLogTable.DomainNameColumn).IsNotNull(); -> No distinct hanging off of From<>()....

    Read the article

  • Slow query with unexpected index scan

    - by zerkms
    Hello I have this query: SELECT * FROM sample INNER JOIN test ON sample.sample_number = test.sample_number INNER JOIN result ON test.test_number = result.test_number WHERE sampled_date BETWEEN '2010-03-17 09:00' AND '2010-03-17 12:00' the biggest table here is RESULT, contains 11.1M records. The left 2 tables about 1M. this query works slowly (more than 10 minutes) and returns about 800 records. executing plan shows clustered index scan (over it's PRIMARY KEY (result.result_number, which actually doesn't take part in query)) over all 11M records. RESULT.TEST_NUMBER is a clustered primary key. if I change 2010-03-17 09:00 to 2010-03-17 10:00 - i get about 40 records. it executes for 300ms. and plan shows index seek (over result.test_number index) if i replace * in SELECT clause to result.test_number (covered with index) - then all become fast in first case too. this points to hdd IO issues, but doesn't clarifies changing plan. so, any ideas? UPDATE: sampled_date is in table sample and covered by index. other fields from this query: test.sample_number is covered by index and result.test_number too. UPDATE 2: obviously than sql server in any reasons don't want to use index. i did a small experiment: i remove INNER JOIN with result, select all test.test_number and after that do SELECT * FROM RESULT WHERE TEST_NUMBER IN (...) this, of course, works fast. but i cannot get what is the difference and why query optimizer choose such inappropriate way to select data in 1st case.

    Read the article

< Previous Page | 82 83 84 85 86 87 88 89 90 91 92 93  | Next Page >