Search Results

Search found 7470 results on 299 pages for 'storage engines'.

Page 86/299 | < Previous Page | 82 83 84 85 86 87 88 89 90 91 92 93  | Next Page >

  • SMS Receiving using DOTNET C#

    - by sheery
    Hi dears, I have build an application using C# to send and receive sms, my application works fine for sending sms but when i try to read sms from my mobile through my application i get following error "Error: Phone reports generic communication error or syntax error." can any one help me in this matter, my syntax for reading sms is private void btnReadMessages_Click(object sender, System.EventArgs e) { Cursor.Current = Cursors.WaitCursor; string storage = GetMessageStorage(); try { // Read all SMS messages from the storage DecodedShortMessage[] messages = comm.ReadMessages(PhoneMessageStatus.All, storage); foreach(DecodedShortMessage message in messages) { Output(string.Format("Message status = {0}, Location = {1}/{2}", StatusToString(message.Status), message.Storage, message.Index)); ShowMessage(message.Data); Output(""); } Output(string.Format("{0,9} messages read.", messages.Length.ToString())); Output(""); } catch(Exception ex) { ShowException(ex); } Cursor.Current = Cursors.Default; }

    Read the article

  • How do you use jQuery .data() to store html?

    - by Al
    Hi all - when I look up the syntax for .data(), it gives examples like this: $('body').data('foo', 52); I am doing AJAX loads and I was wondering if it is possible to store the incoming html using .data() so once the content is loaded, I would not need to do another AJAX load if the same link is clicked again - I would check to see if the .data key is empty. Would something like this work?: To load the contents of a #ajaxdiv into storage: $('body').data('storage', div#ajaxdiv.html()); To test if the data has already been loaded: if $('body').data('storage') != '' { div#ajaxdiv.html($('body').data('storage')); } Thanks in advance!! Al

    Read the article

  • static initialization order fiasco

    - by Happy Mittal
    I was reading about SIOF from a book and it gave an example : //file1.cpp extern int y; int x=y+1; //file2.cpp extern int x; y=x+1; Now My question is : In above code..will following things happen ? 1. while compiling file1.cpp, compiler leaves y as it is i.e doesn't allocate storage for it. 2. compiler allocates storage for x, but doesn't initialize it. 3. While compiling file2.cpp, compiler leaves x as it is i.e doesn't allocate storage for it. 4. compiler allocates storage for y, but doesn't initialize it. 5. While linking file1.o and file2.o, now let file2.o is initialized first, so now: Does x gets initial value of 0? or doesn't get initialized?

    Read the article

  • Question about array subscripting in C#

    - by Michael J
    Back in the old days of C, one could use array subscripting to address storage in very useful ways. For example, one could declare an array as such. This array represents an EEPROM image with 8 bit words. BYTE eepromImage[1024] = { ... }; And later refer to that array as if it were really multi-dimensional storage BYTE mpuImage[2][512] = eepromImage; I'm sure I have the syntax wrong, but I hope you get the idea. Anyway, this projected a two dimension image of what is really single dimensional storage. The two dimensional projection represents the EEPROM image when loaded into the memory of an MPU with 16 bit words. In C one could reference the storage multi-dimensionaly and change values and the changed values would show up in the real (single dimension) storage almost as if by magic. Is it possible to do this same thing using C#? Our current solution uses multiple arrays and event handlers to keep things synchronized. This kind of works but it is additional complexity that we would like to avoid if there is a better way.

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

  • Allow certain users to access a specific directory?

    - by animuson
    I'm trying to figure out how to allow certain users who are also me to access a directory of files that I want to use for all of my users. I'm using cPanel and I used WHM to create three separate accounts. The files I want to use are on account1 in the directory /home/account1/public_html/source/engines and I want the directory /home/account2/public_html/source/engines to use the same exact files without having to upload them to both places every time I change them, so I created a simple symbolic link and added account2 to the group account1 (while still keeping its own group as the primary). It still gives me a Permission Denied error though. Is there any way I can grant account2 and other accounts that I create for myself access to those files? I don't want them to be global to all users because I don't want my hosted users to be able to access them, only my users. groups account1 returns account1 : account1 groups account2 returns account2 : account2 account1 /home/account1/public_html/source/engines and all its files belongs to account1:account1 Any other information you might need just ask.

    Read the article

  • Which databases support parallel processing across multiple servers?

    - by David
    I need a database engine that can utilize multiple servers for processing a single SQL query in parallel. So far I know that this is possible with the some engines, though none of them are feasible for me either because of pricing or missing features. The engines currently known to me are: MS SQL (enterprise) DB2 (enterprise) Oracle (enterprise) GridSQL Greenplum Which other engines have this feature? Do you have any experience with using this feature? Edit: I have now proposed a method for creating one myself. Any input is welcome. Edit: I have found another one: Informix Extended Parallel Server

    Read the article

  • SEO - Index images (lazyload)

    - by Guilherme Nascimento
    Note:My question is not about Javascript. I'm developing a plugin for jQuery/Mootols/Prototype, that work with DOM. This plugin will be to improve page performance (better user experience). The plugin will be distributed to other developers so that they can use in their projects. How does the lazyload: The images are only loaded when you scroll down the page (will look like this: http://www.appelsiini.net/projects/lazyload/enabled_timeout.html LazyLoad). But he does not need HTML5, I refer to this attribute: data-src="image.jpg" Two good examples of website use LazyLoad are: youtube.com (suggested videos) and facebook.com (photo gallery). I believe that the best alternative would be to use: <A href="image.jpg">Content for ALT=""</a> and convert using javascript, for this: <IMG alt="Content for ALT=\"\"" src="image.jpg"> Then you question me: Why do you want to do that anyway? I'll tell you: Because HTML5 is not supported by any browser (especially mobile) And the attribute data-src="image.jpg" not work at all Indexers. I need a piece of HTML code to be fully accessible to search engines. Otherwise the plugin will not be something good for other developers. I thought about doing so to help in indexing: <noscript><img src="teste.jpg"></noscript> But noscript has negative effect on the index (I refer to the contents of noscript) I want a plugin that will not obstruct the image indexing in search engines. This plugin will be used by other developers (and me too). This is my question: How to make a HTML images accessible to search engines, which can minimize the requests?

    Read the article

  • Tools for managing eCommerce backend

    - by rboarman
    I am working with an eCommerce company that has outgrown their hacked together backend for managing inventory, pricing and feeds to various shopping engines (Yahoo, 3d cart, Amazon, etc.). They currently manage about 12,000 skus and are doing $40M in revenue. Their internal people are working on a new Magento solution, but that is six months away and they need to replace/improve their current solution in order to hold them over. Their current solution was developed by two people who have left the company. What tools/architecture do other eCommerce sites use to manage their inventory, pricing, product descriptions and feed generation for the shopping engines? The current solution looks like this: 1) Inventory, pricing and product descriptions are maintained in a database and in NetSuite by employees 2) New products are added to the database via import 3) Twice a week data is extracted into a giant Excel spreadsheet 4) The Excel file adjusts pricing based on some simple algorithms 5) The Excel file exports about six different csv feeds which are manually uploaded to Amazon, 3d cart, Yahoo, Google and Merchant Advantage a. Each feed is a variant of the product which different field names and formatting b. Pricing levels differ between feeds c. Some products are not sent to all feeds 6) Orders are manually parsed and the inventory is adjusted as needed once product is sold The new solution should: 1) Import data from ODBC, CSV and NetSuite (CSV via ftp) 2) Apply pricing changes via simple algorithms (< $80 add $10, $200 add $25) 3) Ensure margins are being met 4) Format and generate a bunch of CSV and XML feeds 5) Perhaps upload feeds to shopping engines automatically What I need to do is replace the Excel file with something that is maintainable and automated. Something in the .Net stack is preferable but not mandatory. I’ve been looking at BizTalk but it may take too long to develop and deploy. Any suggestions?

    Read the article

  • Distributed Rendering in the UDK and Unity

    - by N0xus
    At the moment I'm looking at getting a game engine to run in a CAVE environment. So far, during my research I've seen a lot of people being able to get both Unity and the Unreal engine up and running in a CAVE (someone did get CryEngine to work in one, but there is little research data about it). As of yet, I have not cemented my final choice of engine for use in the next stage of my project. I've experience in both, so the learning curve will be gentle on both. And both of the engines offer stereoscopic rendering, either already inbuilt with ReadD (Unreal) or by doing it yourself (Unity). Both can also make use of other input devices as well, such as the kinect or other devices. So again, both engines are still on the table. For the last bit of my preliminary research, I was advised to see if either, or both engines could do distributed rendering. I was advised this, as the final game we make could go into a variety of differently sized CAVEs. The one I have access to is roughly 2.4m x 3m cubed, and have been duly informed that this one is a "baby" compared to others. So, finally onto my question: Can either the Unreal Engine, or Unity Engine make it possible for developers to allow distributed rendering? Either through in built devices, or by creating my own plugin / script?

    Read the article

  • SEO for maps-based websites that require user interaction

    - by j0nes
    I have a website that basically shows a lot of locations worldwide on a Google Maps like interface. The map itself is built using the Leaflet library and Open Street Map tiles. In the map, I show markers at each location I have. There is a popup window when I click on a marker that shows additional information and contains links to "detail" pages for this location. I fetch the location data for the viewpoint from an AJAX call from my server, so the additional information is not available in the HTML page itself. The detail pages are the pages my users are interested in. My normal users load the map, search the location they are interested in, click on a marker and click on a link in the popup window. However for search engines, this might look different. As this navigation pattern relies on user interaction, I think they might not be able to find the details page. My questions: Are search engines able to follow a navigation path like outlined above? How can I improve the navigation for search engines? (For example showing textual links below the map, sitemaps...) How important are internal links for SEO?

    Read the article

  • How to remove RAID flag on unstriped drive without losing data?

    - by Alex Folland
    I have a Gigabyte Z68X-UD4-B3 motherboard. It advertises this new thing called "XHD", which is like RAID but makes a SSD and traditional-style drive work together to enable high speed with high capacity. I don't want to use this feature, and I already have Windows 7 64 installed without using this feature. When I first installed my 2 hard drives (1 SSD and 1 traditional-style drive) in my machine and booted it up for the first time, it ran a program from the mobo that asked me if I wanted to set up XHD. Thinking it would go to some config screen, I said yes. It immediately started doing something with my drives and finished. I considered that strange, but figured it wouldn't matter when I simply install Windows onto my SSD only. I now have my BIOS and Windows running in AHCI mode with no RAID arrays and separate drives. My SSD is one of those new Corsair Force GT drives which loses power every so often, causing Windows to BSOD. I've figured everything out about this problem, including installing the latest firmware from Corsair, and the only way to fix it at this point is by installing Intel Rapid Storage Technology to control AHCI instead of Windows, since the Windows AHCI driver disables the drive's power every once in a while and can't be configured not to do so. I've tried installing Intel Rapid Storage Technology. When I reboot my machine after doing so, it BSODs just after the Windows logo. I've figured out this is because my SSD and my traditional drive are flagged as RAID, as seen in the "Intel Matrix Storage Manager" program found by switching the BIOS hard drive handling to "RAID" mode. This is due to the XHD auto-config program I mentioned earlier. Normally, the BIOS is set to AHCI, and when the drives boot in AHCI mode, they work perfectly. So, I've concluded the data is stored in AHCI mode but the drives' flags are set to RAID. I've figured out that I can accomplish my objective by using the "Intel Matrix Storage Manager" program on the mobo (with "Reset disks to non-RAID"), but doing so would cause it to completely wipe the drives I select. I want to simply toggle these flags from RAID to AHCI so Intel Rapid Storage Technology doesn't fail and cause a BSOD upon booting, but without wiping the drives.

    Read the article

  • Using Oracle Database's 11gR2 New ASM Features During ASM Migration

    Oracle Database 11gR2 offers several new Automatic Storage Management features for managing both Oracle database files as well as files stored within its new ASM Clustered File System. This article illustrates how to upgrade an Oracle database quickly and efficiently from version 11gR1 to 11gR2 and then migrate all of its database files so they&#146;re resident within ASM-managed storage.

    Read the article

  • Initial Look: Storing SQL Compact Data on a Windows Phone 7 Series

    - by Nikita Polyakov
    Ok, the title is misleading – I’ll admit it, but there is a way to store your data in Windows Phone 7 Series. Windows Phone 7 Silverlight solutions have what is called Isolated Storage. [XNA has content storage as well] At this time there is no port of SQL Compact engine for Silverlight Isolated Storage. There is no wind of such intention. [That was a question way before WP7 was even rumored to have Silverlight.] There a few options: 1. Microsoft recommends you “simply” use client-server or cloud approach here. But this is not an option for Offline. 2. Use the new Offline/CacheMode with Sync Framework as shown in the Building Offline Web Apps Using Microsoft Sync Framework MIX10 presentation see 19:10 for Silverlight portion [go to 22:10 mark to see the app]. 3. Use XlmSerializer to dumb your objects to a XML file into the Isolated Storage. Good for small data. 4. Experiment with C#SQLite for Silverlight that has been shown to work in WP7 emulator, read more. 5. Roll your own file format and read/write from it. Think good ol’ CSV. Good for when you want 1million row table ;)   Is Microsoft aware of this possible limitation? Yes. What are they doing about it? I don’t know. See #1 and #2 above as the official guidance for now. What should you do about it? Don’t be too quick to dismiss WP7 because you think you’ll “need” SQL Compact. As lot of us will be playing with these possible solutions, I will be sure to update you on further discoveries. Remember that the tools [even the emulator] released at MIX are CTP grade and might not have all the features. Stay up to date: Watch the @wp7dev account if you are on Twitter. And watch the Windows Phone Dev Website and Blog. More information and detail is sure to come about WP7 Dev, as Windows Phone is planned to launch “Holidays” 2010. [For example Office will be discussed in June from the latest news, June is TechEd 2010 timeframe btw]

    Read the article

  • World Record Performance on PeopleSoft Enterprise Financials Benchmark on SPARC T4-2

    - by Brian
    Oracle's SPARC T4-2 server achieved World Record performance on Oracle's PeopleSoft Enterprise Financials 9.1 executing 20 Million Journals lines in 8.92 minutes on Oracle Database 11g Release 2 running on Oracle Solaris 11. This is the first result published on this version of the benchmark. The SPARC T4-2 server was able to process 20 million general ledger journal edit and post batch jobs in 8.92 minutes on this benchmark that reflects a large customer environment that utilizes a back-end database of nearly 500 GB. This benchmark demonstrates that the SPARC T4-2 server with PeopleSoft Financials 9.1 can easily process 100 million journal lines in less than 1 hour. The SPARC T4-2 server delivered more than 146 MB/sec of IO throughput with Oracle Database 11g running on Oracle Solaris 11. Performance Landscape Results are presented for PeopleSoft Financials Benchmark 9.1. Results obtained with PeopleSoft Financials Benchmark 9.1 are not comparable to the the previous version of the benchmark, PeopleSoft Financials Benchmark 9.0, due to significant change in data model and supports only batch. PeopleSoft Financials Benchmark, Version 9.1 Solution Under Test Batch (min) SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 8.92 Results from PeopleSoft Financials Benchmark 9.0. PeopleSoft Financials Benchmark, Version 9.0 Solution Under Test Batch (min) Batch with Online (min) SPARC Enterprise M4000 (Web/App) SPARC Enterprise M5000 (DB) 33.09 34.72 SPARC T3-1 (Web/App) SPARC Enterprise M5000 (DB) 35.82 37.01 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 128 GB memory Storage Configuration: 1 x Sun Storage F5100 Flash Array (for database and redo logs) 2 x Sun Storage 2540-M2 arrays and 2 x Sun Storage 2501-M2 arrays (for backup) Software Configuration: Oracle Solaris 11 11/11 SRU 7.5 Oracle Database 11g Release 2 (11.2.0.3) PeopleSoft Financials 9.1 Feature Pack 2 PeopleSoft Supply Chain Management 9.1 Feature Pack 2 PeopleSoft PeopleTools 8.52 latest patch - 8.52.03 Oracle WebLogic Server 10.3.5 Java Platform, Standard Edition Development Kit 6 Update 32 Benchmark Description The PeopleSoft Enterprise Financials 9.1 benchmark emulates a large enterprise that processes and validates a large number of financial journal transactions before posting the journal entry to the ledger. The validation process certifies that the journal entries are accurate, ensuring that ChartFields values are valid, debits and credits equal out, and inter/intra-units are balanced. Once validated, the entries are processed, ensuring that each journal line posts to the correct target ledger, and then changes the journal status to posted. In this benchmark, the Journal Edit & Post is set up to edit and post both Inter-Unit and Regular multi-currency journals. The benchmark processes 20 million journal lines using AppEngine for edits and Cobol for post processes. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN PeopleSoft Financial Management oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Azure Flavor for the Sharepoint Media Component

    - by spano
    Some time ago I wrote about a Media Processing Component for Sharepoint that I was working on. It is a Media Assets list for Sharepoint that lets you choose where to store the blob files. It provides also intelligence for encoding videos, generating thumbnail and poster images, obtaining media metadata, etc. On that first post the component was explained in detail, with the original 3 storage flavors: Sharepoint list, Virtual Directoy or FTP. The storage manager is extensible, so a new flavor was...(read more)

    Read the article

  • Customer Support Spotlight: Clemson University

    - by cwarticki
    I've begun a Customer Support Spotlight series that highlights our wonderful customers and Oracle loyalists.  A week ago I visited Clemson University.  As I travel to visit and educate our customers, I provide many useful tips/tricks and support best practices (as found on my blog and twitter). Most of all, I always discover an Oracle gem who deserves recognition for their hard work and advocacy. Meet George Manley.  George is a Storage Engineer who has worked in Clemson's Data Center all through college, partially in the Hardware Architecture group and partially in the Storage group. George and the rest of the Storage Team work with most all of the storage technologies that they have here at Clemson. This includes a wide array of different vendors' disk arrays, with the most of them being Oracle/Sun 2540's.  He also works with SAM/QFS, ACSLS, and our SL8500 Tape Libraries (all three Oracle/Sun products). (pictured L to R, Matt Schoger (Oracle), Mark Flores (Oracle) and George Manley) George was kind enough to take us for a data center tour.  It was amazing.  I rarely get to see the inside of data centers, and this one was massive. Clemson Computing and Information Technology’s physical resources include the main data center located in the Information Technology Center at the Innovation Campus and Technology Park. The core of Clemson’s computing infrastructure, the data center has 21,000 sq ft of raised floor and is powered by a 14MW substation. The ITC power capacity is 4.5MW.  The data center is the home of both enterprise and HPC systems, and is staffed by CCIT staff on a 24 hour basis from a state of the art network operations center within the ITC. A smaller business continuance data center is located on the main campus.  The data center serves a wide variety of purposes including HPC (supercomputing) resources which are shared with other Universities throughout the state, the state's medicaid processing system, and nearly all other needs for Clemson University. Yes, that's no typo (14,256 cores and 37TB of memory!!! Thanks for the tour George and thank you very much for your time.  The tour was fantastic. I enjoyed getting to know your team and I look forward to many successes from Clemson using Oracle products. -Chris WartickiGlobal Customer Management

    Read the article

  • Overview of the IBM BladeCenter

    IBM BladeCenter switches provide the small to mid size business with a number of tactical advantages. Companies can increase storage efficiency by permitting a sharing of disc storage across multiple... [Author: Bob Wall Jr. - Computers and Internet - April 10, 2010]

    Read the article

  • Nouvelle certification sur le système de stockage New Certification Pillar Axiom 600

    - by swalker
    Vous pouvez dès à présent passer l'examen Pillar Axiom 600 Storage System Essentials (1Z0-581) en version bêta. Décrochez cet examen pour devenir Spécialiste de l'implémentation des systèmes de stockage Pillar Axiom 600. Les partenaires Oracle peuvent bénéficier de bons gratuits ! Si vous souhaitez recevoir un bon gratuit pour l’examen bêta, veuillez envoyer votre demande à l’adresse [email protected] sans oublier de préciser votre nom, votre adresse email professionnelle, le nom de votre société ainsi que le nom de l'examen : Examen Pillar Axiom 600 Storage System Essentials Beta.

    Read the article

  • Creating a Simple PHP Blog in Azure

    - by Josh Holmes
    In this post, I want to walk through creating a simple Azure application that will show a few pages, leverage Blob storage, Table storage and generally get you started doing PHP on Azure development. In short, we are going to write a very simple PHP Blog engine for Azure. To be very clear, this is not a pro blog engine and I don’t recommend using it in production. It’s a » read more.

    Read the article

  • Best partition Scheme for Ubuntu Server

    - by K.K Patel
    I am going to deploy Ubuntu server having Following servers on it Bind server, dhcp server, LAMP Server, Openssh Server, Ldap server, Monodb database, FTP server,mail server, Samba server, NFS server , in future I want to set Openstack for PAAS. Currently I have Raid 5 with 10TB. How should I make my Partition Scheme So never get problem in future and easily expand Storage size. Suggest me such a partition Scheme with giving specific percentage of Storage to partitions like /, /boot, /var, /etc. Thanks In advance

    Read the article

  • Cost Comparison Hard Disk Drive to Solid State Drive on Price per Gigabyte - dispelling a myth!

    - by tonyrogerson
    It is often said that Hard Disk Drive storage is significantly cheaper per GiByte than Solid State Devices – this is wholly inaccurate within the database space. People need to look at the cost of the complete solution and not just a single component part in isolation to what is really required to meet the business requirement. Buying a single Hitachi Ultrastar 600GB 3.5” SAS 15Krpm hard disk drive will cost approximately £239.60 (http://scan.co.uk, 22nd March 2012) compared to an OCZ 600GB Z-Drive R4 CM84 PCIe costing £2,316.54 (http://scan.co.uk, 22nd March 2012); I’ve not included FusionIO ioDrive because there is no public pricing available for it – something I never understand and personally when companies do this I immediately think what are they hiding, luckily in FusionIO’s case the product is proven though is expensive compared to OCZ enterprise offerings. On the face of it the single 15Krpm hard disk has a price per GB of £0.39, the SSD £3.86; this is what you will see in the press and this is what sales people will use in comparing the two technologies – do not be fooled by this bullshit people! What is the requirement? The requirement is the database will have a static size of 400GB kept static through archiving so growth and trim will balance the database size, the client requires resilience, there will be several hundred call centre staff querying the database where queries will read a small amount of data but there will be no hot spot in the data so the randomness will come across the entire 400GB of the database, estimates predict that the IOps required will be approximately 4,000IOps at peak times, because it’s a call centre system the IO latency is important and must remain below 5ms per IO. The balance between read and write is 70% read, 30% write. The requirement is now defined and we have three of the most important pieces of the puzzle – space required, estimated IOps and maximum latency per IO. Something to consider with regard SQL Server; write activity requires synchronous IO to the storage media specifically the transaction log; that means the write thread will wait until the IO is completed and hardened off until the thread can continue execution, the requirement has stated that 30% of the system activity will be write so we can expect a high amount of synchronous activity. The hardware solution needs to be defined; two possible solutions: hard disk or solid state based; the real question now is how many hard disks are required to achieve the IO throughput, the latency and resilience, ditto for the solid state. Hard Drive solution On a test on an HP DL380, P410i controller using IOMeter against a single 15Krpm 146GB SAS drive, the throughput given on a transfer size of 8KiB against a 40GiB file on a freshly formatted disk where the partition is the only partition on the disk thus the 40GiB file is on the outer edge of the drive so more sectors can be read before head movement is required: For 100% sequential IO at a queue depth of 16 with 8 worker threads 43,537 IOps at an average latency of 2.93ms (340 MiB/s), for 100% random IO at the same queue depth and worker threads 3,733 IOps at an average latency of 34.06ms (34 MiB/s). The same test was done on the same disk but the test file was 130GiB: For 100% sequential IO at a queue depth of 16 with 8 worker threads 43,537 IOps at an average latency of 2.93ms (340 MiB/s), for 100% random IO at the same queue depth and worker threads 528 IOps at an average latency of 217.49ms (4 MiB/s). From the result it is clear random performance gets worse as the disk fills up – I’m currently writing an article on short stroking which will cover this in detail. Given the work load is random in nature looking at the random performance of the single drive when only 40 GiB of the 146 GB is used gives near the IOps required but the latency is way out. Luckily I have tested 6 x 15Krpm 146GB SAS 15Krpm drives in a RAID 0 using the same test methodology, for the same test above on a 130 GiB for each drive added the performance boost is near linear, for each drive added throughput goes up by 5 MiB/sec, IOps by 700 IOps and latency reducing nearly 50% per drive added (172 ms, 94 ms, 65 ms, 47 ms, 37 ms, 30 ms). This is because the same 130GiB is spread out more as you add drives 130 / 1, 130 / 2, 130 / 3 etc. so implicit short stroking is occurring because there is less file on each drive so less head movement required. The best latency is still 30 ms but we have the IOps required now, but that’s on a 130GiB file and not the 400GiB we need. Some reality check here: a) the drive randomness is more likely to be 50/50 and not a full 100% but the above has highlighted the effect randomness has on the drive and the more a drive fills with data the worse the effect. For argument sake let us assume that for the given workload we need 8 disks to do the job, for resilience reasons we will need 16 because we need to RAID 1+0 them in order to get the throughput and the resilience, RAID 5 would degrade performance. Cost for hard drives: 16 x £239.60 = £3,833.60 For the hard drives we will need disk controllers and a separate external disk array because the likelihood is that the server itself won’t take the drives, a quick spec off DELL for a PowerVault MD1220 which gives the dual pathing with 16 disks 146GB 15Krpm 2.5” disks is priced at £7,438.00, note its probably more once we had two controller cards to sit in the server in, racking etc. Minimum cost taking the DELL quote as an example is therefore: {Cost of Hardware} / {Storage Required} £7,438.60 / 400 = £18.595 per GB £18.59 per GiB is a far cry from the £0.39 we had been told by the salesman and the myth. Yes, the storage array is composed of 16 x 146 disks in RAID 10 (therefore 8 usable) giving an effective usable storage availability of 1168GB but the actual storage requirement is only 400 and the extra disks have had to be purchased to get the  IOps up. Solid State Drive solution A single card significantly exceeds the IOps and latency required, for resilience two will be required. ( £2,316.54 * 2 ) / 400 = £11.58 per GB With the SSD solution only two PCIe sockets are required, no external disk units, no additional controllers, no redundant controllers etc. Conclusion I hope by showing you an example that the myth that hard disk drives are cheaper per GiB than Solid State has now been dispelled - £11.58 per GB for SSD compared to £18.59 for Hard Disk. I’ve not even touched on the running costs, compare the costs of running 18 hard disks, that’s a lot of heat and power compared to two PCIe cards!Just a quick note: I've left a fair amount of information out due to this being a blog! If in doubt, email me :)I'll also deal with the myth that SSD's wear out at a later date as well - that's just way over done still, yes, 5 years ago, but now - no.

    Read the article

  • Windows Azure Recipe: Big Data

    - by Clint Edmonson
    As the name implies, what we’re talking about here is the explosion of electronic data that comes from huge volumes of transactions, devices, and sensors being captured by businesses today. This data often comes in unstructured formats and/or too fast for us to effectively process in real time. Collectively, we call these the 4 big data V’s: Volume, Velocity, Variety, and Variability. These qualities make this type of data best managed by NoSQL systems like Hadoop, rather than by conventional Relational Database Management System (RDBMS). We know that there are patterns hidden inside this data that might provide competitive insight into market trends.  The key is knowing when and how to leverage these “No SQL” tools combined with traditional business such as SQL-based relational databases and warehouses and other business intelligence tools. Drivers Petabyte scale data collection and storage Business intelligence and insight Solution The sketch below shows one of many big data solutions using Hadoop’s unique highly scalable storage and parallel processing capabilities combined with Microsoft Office’s Business Intelligence Components to access the data in the cluster. Ingredients Hadoop – this big data industry heavyweight provides both large scale data storage infrastructure and a highly parallelized map-reduce processing engine to crunch through the data efficiently. Here are the key pieces of the environment: Pig - a platform for analyzing large data sets that consists of a high-level language for expressing data analysis programs, coupled with infrastructure for evaluating these programs. Mahout - a machine learning library with algorithms for clustering, classification and batch based collaborative filtering that are implemented on top of Apache Hadoop using the map/reduce paradigm. Hive - data warehouse software built on top of Apache Hadoop that facilitates querying and managing large datasets residing in distributed storage. Directly accessible to Microsoft Office and other consumers via add-ins and the Hive ODBC data driver. Pegasus - a Peta-scale graph mining system that runs in parallel, distributed manner on top of Hadoop and that provides algorithms for important graph mining tasks such as Degree, PageRank, Random Walk with Restart (RWR), Radius, and Connected Components. Sqoop - a tool designed for efficiently transferring bulk data between Apache Hadoop and structured data stores such as relational databases. Flume - a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large log data amounts to HDFS. Database – directly accessible to Hadoop via the Sqoop based Microsoft SQL Server Connector for Apache Hadoop, data can be efficiently transferred to traditional relational data stores for replication, reporting, or other needs. Reporting – provides easily consumable reporting when combined with a database being fed from the Hadoop environment. Training These links point to online Windows Azure training labs where you can learn more about the individual ingredients described above. Hadoop Learning Resources (20+ tutorials and labs) Huge collection of resources for learning about all aspects of Apache Hadoop-based development on Windows Azure and the Hadoop and Windows Azure Ecosystems SQL Azure (7 labs) Microsoft SQL Azure delivers on the Microsoft Data Platform vision of extending the SQL Server capabilities to the cloud as web-based services, enabling you to store structured, semi-structured, and unstructured data. See my Windows Azure Resource Guide for more guidance on how to get started, including links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • Using the jQuery UI Library in a MVC 3 Application to Build a Dialog Form

    - by ChrisD
    Using a simulated dialog window is a nice way to handle inline data editing. The jQuery UI has a UI widget for a dialog window that makes it easy to get up and running with it in your application. With the release of ASP.NET MVC 3, Microsoft included the jQuery UI scripts and files in the MVC 3 project templates for Visual Studio. With the release of the MVC 3 Tools Update, Microsoft implemented the inclusion of those with NuGet as packages. That means we can get up and running using the latest version of the jQuery UI with minimal effort. To the code! Another that might interested you about JQuery Mobile and ASP.NET MVC 3 with C#. If you are starting with a new MVC 3 application and have the Tools Update then you are a NuGet update and a <link> and <script> tag away from adding the jQuery UI to your project. If you are using an existing MVC project you can still get the jQuery UI library added to your project via NuGet and then add the link and script tags. Assuming that you have pulled down the latest version (at the time of this publish it was 1.8.13) you can add the following link and script tags to your <head> tag: < link href = "@Url.Content(" ~ / Content / themes / base / jquery . ui . all . css ")" rel = "Stylesheet" type = "text/css" /> < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > The jQuery UI library relies upon the CSS scripts and some image files to handle rendering of its widgets (you can choose a different theme or role your own if you like). Adding these to the stock _Layout.cshtml file results in the following markup: <!DOCTYPE html> < html > < head >     < meta charset = "utf-8" />     < title > @ViewBag.Title </ title >     < link href = "@Url.Content(" ~ / Content / Site . css ")" rel = "stylesheet" type = "text/css" />     <link href="@Url.Content("~/Content/themes/base/jquery.ui.all.css")" rel="Stylesheet" type="text/css" />     <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" type="text/javascript"></script>     <script src="@Url.Content("~/Scripts/modernizr-1.7.min . js ")" type = "text/javascript" ></ script >     < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > </ head > < body >     @RenderBody() </ body > </ html > Our example will involve building a list of notes with an id, title and description. Each note can be edited and new notes can be added. The user will never have to leave the single page of notes to manage the note data. The add and edit forms will be delivered in a jQuery UI dialog widget and the note list content will get reloaded via an AJAX call after each change to the list. To begin, we need to craft a model and a data management class. We will do this so we can simulate data storage and get a feel for the workflow of the user experience. The first class named Note will have properties to represent our data model. namespace Website . Models {     public class Note     {         public int Id { get ; set ; }         public string Title { get ; set ; }         public string Body { get ; set ; }     } } The second class named NoteManager will be used to set up our simulated data storage and provide methods for querying and updating the data. We will take a look at the class content as a whole and then walk through each method after. using System . Collections . ObjectModel ; using System . Linq ; using System . Web ; namespace Website . Models {     public class NoteManager     {         public Collection < Note > Notes         {             get             {                 if ( HttpRuntime . Cache [ "Notes" ] == null )                     this . loadInitialData ();                 return ( Collection < Note >) HttpRuntime . Cache [ "Notes" ];             }         }         private void loadInitialData ()         {             var notes = new Collection < Note >();             notes . Add ( new Note                           {                               Id = 1 ,                               Title = "Set DVR for Sunday" ,                               Body = "Don't forget to record Game of Thrones!"                           });             notes . Add ( new Note                           {                               Id = 2 ,                               Title = "Read MVC article" ,                               Body = "Check out the new iwantmymvc.com post"                           });             notes . Add ( new Note                           {                               Id = 3 ,                               Title = "Pick up kid" ,                               Body = "Daughter out of school at 1:30pm on Thursday. Don't forget!"                           });             notes . Add ( new Note                           {                               Id = 4 ,                               Title = "Paint" ,                               Body = "Finish the 2nd coat in the bathroom"                           });             HttpRuntime . Cache [ "Notes" ] = notes ;         }         public Collection < Note > GetAll ()         {             return Notes ;         }         public Note GetById ( int id )         {             return Notes . Where ( i => i . Id == id ). FirstOrDefault ();         }         public int Save ( Note item )         {             if ( item . Id <= 0 )                 return saveAsNew ( item );             var existingNote = Notes . Where ( i => i . Id == item . Id ). FirstOrDefault ();             existingNote . Title = item . Title ;             existingNote . Body = item . Body ;             return existingNote . Id ;         }         private int saveAsNew ( Note item )         {             item . Id = Notes . Count + 1 ;             Notes . Add ( item );             return item . Id ;         }     } } The class has a property named Notes that is read only and handles instantiating a collection of Note objects in the runtime cache if it doesn't exist, and then returns the collection from the cache. This property is there to give us a simulated storage so that we didn't have to add a full blown database (beyond the scope of this post). The private method loadInitialData handles pre-filling the collection of Note objects with some initial data and stuffs them into the cache. Both of these chunks of code would be refactored out with a move to a real means of data storage. The GetAll and GetById methods access our simulated data storage to return all of our notes or a specific note by id. The Save method takes in a Note object, checks to see if it has an Id less than or equal to zero (we assume that an Id that is not greater than zero represents a note that is new) and if so, calls the private method saveAsNew . If the Note item sent in has an Id , the code finds that Note in the simulated storage, updates the Title and Description , and returns the Id value. The saveAsNew method sets the Id , adds it to the simulated storage, and returns the Id value. The increment of the Id is simulated here by getting the current count of the note collection and adding 1 to it. The setting of the Id is the only other chunk of code that would be refactored out when moving to a different data storage approach. With our model and data manager code in place we can turn our attention to the controller and views. We can do all of our work in a single controller. If we use a HomeController , we can add an action method named Index that will return our main view. An action method named List will get all of our Note objects from our manager and return a partial view. We will use some jQuery to make an AJAX call to that action method and update our main view with the partial view content returned. Since the jQuery AJAX call will cache the call to the content in Internet Explorer by default (a setting in jQuery), we will decorate the List, Create and Edit action methods with the OutputCache attribute and a duration of 0. This will send the no-cache flag back in the header of the content to the browser and jQuery will pick that up and not cache the AJAX call. The Create action method instantiates a new Note model object and returns a partial view, specifying the NoteForm.cshtml view file and passing in the model. The NoteForm view is used for the add and edit functionality. The Edit action method takes in the Id of the note to be edited, loads the Note model object based on that Id , and does the same return of the partial view as the Create method. The Save method takes in the posted Note object and sends it to the manager to save. It is decorated with the HttpPost attribute to ensure that it will only be available via a POST. It returns a Json object with a property named Success that can be used by the UX to verify everything went well (we won't use that in our example). Both the add and edit actions in the UX will post to the Save action method, allowing us to reduce the amount of unique jQuery we need to write in our view. The contents of the HomeController.cs file: using System . Web . Mvc ; using Website . Models ; namespace Website . Controllers {     public class HomeController : Controller     {         public ActionResult Index ()         {             return View ();         }         [ OutputCache ( Duration = 0 )]         public ActionResult List ()         {             var manager = new NoteManager ();             var model = manager . GetAll ();             return PartialView ( model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Create ()         {             var model = new Note ();             return PartialView ( "NoteForm" , model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Edit ( int id )         {             var manager = new NoteManager ();             var model = manager . GetById ( id );             return PartialView ( "NoteForm" , model );         }         [ HttpPost ]         public JsonResult Save ( Note note )         {             var manager = new NoteManager ();             var noteId = manager . Save ( note );             return Json ( new { Success = noteId > 0 });         }     } } The view for the note form, NoteForm.cshtml , looks like so: @model Website . Models . Note @using ( Html . BeginForm ( "Save" , "Home" , FormMethod . Post , new { id = "NoteForm" })) { @Html . Hidden ( "Id" ) < label class = "Title" >     < span > Title < /span><br / >     @Html . TextBox ( "Title" ) < /label> <label class="Body">     <span>Body</ span >< br />     @Html . TextArea ( "Body" ) < /label> } It is a strongly typed view for our Note model class. We give the <form> element an id attribute so that we can reference it via jQuery. The <label> and <span> tags give our UX some structure that we can style with some CSS. The List.cshtml view is used to render out a <ul> element with all of our notes. @model IEnumerable < Website . Models . Note > < ul class = "NotesList" >     @foreach ( var note in Model )     {     < li >         @note . Title < br />         @note . Body < br />         < span class = "EditLink ButtonLink" noteid = "@note.Id" > Edit < /span>     </ li >     } < /ul> This view is strongly typed as well. It includes a <span> tag that we will use as an edit button. We add a custom attribute named noteid to the <span> tag that we can use in our jQuery to identify the Id of the note object we want to edit. The view, Index.cshtml , contains a bit of html block structure and all of our jQuery logic code. @ {     ViewBag . Title = "Index" ; } < h2 > Notes < /h2> <div id="NoteListBlock"></ div > < span class = "AddLink ButtonLink" > Add New Note < /span> <div id="NoteDialog" title="" class="Hidden"></ div > < script type = "text/javascript" >     $ ( function () {         $ ( "#NoteDialog" ). dialog ({             autoOpen : false , width : 400 , height : 330 , modal : true ,             buttons : {                 "Save" : function () {                     $ . post ( "/Home/Save" ,                         $ ( "#NoteForm" ). serialize (),                         function () {                             $ ( "#NoteDialog" ). dialog ( "close" );                             LoadList ();                         });                 },                 Cancel : function () { $ ( this ). dialog ( "close" ); }             }         });         $ ( ".EditLink" ). live ( "click" , function () {             var id = $ ( this ). attr ( "noteid" );             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Edit Note" )                 . load ( "/Home/Edit/" + id , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         $ ( ".AddLink" ). click ( function () {             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Add Note" )                 . load ( "/Home/Create" , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         LoadList ();     });     function LoadList () {         $ ( "#NoteListBlock" ). load ( "/Home/List" );     } < /script> The <div> tag with the id attribute of "NoteListBlock" is used as a container target for the load of the partial view content of our List action method. It starts out empty and will get loaded with content via jQuery once the DOM is loaded. The <div> tag with the id attribute of "NoteDialog" is the element for our dialog widget. The jQuery UI library will use the title attribute for the text in the dialog widget top header bar. We start out with it empty here and will dynamically change the text via jQuery based on the request to either add or edit a note. This <div> tag is given a CSS class named "Hidden" that will set the display:none style on the element. Since our call to the jQuery UI method to make the element a dialog widget will occur in the jQuery document ready code block, the end user will see the <div> element rendered in their browser as the page renders and then it will hide after that jQuery call. Adding the display:hidden to the <div> element via CSS will ensure that it is never rendered until the user triggers the request to open the dialog. The jQuery document load block contains the setup for the dialog node, click event bindings for the edit and add links, and a call to a JavaScript function called LoadList that handles the AJAX call to the List action method. The .dialog() method is called on the "NoteDialog" <div> element and the options are set for the dialog widget. The buttons option defines 2 buttons and their click actions. The first is the "Save" button (the text in quotations is used as the text for the button) that will do an AJAX post to our Save action method and send the serialized form data from the note form (targeted with the id attribute "NoteForm"). Upon completion it will close the dialog widget and call the LoadList to update the UX without a redirect. The "Cancel" button simply closes the dialog widget. The .live() method handles binding a function to the "click" event on all elements with the CSS class named EditLink . We use the .live() method because it will catch and bind our function to elements even as the DOM changes. Since we will be constantly changing the note list as we add and edit we want to ensure that the edit links get wired up with click events. The function for the click event on the edit links gets the noteid attribute and stores it in a local variable. Then it clears out the HTML in the dialog element (to ensure a fresh start), calls the .dialog() method and sets the "title" option (this sets the title attribute value), and then calls the .load() AJAX method to hit our Edit action method and inject the returned content into the "NoteDialog" <div> element. Once the .load() method is complete it opens the dialog widget. The click event binding for the add link is similar to the edit, only we don't need to get the id value and we load the Create action method. This binding is done via the .click() method because it will only be bound on the initial load of the page. The add button will always exist. Finally, we toss in some CSS in the Content/Site.css file to style our form and the add/edit links. . ButtonLink { color : Blue ; cursor : pointer ; } . ButtonLink : hover { text - decoration : underline ; } . Hidden { display : none ; } #NoteForm label { display:block; margin-bottom:6px; } #NoteForm label > span { font-weight:bold; } #NoteForm input[type=text] { width:350px; } #NoteForm textarea { width:350px; height:80px; } With all of our code in place we can do an F5 and see our list of notes: If we click on an edit link we will get the dialog widget with the correct note data loaded: And if we click on the add new note link we will get the dialog widget with the empty form: The end result of our solution tree for our sample:

    Read the article

  • Neo4J and Azure and VS2012 and Windows 8

    - by Chris Skardon
    Now, I know that this has been written about, but both of the main places (http://www.richard-banks.org/2011/02/running-neo4j-on-azure.html and http://blog.neo4j.org/2011/02/announcing-neo4j-on-windows-azure.html) utilise VS2010, and well, I’m on VS2012 and Windows 8. Not that I think Win 8 had anything to do with it really, anyhews! I’m going to begin from the beginning, this is my first foray into running something on Azure, so it’s been a bit of a learning curve. But luckily the Neo4J guys have got us started, so let’s download the VS2010 solution: http://neo4j.org/get?file=Neo4j.Azure.Server.zip OK, the other thing we’ll need is the VS2012 Azure SDK, so let’s get that as well: http://www.windowsazure.com/en-us/develop/downloads/ (I just did the full install). Now, unzip the VS2010 solution and let’s open it in VS2012: <your location>\Neo4j.Azure.Server\Neo4j.Azure.Server.sln One-way-upgrade? Yer! Ignore the migration report – we don’t care! Let’s build that sucker… Ahhh 14 errors… WindowsAzure does not exist in the namespace ‘Microsoft’ Not a problem right? We’ve installed the SDK, just need to update the references: We can ignore the Test projects, they don’t use Azure, we’re interested in the other projects, so what we’ll do is remove the broken references, and add the correct ones, so expand the references bit of each project: hunt out those yellow exclamation marks, and delete them! You’ll need to add the right ones back in (listed below), when you go to the ‘Add Reference’ dialog make sure you have ‘Assemblies’ and ‘Framework’ selected before you seach (and search for ‘microsoft.win’ to narrow it down) So the references you need for each project are: CollectDiagnosticsData Microsoft.WindowsAzure.Diagnostics Microsoft.WindowsAzure.StorageClient Diversify.WindowsAzure.ServiceRuntime Microsoft.WindowsAzure.CloudDrive Microsoft.WindowsAzure.ServiceRuntime Microsoft.WindowsAzure.StorageClient Right, so let’s build again… Sweet! No errors.   Now we need to setup our Blobs, I’m assuming you are using the most up-to-date Java you happened to have downloaded :) in my case that’s JRE7, and that is located in: C:\Program Files (x86)\Java\jre7 So, zip up that folder into whatever you want to call it, I went with jre7.zip, and stuck it in a temp folder for now. In that same temp folder I also copied the neo4j zip I was using: neo4j-community-1.7.2-windows.zip OK, now, we need to get these into our Blob storage, this is where a lot of stuff becomes unstuck - I didn’t find any applications that helped me use the blob storage, one would crash (because my internet speed is so slow) and the other just didn’t work – sure it looked like it had worked, but when push came to shove it didn’t. So this is how I got my files into Blob (local first): 1. Run the ‘Storage Emulator’ (just search for that in the start menu) 2. That takes a little while to start up so fire up another instance of Visual Studio in the mean time, and create a new Console Application. 3. Manage Nuget Packages for that solution and add ‘Windows Azure Storage’ Now you’re set up to add the code: public static void Main() { CloudStorageAccount cloudStorageAccount = CloudStorageAccount.DevelopmentStorageAccount; CloudBlobClient client = cloudStorageAccount.CreateCloudBlobClient(); client.Timeout = TimeSpan.FromMinutes(30); CloudBlobContainer container = client.GetContainerReference("neo4j"); //This will create it as well   UploadBlob(container, "jre7.zip", "c:\\temp\\jre7.zip"); UploadBlob(container, "neo4j-community-1.7.2-windows.zip", "c:\\temp\\neo4j-community-1.7.2-windows.zip"); }   private static void UploadBlob(CloudBlobContainer container, string blobName, string filename) { CloudBlob blob = container.GetBlobReference(blobName);   using (FileStream fileStream = File.OpenRead(filename)) blob.UploadFromStream(fileStream); } This will upload the files to your local storage account (to switch to an Azure one, you’ll need to create a storage account, and use those credentials when you make your CloudStorageAccount above) To test you’ve got them uploaded correctly, go to: http://localhost:10000/devstoreaccount1/neo4j/jre7.zip and you will hopefully download the zip file you just uploaded. Now that those files are there, we are ready for some final configuration… Right click on the Neo4jServerHost role in the Neo4j.Azure.Server cloud project: Click on the ‘Settings’ tab and we’ll need to do some changes – by default, the 1.7.2 edition of neo4J unzips to: neo4j-community-1.7.2 So, we need to update all the ‘neo4j-1.3.M02’ directories to be ‘neo4j-community-1.7.2’, we also need to update the Java runtime location, so we start with this: and end with this: Now, I also changed the Endpoints settings, to be HTTP (from TCP) and to have a port of 7410 (mainly because that’s straight down on the numpad) The last ‘gotcha’ is some hard coded consts, which had me looking for ages, they are in the ‘ConfigSettings’ class of the ‘Neo4jServerHost’ project, and the ones we’re interested in are: Neo4jFileName JavaZipFileName Change those both to what that should be. OK Nearly there (I promise)! Run the ‘Compute Emulator’ (same deal with the Start menu), in your system tray you should have an Azure icon, when the compute emulator is up and running, right click on the icon and select ‘Show Compute Emulator UI’ The last steps! Make sure the ‘Neo4j.Azure.Server’ cloud project is set up as the start project and let’s hit F5 tension mounts, the build takes place (you need to accept the UAC warning) and VS does it’s stuff. If you look at the Compute Emulator UI you’ll see some log stuff (which you’ll need if this goes awry – but it won’t don’t worry!) In a bit, the console and a Java window will pop up: Then the console will bog off, leaving just the Java one, and if we switch back to the Compute Emulator UI and scroll up we should be able to see a line telling us the port number we’ve been assigned (in my case 7411): (If you can’t see it, don’t worry.. press CTRL+A on the emulator, then CTRL+C, copy all the text and paste it into something like Notepad, then just do a Find for ‘port’ you’ll soon see it) Go to your favourite browser, and head to: http://localhost:YOURPORT/ and you should see the WebAdmin! See you on the cloud side hopefully! Chris PS Other gotchas! OK, I’ve been caught out a couple of times: I had an instance of Neo4J running as a service on my machine, the Azure instance wanted to run the https version of the server on the same port as the Service was running on, and so Java would complain that the port was already in use.. The first time I converted the project, it didn’t update the version of the Azure library to load, in the App.Config of the Neo4jServerHost project, and VS would throw an exception saying it couldn’t find the Azure dll version 1.0.0.0.

    Read the article

< Previous Page | 82 83 84 85 86 87 88 89 90 91 92 93  | Next Page >