Search Results

Search found 11680 results on 468 pages for 'convenience methods'.

Page 87/468 | < Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >

  • using Generics in C# [closed]

    - by Uphaar Goyal
    I have started looking into using generics in C#. As an example what i have done is that I have an abstract class which implements generic methods. these generic methods take a sql query, a connection string and the Type T as parameters and then construct the data set, populate the object and return it back. This way each business object does not need to have a method to populate it with data or construct its data set. All we need to do is pass the type, the sql query and the connection string and these methods do the rest.I am providing the code sample here. I am just looking to discuss with people who might have a better solution to what i have done. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Data; using System.Data.SqlClient; using MWTWorkUnitMgmtLib.Business; using System.Collections.ObjectModel; using System.Reflection; namespace MWTWorkUnitMgmtLib.TableGateway { public abstract class TableGateway { public TableGateway() { } protected abstract string GetConnection(); protected abstract string GetTableName(); public DataSet GetDataSetFromSql(string connectionString, string sql) { DataSet ds = null; using (SqlConnection connection = new SqlConnection(connectionString)) using (SqlCommand command = connection.CreateCommand()) { command.CommandText = sql; connection.Open(); using (ds = new DataSet()) using (SqlDataAdapter adapter = new SqlDataAdapter(command)) { adapter.Fill(ds); } } return ds; } public static bool ContainsColumnName(DataRow dr, string columnName) { return dr.Table.Columns.Contains(columnName); } public DataTable GetDataTable(string connString, string sql) { DataSet ds = GetDataSetFromSql(connString, sql); DataTable dt = null; if (ds != null) { if (ds.Tables.Count 0) { dt = ds.Tables[0]; } } return dt; } public T Construct(DataRow dr, T t) where T : class, new() { Type t1 = t.GetType(); PropertyInfo[] properties = t1.GetProperties(); foreach (PropertyInfo property in properties) { if (ContainsColumnName(dr, property.Name) && (dr[property.Name] != null)) property.SetValue(t, dr[property.Name], null); } return t; } public T GetByID(string connString, string sql, T t) where T : class, new() { DataTable dt = GetDataTable(connString, sql); DataRow dr = dt.Rows[0]; return Construct(dr, t); } public List GetAll(string connString, string sql, T t) where T : class, new() { List collection = new List(); DataTable dt = GetDataTable(connString, sql); foreach (DataRow dr in dt.Rows) collection.Add(Construct(dr, t)); return collection; } } }

    Read the article

  • Entity Framework v1 &ndash; tips and Tricks Part 3

    - by Rohit Gupta
    General Tips on Entity Framework v1 & Linq to Entities: ToTraceString() If you need to know the underlying SQL that the EF generates for a Linq To Entities query, then use the ToTraceString() method of the ObjectQuery class. (or use LINQPAD) Note that you need to cast the LINQToEntities query to ObjectQuery before calling TotraceString() as follows: 1: string efSQL = ((ObjectQuery)from c in ctx.Contact 2: where c.Address.Any(a => a.CountryRegion == "US") 3: select c.ContactID).ToTraceString(); ================================================================================ MARS or MultipleActiveResultSet When you create a EDM Model (EDMX file) from the database using Visual Studio, it generates a connection string with the same name as the name of the EntityContainer in CSDL. In the ConnectionString so generated it sets the MultipleActiveResultSet attribute to true by default. So if you are running the following query then it streams multiple readers over the same connection: 1: using (BAEntities context = new BAEntities()) 2: { 3: var cons = 4: from con in context.Contacts 5: where con.FirstName == "Jose" 6: select con; 7: foreach (var c in cons) 8: { 9: if (c.AddDate < new System.DateTime(2007, 1, 1)) 10: { 11: c.Addresses.Load(); 12: } 13: } 14: } ================================================================================= Explicitly opening and closing EntityConnection When you call ToList() or foreach on a LINQToEntities query the EF automatically closes the connection after all the records from the query have been consumed. Thus if you need to run many LINQToEntities queries over the same connection then explicitly open and close the connection as follows: 1: using (BAEntities context = new BAEntities()) 2: { 3: context.Connection.Open(); 4: var cons = from con in context.Contacts where con.FirstName == "Jose" 5: select con; 6: var conList = cons.ToList(); 7: var allCustomers = from con in context.Contacts.OfType<Customer>() 8: select con; 9: var allcustList = allCustomers.ToList(); 10: context.Connection.Close(); 11: } ====================================================================== Dispose ObjectContext only if required After you retrieve entities using the ObjectContext and you are not explicitly disposing the ObjectContext then insure that your code does consume all the records from the LinqToEntities query by calling .ToList() or foreach statement, otherwise the the database connection will remain open and will be closed by the garbage collector when it gets to dispose the ObjectContext. Secondly if you are making updates to the entities retrieved using LinqToEntities then insure that you dont inadverdently dispose of the ObjectContext after the entities are retrieved and before calling .SaveChanges() since you need the SAME ObjectContext to keep track of changes made to the Entities (by using ObjectStateEntry objects). So if you do need to explicitly dispose of the ObjectContext do so only after calling SaveChanges() and only if you dont need to change track the entities retrieved any further. ======================================================================= SQL InjectionAttacks under control with EFv1 LinqToEntities and LinqToSQL queries are parameterized before they are sent to the DB hence they are not vulnerable to SQL Injection attacks. EntitySQL may be slightly vulnerable to attacks since it does not use parameterized queries. However since the EntitySQL demands that the query be valid Entity SQL syntax and valid native SQL syntax at the same time. So the only way one can do a SQLInjection Attack is by knowing the SSDL of the EDM Model and be able to write the correct EntitySQL (note one cannot append regular SQL since then the query wont be a valid EntitySQL syntax) and append it to a parameter. ====================================================================== Improving Performance You can convert the EntitySets and AssociationSets in a EDM Model into precompiled Views using the edmgen utility. for e.g. the Customer Entity can be converted into a precompiled view using edmgen and all LinqToEntities query against the contaxt.Customer EntitySet will use the precompiled View instead of the EntitySet itself (the same being true for relationships (EntityReference & EntityCollections of a Entity)). The advantage being that when using precompiled views the performance will be much better. The syntax for generating precompiled views for a existing EF project is : edmgen /mode:ViewGeneration /inssdl:BAModel.ssdl /incsdl:BAModel.csdl /inmsl:BAModel.msl /p:Chap14.csproj Note that this will only generate precompiled views for EntitySets and Associations and not for existing LinqToEntities queries in the project.(for that use CompiledQuery.Compile<>) Secondly if you have a LinqToEntities query that you need to run multiple times, then one should precompile the query using CompiledQuery.Compile method. The CompiledQuery.Compile<> method accepts a lamda expression as a parameter, which denotes the LinqToEntities query  that you need to precompile. The following is a example of a lamda that we can pass into the CompiledQuery.Compile() method 1: Expression<Func<BAEntities, string, IQueryable<Customer>>> expr = (BAEntities ctx1, string loc) => 2: from c in ctx1.Contacts.OfType<Customer>() 3: where c.Reservations.Any(r => r.Trip.Destination.DestinationName == loc) 4: select c; Then we call the Compile Query as follows: 1: var query = CompiledQuery.Compile<BAEntities, string, IQueryable<Customer>>(expr); 2:  3: using (BAEntities ctx = new BAEntities()) 4: { 5: var loc = "Malta"; 6: IQueryable<Customer> custs = query.Invoke(ctx, loc); 7: var custlist = custs.ToList(); 8: foreach (var item in custlist) 9: { 10: Console.WriteLine(item.FullName); 11: } 12: } Note that if you created a ObjectQuery or a Enitity SQL query instead of the LINQToEntities query, you dont need precompilation for e.g. 1: An Example of EntitySQL query : 2: string esql = "SELECT VALUE c from Contacts AS c where c is of(BAGA.Customer) and c.LastName = 'Gupta'"; 3: ObjectQuery<Customer> custs = CreateQuery<Customer>(esql); 1: An Example of ObjectQuery built using ObjectBuilder methods: 2: from c in Contacts.OfType<Customer>().Where("it.LastName == 'Gupta'") 3: select c This is since the Query plan is cached and thus the performance improves a bit, however since the ObjectQuery or EntitySQL query still needs to materialize the results into Entities hence it will take the same amount of performance hit as with LinqToEntities. However note that not ALL EntitySQL based or QueryBuilder based ObjectQuery plans are cached. So if you are in doubt always create a LinqToEntities compiled query and use that instead ============================================================ GetObjectStateEntry Versus GetObjectByKey We can get to the Entity being referenced by the ObjectStateEntry via its Entity property and there are helper methods in the ObjectStateManager (osm.TryGetObjectStateEntry) to get the ObjectStateEntry for a entity (for which we know the EntityKey). Similarly The ObjectContext has helper methods to get an Entity i.e. TryGetObjectByKey(). TryGetObjectByKey() uses GetObjectStateEntry method under the covers to find the object, however One important difference between these 2 methods is that TryGetObjectByKey queries the database if it is unable to find the object in the context, whereas TryGetObjectStateEntry only looks in the context for existing entries. It will not make a trip to the database ============================================================= POCO objects with EFv1: To create POCO objects that can be used with EFv1. We need to implement 3 key interfaces: IEntityWithKey IEntityWithRelationships IEntityWithChangeTracker Implementing IEntityWithKey is not mandatory, but if you dont then we need to explicitly provide values for the EntityKey for various functions (for e.g. the functions needed to implement IEntityWithChangeTracker and IEntityWithRelationships). Implementation of IEntityWithKey involves exposing a property named EntityKey which returns a EntityKey object. Implementation of IEntityWithChangeTracker involves implementing a method named SetChangeTracker since there can be multiple changetrackers (Object Contexts) existing in memory at the same time. 1: public void SetChangeTracker(IEntityChangeTracker changeTracker) 2: { 3: _changeTracker = changeTracker; 4: } Additionally each property in the POCO object needs to notify the changetracker (objContext) that it is updating itself by calling the EntityMemberChanged and EntityMemberChanging methods on the changeTracker. for e.g.: 1: public EntityKey EntityKey 2: { 3: get { return _entityKey; } 4: set 5: { 6: if (_changeTracker != null) 7: { 8: _changeTracker.EntityMemberChanging("EntityKey"); 9: _entityKey = value; 10: _changeTracker.EntityMemberChanged("EntityKey"); 11: } 12: else 13: _entityKey = value; 14: } 15: } 16: ===================== Custom Property ==================================== 17:  18: [EdmScalarPropertyAttribute(IsNullable = false)] 19: public System.DateTime OrderDate 20: { 21: get { return _orderDate; } 22: set 23: { 24: if (_changeTracker != null) 25: { 26: _changeTracker.EntityMemberChanging("OrderDate"); 27: _orderDate = value; 28: _changeTracker.EntityMemberChanged("OrderDate"); 29: } 30: else 31: _orderDate = value; 32: } 33: } Finally you also need to create the EntityState property as follows: 1: public EntityState EntityState 2: { 3: get { return _changeTracker.EntityState; } 4: } The IEntityWithRelationships involves creating a property that returns RelationshipManager object: 1: public RelationshipManager RelationshipManager 2: { 3: get 4: { 5: if (_relManager == null) 6: _relManager = RelationshipManager.Create(this); 7: return _relManager; 8: } 9: } ============================================================ Tip : ProviderManifestToken – change EDMX File to use SQL 2008 instead of SQL 2005 To use with SQL Server 2008, edit the EDMX file (the raw XML) changing the ProviderManifestToken in the SSDL attributes from "2005" to "2008" ============================================================= With EFv1 we cannot use Structs to replace a anonymous Type while doing projections in a LINQ to Entities query. While the same is supported with LINQToSQL, it is not with LinqToEntities. For e.g. the following is not supported with LinqToEntities since only parameterless constructors and initializers are supported in LINQ to Entities. (the same works with LINQToSQL) 1: public struct CompanyInfo 2: { 3: public int ID { get; set; } 4: public string Name { get; set; } 5: } 6: var companies = (from c in dc.Companies 7: where c.CompanyIcon == null 8: select new CompanyInfo { Name = c.CompanyName, ID = c.CompanyId }).ToList(); ;

    Read the article

  • Metro: Query Selectors

    - by Stephen.Walther
    The goal of this blog entry is to explain how to perform queries using selectors when using the WinJS library. In particular, you learn how to use the WinJS.Utilities.query() method and the QueryCollection class to retrieve and modify the elements of an HTML document. Introduction to Selectors When you are building a Web application, you need some way of easily retrieving elements from an HTML document. For example, you might want to retrieve all of the input elements which have a certain class. Or, you might want to retrieve the one and only element with an id of favoriteColor. The standard way of retrieving elements from an HTML document is by using a selector. Anyone who has ever created a Cascading Style Sheet has already used selectors. You use selectors in Cascading Style Sheets to apply formatting rules to elements in a document. For example, the following Cascading Style Sheet rule changes the background color of every INPUT element with a class of .required in a document to the color red: input.red { background-color: red } The “input.red” part is the selector which matches all INPUT elements with a class of red. The W3C standard for selectors (technically, their recommendation) is entitled “Selectors Level 3” and the standard is located here: http://www.w3.org/TR/css3-selectors/ Selectors are not only useful for adding formatting to the elements of a document. Selectors are also useful when you need to apply behavior to the elements of a document. For example, you might want to select a particular BUTTON element with a selector and add a click handler to the element so that something happens whenever you click the button. Selectors are not specific to Cascading Style Sheets. You can use selectors in your JavaScript code to retrieve elements from an HTML document. jQuery is famous for its support for selectors. Using jQuery, you can use a selector to retrieve matching elements from a document and modify the elements. The WinJS library enables you to perform the same types of queries as jQuery using the W3C selector syntax. Performing Queries with the WinJS.Utilities.query() Method When using the WinJS library, you perform a query using a selector by using the WinJS.Utilities.query() method.  The following HTML document contains a BUTTON and a DIV element: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <button>Click Me!</button> <div style="display:none"> <h1>Secret Message</h1> </div> </body> </html> The document contains a reference to the following JavaScript file named \js\default.js: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.Utilities.query("button").listen("click", function () { WinJS.Utilities.query("div").clearStyle("display"); }); } }; app.start(); })(); The default.js script uses the WinJS.Utilities.query() method to retrieve all of the BUTTON elements in the page. The listen() method is used to wire an event handler to the BUTTON click event. When you click the BUTTON, the secret message contained in the hidden DIV element is displayed. The clearStyle() method is used to remove the display:none style attribute from the DIV element. Under the covers, the WinJS.Utilities.query() method uses the standard querySelectorAll() method. This means that you can use any selector which is compatible with the querySelectorAll() method when using the WinJS.Utilities.query() method. The querySelectorAll() method is defined in the W3C Selectors API Level 1 standard located here: http://www.w3.org/TR/selectors-api/ Unlike the querySelectorAll() method, the WinJS.Utilities.query() method returns a QueryCollection. We talk about the methods of the QueryCollection class below. Retrieving a Single Element with the WinJS.Utilities.id() Method If you want to retrieve a single element from a document, instead of matching a set of elements, then you can use the WinJS.Utilities.id() method. For example, the following line of code changes the background color of an element to the color red: WinJS.Utilities.id("message").setStyle("background-color", "red"); The statement above matches the one and only element with an Id of message. For example, the statement matches the following DIV element: <div id="message">Hello!</div> Notice that you do not use a hash when matching a single element with the WinJS.Utilities.id() method. You would need to use a hash when using the WinJS.Utilities.query() method to do the same thing like this: WinJS.Utilities.query("#message").setStyle("background-color", "red"); Under the covers, the WinJS.Utilities.id() method calls the standard document.getElementById() method. The WinJS.Utilities.id() method returns the result as a QueryCollection. If no element matches the identifier passed to WinJS.Utilities.id() then you do not get an error. Instead, you get a QueryCollection with no elements (length=0). Using the WinJS.Utilities.children() method The WinJS.Utilities.children() method enables you to retrieve a QueryCollection which contains all of the children of a DOM element. For example, imagine that you have a DIV element which contains children DIV elements like this: <div id="discussContainer"> <div>Message 1</div> <div>Message 2</div> <div>Message 3</div> </div> You can use the following code to add borders around all of the child DIV element and not the container DIV element: var discussContainer = WinJS.Utilities.id("discussContainer").get(0); WinJS.Utilities.children(discussContainer).setStyle("border", "2px dashed red");   It is important to understand that the WinJS.Utilities.children() method only works with a DOM element and not a QueryCollection. Notice that the get() method is used to retrieve the DOM element which represents the discussContainer. Working with the QueryCollection Class Both the WinJS.Utilities.query() method and the WinJS.Utilities.id() method return an instance of the QueryCollection class. The QueryCollection class derives from the base JavaScript Array class and adds several useful methods for working with HTML elements: addClass(name) – Adds a class to every element in the QueryCollection. clearStyle(name) – Removes a style from every element in the QueryCollection. conrols(ctor, options) – Enables you to create controls. get(index) – Retrieves the element from the QueryCollection at the specified index. getAttribute(name) – Retrieves the value of an attribute for the first element in the QueryCollection. hasClass(name) – Returns true if the first element in the QueryCollection has a certain class. include(items) – Includes a collection of items in the QueryCollection. listen(eventType, listener, capture) – Adds an event listener to every element in the QueryCollection. query(query) – Performs an additional query on the QueryCollection and returns a new QueryCollection. removeClass(name) – Removes a class from the every element in the QueryCollection. removeEventListener(eventType, listener, capture) – Removes an event listener from every element in the QueryCollection. setAttribute(name, value) – Adds an attribute to every element in the QueryCollection. setStyle(name, value) – Adds a style attribute to every element in the QueryCollection. template(templateElement, data, renderDonePromiseContract) – Renders a template using the supplied data.  toggleClass(name) – Toggles the specified class for every element in the QueryCollection. Because the QueryCollection class derives from the base Array class, it also contains all of the standard Array methods like forEach() and slice(). Summary In this blog post, I’ve described how you can perform queries using selectors within a Windows Metro Style application written with JavaScript. You learned how to return an instance of the QueryCollection class by using the WinJS.Utilities.query(), WinJS.Utilities.id(), and WinJS.Utilities.children() methods. You also learned about the methods of the QueryCollection class.

    Read the article

  • Sixeyed.Caching available now on NuGet and GitHub!

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2013/10/22/sixeyed.caching-available-now-on-nuget-and-github.aspxThe good guys at Pluralsight have okayed me to publish my caching framework (as seen in Caching in the .NET Stack: Inside-Out) as an open-source library, and it’s out now. You can get it here: Sixeyed.Caching source code on GitHub, and here: Sixeyed.Caching package v1.0.0 on NuGet. If you haven’t seen the course, there’s a preview here on YouTube: In-Process and Out-of-Process Caches, which gives a good flavour. The library is a wrapper around various cache providers, including the .NET MemoryCache, AppFabric cache, and  memcached*. All the wrappers inherit from a base class which gives you a set of common functionality against all the cache implementations: •    inherits OutputCacheProvider, so you can use your chosen cache provider as an ASP.NET output cache; •    serialization and encryption, so you can configure whether you want your cache items serialized (XML, JSON or binary) and encrypted; •    instrumentation, you can optionally use performance counters to monitor cache attempts and hits, at a low level. The framework wraps up different caches into an ICache interface, and it lets you use a provider directly like this: Cache.Memory.Get<RefData>(refDataKey); - or with configuration to use the default cache provider: Cache.Default.Get<RefData>(refDataKey); The library uses Unity’s interception framework to implement AOP caching, which you can use by flagging methods with the [Cache] attribute: [Cache] public RefData GetItem(string refDataKey) - and you can be more specific on the required cache behaviour: [Cache(CacheType=CacheType.Memory, Days=1] public RefData GetItem(string refDataKey) - or really specific: [Cache(CacheType=CacheType.Disk, SerializationFormat=SerializationFormat.Json, Hours=2, Minutes=59)] public RefData GetItem(string refDataKey) Provided you get instances of classes with cacheable methods from the container, the attributed method results will be cached, and repeated calls will be fetched from the cache. You can also set a bunch of cache defaults in application config, like whether to use encryption and instrumentation, and whether the cache system is enabled at all: <sixeyed.caching enabled="true"> <performanceCounters instrumentCacheTotalCounts="true" instrumentCacheTargetCounts="true" categoryNamePrefix ="Sixeyed.Caching.Tests"/> <encryption enabled="true" key="1234567890abcdef1234567890abcdef" iv="1234567890abcdef"/> <!-- key must be 32 characters, IV must be 16 characters--> </sixeyed.caching> For AOP and methods flagged with the cache attribute, you can override the compile-time cache settings at runtime with more config (keyed by the class and method name): <sixeyed.caching enabled="true"> <targets> <target keyPrefix="MethodLevelCachingStub.GetRandomIntCacheConfiguredInternal" enabled="false"/> <target keyPrefix="MethodLevelCachingStub.GetRandomIntCacheExpiresConfiguredInternal" seconds="1"/> </targets> It’s released under the MIT license, so you can use it freely in your own apps and modify as required. I’ll be adding more content to the GitHub wiki, which will be the main source of documentation, but for now there’s an FAQ to get you started. * - in the course the framework library also wraps NCache Express, but there's no public redistributable library that I can find, so it's not in Sixeyed.Caching.

    Read the article

  • Is it bad to have an "Obsessive Refactoring Disorder"?

    - by Rachel
    I was reading this question and realized that could almost be me. I am fairly OCD about refactoring someone else's code when I see that I can improve it. For example, if the code contains duplicate methods to do the same thing with nothing more than a single parameter changing, I feel I have to remove all the copy/paste methods and replace it with one generic one. Is this bad? Should I try and stop? I try not to refactor unless I can actually make improvements to the code performance or readability, or if the person who did the code isn't following our standard naming conventions (I hate expecting a variable to be local because of the naming standard, only to discover it is a global variable which has been incorrectly named)

    Read the article

  • ASP.NET MVC 3 Hosting :: ASP.NET MVC 3 First Look

    - by mbridge
    MVC 3 View Enhancements MVC 3 introduces two improvements to the MVC view engine: - Ability to select the view engine to use. MVC 3 allows you to select from any of your  installed view engines from Visual Studio by selecting Add > View (including the newly introduced ASP.NET “Razor” engine”): - Support for the next ASP.NET “Razor” syntax. The newly previewed Razor syntax is a concise lightweight syntax. MVC 3 Control Enhancements - Global Filters: ASP.NET MVC 3  allows you to specify that a filter which applies globally to all Controllers within an app by adding it to the GlobalFilters collection.  The RegisterGlobalFilters() method is now included in the default Global.asax class template and so provides a convenient place to do this since is will then be called by the Application_Start() method: void RegisterGlobalFilters(GlobalFilterCollection filters) { filters.Add(new HandleLoggingAttribute()); filters.Add(new HandleErrorAttribute()); } void Application_Start() { RegisterGlobalFilters (GlobalFilters.Filters); } - Dynamic ViewModel Property : MVC 3 augments the ViewData API with a new “ViewModel” property on Controller which is of type “dynamic” – and therefore enables you to use the new dynamic language support in C# and VB pass ViewData items using a cleaner syntax than the current dictionary API. Public ActionResult Index() { ViewModel.Message = "Hello World"; return View(); } - New ActionResult Types : MVC 3 includes three new ActionResult types and helper methods: 1. HttpNotFoundResult – indicates that a resource which was requested by the current URL was not found. HttpNotFoundResult will return a 404 HTTP status code to the calling client. 2. PermanentRedirects – The HttpRedirectResult class contains a new Boolean “Permanent” property which is used to indicate that a permanent redirect should be done. Permanent redirects use a HTTP 301 status code.  The Controller class  includes three new methods for performing these permanent redirects: RedirectPermanent(), RedirectToRoutePermanent(), andRedirectToActionPermanent(). All  of these methods will return an instance of the HttpRedirectResult object with the Permanent property set to true. 3. HttpStatusCodeResult – used for setting an explicit response status code and its associated description. MVC 3 AJAX and JavaScript Enhancements MVC 3 ships with built-in JSON binding support which enables action methods to receive JSON-encoded data and then model-bind it to action method parameters. For example a jQuery client-side JavaScript could define a “save” event handler which will be invoked when the save button is clicked on the client. The code in the event handler then constructs a client-side JavaScript “product” object with 3 fields with their values retrieved from HTML input elements. Finally, it uses jQuery’s .ajax() method to POST a JSON based request which contains the product to a /theStore/UpdateProduct URL on the server: $('#save').click(function () { var product = { ProdName: $('#Name').val() Price: $('#Price').val(), } $.ajax({ url: '/theStore/UpdateProduct', type: "POST"; data: JSON.stringify(widget), datatype: "json", contentType: "application/json; charset=utf-8", success: function () { $('#message').html('Saved').fadeIn(), }, error: function () { $('#message').html('Error').fadeIn(), } }); return false; }); MVC will allow you to implement the /theStore/UpdateProduct URL on the server by using an action method as below. The UpdateProduct() action method will accept a strongly-typed Product object for a parameter. MVC 3 can now automatically bind an incoming JSON post value to the .NET Product type on the server without having to write any custom binding. [HttpPost] public ActionResult UpdateProduct(Product product) { // save logic here return null } MVC 3 Model Validation Enhancements MVC 3 builds on the MVC 2 model validation improvements by adding   support for several of the new validation features within the System.ComponentModel.DataAnnotations namespace in .NET 4.0: - Support for the new DataAnnotations metadata attributes like DisplayAttribute. - Support for the improvements made to the ValidationAttribute class which now supports a new IsValid overload that provides more info on  the current validation context, like what object is being validated. - Support for the new IValidatableObject interface which enables you to perform model-level validation and also provide validation error messages which are specific to the state of the overall model. MVC 3 Dependency Injection Enhancements MVC 3 includes better support for applying Dependency Injection (DI) and also integrating with Dependency Injection/IOC containers. Currently MVC 3 Preview 1 has support for DI in the below places: - Controllers (registering & injecting controller factories and injecting controllers) - Views (registering & injecting view engines, also for injecting dependencies into view pages) - Action Filters (locating and  injecting filters) And this is another important blog about Microsoft .NET and technology: - Windows 2008 Blog - SharePoint 2010 Blog - .NET 4 Blog And you can visit here if you're looking for ASP.NET MVC 3 hosting

    Read the article

  • XNA Screen Manager problem with transitions

    - by NexAddo
    I'm having issues using the game statemanagement example in the game I am developing. I have no issues with my first three screens transitioning between one another. I have a main menu screen, a splash screen and a high score screen that cycle: mainMenuScreen->splashScreen->highScoreScreen->mainMenuScreen The screens change every 15 seconds. Transition times public MainMenuScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.0); currentCreditAmount = Global.CurrentCredits; } public SplashScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public HighScoreScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public GamePlayScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } When a user inserts credits they can play the game after pressing start mainMenuScreen->splashScreen->highScoreScreen->(loops forever) || || || ===========Credits In============= || Start || \/ LoadingScreen || Start || \/ GamePlayScreen During each of these transitions, between screens, the same code is used, which exits(removes) all current active screens and respects transitions, then adds the new screen to the screen manager: foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); //AddScreen takes a new screen to manage and the controlling player ScreenManager.AddScreen(new NameOfScreenHere(), null); Each screen is removed from the ScreenManager with ExitScreen() and using this function, each screen transition is respected. The problem I am having is with my gamePlayScreen. When the current game is finished and the transition is complete for the gamePlayScreen, it should be removed and the next screens should be added to the ScreenManager. GamePlayScreen Code Snippet private void FinishCurrentGame() { AudioManager.StopSounds(); this.UnloadContent(); if (Global.SaveDevice.IsReady) Stats.Save(); if (HighScoreScreen.IsInHighscores(timeLimit)) { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); Global.TimeRemaining = timeLimit; ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MessageBoxScreen("Enter your Initials", true), null); } else { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MainMenuScreen(), null); } } The problem is that when isExiting is set to true by screen.ExitScreen() for the gamePlayScreen, the transition never completes the transition and removes the screen from the ScreenManager. Every other screen that I use the same technique to add and remove each screen fully transitions On/Off and is removed at the appropriate time from the ScreenManager, but noy my GamePlayScreen. Has anyone that has used the GameStateManagement example experienced this issue or can someone see the mistake I am making? EDIT This is what I tracked down. When the game is done, I call foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); to start the transition off process for the gameplay screen. At this point there is only 1 screen on the ScreenManager stack. The gamePlay screen gets isExiting set to true and starts to transition off. Right after the above call to ExitScreen() I add a background screen and menu screen to the screenManager: ScreenManager.AddScreen(new background(), null); ScreenManager.AddScreen(new Menu(), null); The count of the ScreenManager is now 3. What I noticed while stepping through the updates for GameScreen and ScreenManager, the gameplay screen never gets to the point where the transistion process finishes so the ScreenManager can remove it from the stack. This anomaly does not happen to any of my other screens when I switch between them. Screen Manager Code #region File Description //----------------------------------------------------------------------------- // ScreenManager.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #define DEMO #region Using Statements using System; using System.Diagnostics; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using PerformanceUtility.GameDebugTools; #endregion namespace GameStateManagement { /// <summary> /// The screen manager is a component which manages one or more GameScreen /// instances. It maintains a stack of screens, calls their Update and Draw /// methods at the appropriate times, and automatically routes input to the /// topmost active screen. /// </summary> public class ScreenManager : DrawableGameComponent { #region Fields List<GameScreen> screens = new List<GameScreen>(); List<GameScreen> screensToUpdate = new List<GameScreen>(); InputState input = new InputState(); SpriteBatch spriteBatch; SpriteFont font; Texture2D blankTexture; bool isInitialized; bool getOut; bool traceEnabled; #if DEBUG DebugSystem debugSystem; Stopwatch stopwatch = new Stopwatch(); bool debugTextEnabled; #endif #endregion #region Properties /// <summary> /// A default SpriteBatch shared by all the screens. This saves /// each screen having to bother creating their own local instance. /// </summary> public SpriteBatch SpriteBatch { get { return spriteBatch; } } /// <summary> /// A default font shared by all the screens. This saves /// each screen having to bother loading their own local copy. /// </summary> public SpriteFont Font { get { return font; } } public Rectangle ScreenRectangle { get { return new Rectangle(0, 0, GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height); } } /// <summary> /// If true, the manager prints out a list of all the screens /// each time it is updated. This can be useful for making sure /// everything is being added and removed at the right times. /// </summary> public bool TraceEnabled { get { return traceEnabled; } set { traceEnabled = value; } } #if DEBUG public bool DebugTextEnabled { get { return debugTextEnabled; } set { debugTextEnabled = value; } } public DebugSystem DebugSystem { get { return debugSystem; } } #endif #endregion #region Initialization /// <summary> /// Constructs a new screen manager component. /// </summary> public ScreenManager(Game game) : base(game) { // we must set EnabledGestures before we can query for them, but // we don't assume the game wants to read them. //TouchPanel.EnabledGestures = GestureType.None; } /// <summary> /// Initializes the screen manager component. /// </summary> public override void Initialize() { base.Initialize(); #if DEBUG debugSystem = DebugSystem.Initialize(Game, "Fonts/MenuFont"); #endif isInitialized = true; } /// <summary> /// Load your graphics content. /// </summary> protected override void LoadContent() { // Load content belonging to the screen manager. ContentManager content = Game.Content; spriteBatch = new SpriteBatch(GraphicsDevice); font = content.Load<SpriteFont>(@"Fonts\menufont"); blankTexture = content.Load<Texture2D>(@"Textures\Backgrounds\blank"); // Tell each of the screens to load their content. foreach (GameScreen screen in screens) { screen.LoadContent(); } } /// <summary> /// Unload your graphics content. /// </summary> protected override void UnloadContent() { // Tell each of the screens to unload their content. foreach (GameScreen screen in screens) { screen.UnloadContent(); } } #endregion #region Update and Draw /// <summary> /// Allows each screen to run logic. /// </summary> public override void Update(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Update", Color.Blue); if (debugTextEnabled && getOut == false) { debugSystem.FpsCounter.Visible = true; debugSystem.TimeRuler.Visible = true; debugSystem.TimeRuler.ShowLog = true; getOut = true; } else if (debugTextEnabled == false) { getOut = false; debugSystem.FpsCounter.Visible = false; debugSystem.TimeRuler.Visible = false; debugSystem.TimeRuler.ShowLog = false; } #endif // Read the keyboard and gamepad. input.Update(); // Make a copy of the master screen list, to avoid confusion if // the process of updating one screen adds or removes others. screensToUpdate.Clear(); foreach (GameScreen screen in screens) screensToUpdate.Add(screen); bool otherScreenHasFocus = !Game.IsActive; bool coveredByOtherScreen = false; // Loop as long as there are screens waiting to be updated. while (screensToUpdate.Count > 0) { // Pop the topmost screen off the waiting list. GameScreen screen = screensToUpdate[screensToUpdate.Count - 1]; screensToUpdate.RemoveAt(screensToUpdate.Count - 1); // Update the screen. screen.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen); if (screen.ScreenState == ScreenState.TransitionOn || screen.ScreenState == ScreenState.Active) { // If this is the first active screen we came across, // give it a chance to handle input. if (!otherScreenHasFocus) { screen.HandleInput(input); otherScreenHasFocus = true; } // If this is an active non-popup, inform any subsequent // screens that they are covered by it. if (!screen.IsPopup) coveredByOtherScreen = true; } } // Print debug trace? if (traceEnabled) TraceScreens(); #if DEBUG debugSystem.TimeRuler.EndMark("Update"); #endif } /// <summary> /// Prints a list of all the screens, for debugging. /// </summary> void TraceScreens() { List<string> screenNames = new List<string>(); foreach (GameScreen screen in screens) screenNames.Add(screen.GetType().Name); Debug.WriteLine(string.Join(", ", screenNames.ToArray())); } /// <summary> /// Tells each screen to draw itself. /// </summary> public override void Draw(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Draw", Color.Yellow); #endif foreach (GameScreen screen in screens) { if (screen.ScreenState == ScreenState.Hidden) continue; screen.Draw(gameTime); } #if DEBUG debugSystem.TimeRuler.EndMark("Draw"); #endif #if DEMO SpriteBatch.Begin(); SpriteBatch.DrawString(font, "DEMO - NOT FOR RESALE", new Vector2(20, 80), Color.White); SpriteBatch.End(); #endif } #endregion #region Public Methods /// <summary> /// Adds a new screen to the screen manager. /// </summary> public void AddScreen(GameScreen screen, PlayerIndex? controllingPlayer) { screen.ControllingPlayer = controllingPlayer; screen.ScreenManager = this; screen.IsExiting = false; // If we have a graphics device, tell the screen to load content. if (isInitialized) { screen.LoadContent(); } screens.Add(screen); } /// <summary> /// Removes a screen from the screen manager. You should normally /// use GameScreen.ExitScreen instead of calling this directly, so /// the screen can gradually transition off rather than just being /// instantly removed. /// </summary> public void RemoveScreen(GameScreen screen) { // If we have a graphics device, tell the screen to unload content. if (isInitialized) { screen.UnloadContent(); } screens.Remove(screen); screensToUpdate.Remove(screen); } /// <summary> /// Expose an array holding all the screens. We return a copy rather /// than the real master list, because screens should only ever be added /// or removed using the AddScreen and RemoveScreen methods. /// </summary> public GameScreen[] GetScreens() { return screens.ToArray(); } /// <summary> /// Helper draws a translucent black fullscreen sprite, used for fading /// screens in and out, and for darkening the background behind popups. /// </summary> public void FadeBackBufferToBlack(float alpha) { Viewport viewport = GraphicsDevice.Viewport; spriteBatch.Begin(); spriteBatch.Draw(blankTexture, new Rectangle(0, 0, viewport.Width, viewport.Height), Color.Black * alpha); spriteBatch.End(); } #endregion } } Game Screen Parent of GamePlayScreen #region File Description //----------------------------------------------------------------------------- // GameScreen.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #region Using Statements using System; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Input; //using Microsoft.Xna.Framework.Input.Touch; using System.IO; #endregion namespace GameStateManagement { /// <summary> /// Enum describes the screen transition state. /// </summary> public enum ScreenState { TransitionOn, Active, TransitionOff, Hidden, } /// <summary> /// A screen is a single layer that has update and draw logic, and which /// can be combined with other layers to build up a complex menu system. /// For instance the main menu, the options menu, the "are you sure you /// want to quit" message box, and the main game itself are all implemented /// as screens. /// </summary> public abstract class GameScreen { #region Properties /// <summary> /// Normally when one screen is brought up over the top of another, /// the first screen will transition off to make room for the new /// one. This property indicates whether the screen is only a small /// popup, in which case screens underneath it do not need to bother /// transitioning off. /// </summary> public bool IsPopup { get { return isPopup; } protected set { isPopup = value; } } bool isPopup = false; /// <summary> /// Indicates how long the screen takes to /// transition on when it is activated. /// </summary> public TimeSpan TransitionOnTime { get { return transitionOnTime; } protected set { transitionOnTime = value; } } TimeSpan transitionOnTime = TimeSpan.Zero; /// <summary> /// Indicates how long the screen takes to /// transition off when it is deactivated. /// </summary> public TimeSpan TransitionOffTime { get { return transitionOffTime; } protected set { transitionOffTime = value; } } TimeSpan transitionOffTime = TimeSpan.Zero; /// <summary> /// Gets the current position of the screen transition, ranging /// from zero (fully active, no transition) to one (transitioned /// fully off to nothing). /// </summary> public float TransitionPosition { get { return transitionPosition; } protected set { transitionPosition = value; } } float transitionPosition = 1; /// <summary> /// Gets the current alpha of the screen transition, ranging /// from 1 (fully active, no transition) to 0 (transitioned /// fully off to nothing). /// </summary> public float TransitionAlpha { get { return 1f - TransitionPosition; } } /// <summary> /// Gets the current screen transition state. /// </summary> public ScreenState ScreenState { get { return screenState; } protected set { screenState = value; } } ScreenState screenState = ScreenState.TransitionOn; /// <summary> /// There are two possible reasons why a screen might be transitioning /// off. It could be temporarily going away to make room for another /// screen that is on top of it, or it could be going away for good. /// This property indicates whether the screen is exiting for real: /// if set, the screen will automatically remove itself as soon as the /// transition finishes. /// </summary> public bool IsExiting { get { return isExiting; } protected internal set { isExiting = value; } } bool isExiting = false; /// <summary> /// Checks whether this screen is active and can respond to user input. /// </summary> public bool IsActive { get { return !otherScreenHasFocus && (screenState == ScreenState.TransitionOn || screenState == ScreenState.Active); } } bool otherScreenHasFocus; /// <summary> /// Gets the manager that this screen belongs to. /// </summary> public ScreenManager ScreenManager { get { return screenManager; } internal set { screenManager = value; } } ScreenManager screenManager; public KeyboardState KeyboardState { get {return Keyboard.GetState();} } /// <summary> /// Gets the index of the player who is currently controlling this screen, /// or null if it is accepting input from any player. This is used to lock /// the game to a specific player profile. The main menu responds to input /// from any connected gamepad, but whichever player makes a selection from /// this menu is given control over all subsequent screens, so other gamepads /// are inactive until the controlling player returns to the main menu. /// </summary> public PlayerIndex? ControllingPlayer { get { return controllingPlayer; } internal set { controllingPlayer = value; } } PlayerIndex? controllingPlayer; /// <summary> /// Gets whether or not this screen is serializable. If this is true, /// the screen will be recorded into the screen manager's state and /// its Serialize and Deserialize methods will be called as appropriate. /// If this is false, the screen will be ignored during serialization. /// By default, all screens are assumed to be serializable. /// </summary> public bool IsSerializable { get { return isSerializable; } protected set { isSerializable = value; } } bool isSerializable = true; #endregion #region Initialization /// <summary> /// Load graphics content for the screen. /// </summary> public virtual void LoadContent() { } /// <summary> /// Unload content for the screen. /// </summary> public virtual void UnloadContent() { } #endregion #region Update and Draw /// <summary> /// Allows the screen to run logic, such as updating the transition position. /// Unlike HandleInput, this method is called regardless of whether the screen /// is active, hidden, or in the middle of a transition. /// </summary> public virtual void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen) { this.otherScreenHasFocus = otherScreenHasFocus; if (isExiting) { // If the screen is going away to die, it should transition off. screenState = ScreenState.TransitionOff; if (!UpdateTransition(gameTime, transitionOffTime, 1)) { // When the transition finishes, remove the screen. ScreenManager.RemoveScreen(this); } } else if (coveredByOtherScreen) { // If the screen is covered by another, it should transition off. if (UpdateTransition(gameTime, transitionOffTime, 1)) { // Still busy transitioning. screenState = ScreenState.TransitionOff; } else { // Transition finished! screenState = ScreenState.Hidden; } } else { // Otherwise the screen should transition on and become active. if (UpdateTransition(gameTime, transitionOnTime, -1)) { // Still busy transitioning. screenState = ScreenState.TransitionOn; } else { // Transition finished! screenState = ScreenState.Active; } } } /// <summary> /// Helper for updating the screen transition position. /// </summary> bool UpdateTransition(GameTime gameTime, TimeSpan time, int direction) { // How much should we move by? float transitionDelta; if (time == TimeSpan.Zero) transitionDelta = 1; else transitionDelta = (float)(gameTime.ElapsedGameTime.TotalMilliseconds / time.TotalMilliseconds); // Update the transition position. transitionPosition += transitionDelta * direction; // Did we reach the end of the transition? if (((direction < 0) && (transitionPosition <= 0)) || ((direction > 0) && (transitionPosition >= 1))) { transitionPosition = MathHelper.Clamp(transitionPosition, 0, 1); return false; } // Otherwise we are still busy transitioning. return true; } /// <summary> /// Allows the screen to handle user input. Unlike Update, this method /// is only called when the screen is active, and not when some other /// screen has taken the focus. /// </summary> public virtual void HandleInput(InputState input) { } public KeyboardState currentKeyState; public KeyboardState lastKeyState; public bool IsKeyHit(Keys key) { if (currentKeyState.IsKeyDown(key) && lastKeyState.IsKeyUp(key)) return true; return false; } /// <summary> /// This is called when the screen should draw itself. /// </summary> public virtual void Draw(GameTime gameTime) { } #endregion #region Public Methods /// <summary> /// Tells the screen to serialize its state into the given stream. /// </summary> public virtual void Serialize(Stream stream) { } /// <summary> /// Tells the screen to deserialize its state from the given stream. /// </summary> public virtual void Deserialize(Stream stream) { } /// <summary> /// Tells the screen to go away. Unlike ScreenManager.RemoveScreen, which /// instantly kills the screen, this method respects the transition timings /// and will give the screen a chance to gradually transition off. /// </summary> public void ExitScreen() { if (TransitionOffTime == TimeSpan.Zero) { // If the screen has a zero transition time, remove it immediately. ScreenManager.RemoveScreen(this); } else { // Otherwise flag that it should transition off and then exit. isExiting = true; } } #endregion #region Helper Methods /// <summary> /// A helper method which loads assets using the screen manager's /// associated game content loader. /// </summary> /// <typeparam name="T">Type of asset.</typeparam> /// <param name="assetName">Asset name, relative to the loader root /// directory, and not including the .xnb extension.</param> /// <returns></returns> public T Load<T>(string assetName) { return ScreenManager.Game.Content.Load<T>(assetName); } #endregion } }

    Read the article

  • O&rsquo;Reilly E-Book of the Day 15/Aug/2014 - Advanced Quantitative Finance with C++

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/08/15/orsquoreilly-e-book-of-the-day-15aug2014---advanced-quantitative-finance.aspxToday’s half-price book of the Day offer from O’Reilly at http://shop.oreilly.com/product/9781782167228.do?code=MSDEAL is Advanced Quantitative Finance with C++. “This book will introduce you to the key mathematical models used to price financial derivatives, as well as the implementation of main numerical models used to solve them. In particular, equity, currency, interest rates, and credit derivatives are discussed. In the first part of the book, the main mathematical models used in the world of financial derivatives are discussed. Next, the numerical methods used to solve the mathematical models are presented. Finally, both the mathematical models and the numerical methods are used to solve some concrete problems in equity, forex, interest rate, and credit derivatives.”

    Read the article

  • UPK 3.6.1 New Feature - Publish Presentation

    - by peter.maravelias
    UPK includes numerous options for deploying the content you have created. Most UPK users are familiar with the UPK Player and the various document outputs that have been available as publishing formats for some time now. In addition UPK provides the content developer the ability to publish content for use in specific environments, LMS, Test Director are two examples. UPK 3.6.1 adds the Presentation publishing type. The Presentation publishing type produces a slideshow presentation of screenshots and text of each topic as a separate Microsoft PowerPoint file. To publish to the presentation option just select the type under the documents category in the publishing wizard. Give this new publishing type a try and let us know what you think by posting a comment. The Presentation publishing type feature came from a customer request and given the ever growing methods and channels for communication we'd like to know what other output types or methods of using existing outputs you would like to see in a future release of UPK.

    Read the article

  • ASP.NET Web API and Simple Value Parameters from POSTed data

    - by Rick Strahl
    In testing out various features of Web API I've found a few oddities in the way that the serialization is handled. These are probably not super common but they may throw you for a loop. Here's what I found. Simple Parameters from Xml or JSON Content Web API makes it very easy to create action methods that accept parameters that are automatically parsed from XML or JSON request bodies. For example, you can send a JavaScript JSON object to the server and Web API happily deserializes it for you. This works just fine:public string ReturnAlbumInfo(Album album) { return album.AlbumName + " (" + album.YearReleased.ToString() + ")"; } However, if you have methods that accept simple parameter types like strings, dates, number etc., those methods don't receive their parameters from XML or JSON body by default and you may end up with failures. Take the following two very simple methods:public string ReturnString(string message) { return message; } public HttpResponseMessage ReturnDateTime(DateTime time) { return Request.CreateResponse<DateTime>(HttpStatusCode.OK, time); } The first one accepts a string and if called with a JSON string from the client like this:var client = new HttpClient(); var result = client.PostAsJsonAsync<string>(http://rasxps/AspNetWebApi/albums/rpc/ReturnString, "Hello World").Result; which results in a trace like this: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnString HTTP/1.1Content-Type: application/json; charset=utf-8Host: rasxpsContent-Length: 13Expect: 100-continueConnection: Keep-Alive "Hello World" produces… wait for it: null. Sending a date in the same fashion:var client = new HttpClient(); var result = client.PostAsJsonAsync<DateTime>(http://rasxps/AspNetWebApi/albums/rpc/ReturnDateTime, new DateTime(2012, 1, 1)).Result; results in this trace: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnDateTime HTTP/1.1Content-Type: application/json; charset=utf-8Host: rasxpsContent-Length: 30Expect: 100-continueConnection: Keep-Alive "\/Date(1325412000000-1000)\/" (yes still the ugly MS AJAX date, yuk! This will supposedly change by RTM with Json.net used for client serialization) produces an error response: The parameters dictionary contains a null entry for parameter 'time' of non-nullable type 'System.DateTime' for method 'System.Net.Http.HttpResponseMessage ReturnDateTime(System.DateTime)' in 'AspNetWebApi.Controllers.AlbumApiController'. An optional parameter must be a reference type, a nullable type, or be declared as an optional parameter. Basically any simple parameters are not parsed properly resulting in null being sent to the method. For the string the call doesn't fail, but for the non-nullable date it produces an error because the method can't handle a null value. This behavior is a bit unexpected to say the least, but there's a simple solution to make this work using an explicit [FromBody] attribute:public string ReturnString([FromBody] string message) andpublic HttpResponseMessage ReturnDateTime([FromBody] DateTime time) which explicitly instructs Web API to read the value from the body. UrlEncoded Form Variable Parsing Another similar issue I ran into is with POST Form Variable binding. Web API can retrieve parameters from the QueryString and Route Values but it doesn't explicitly map parameters from POST values either. Taking our same ReturnString function from earlier and posting a message POST variable like this:var formVars = new Dictionary<string,string>(); formVars.Add("message", "Some Value"); var content = new FormUrlEncodedContent(formVars); var client = new HttpClient(); var result = client.PostAsync(http://rasxps/AspNetWebApi/albums/rpc/ReturnString, content).Result; which produces this trace: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnString HTTP/1.1Content-Type: application/x-www-form-urlencodedHost: rasxpsContent-Length: 18Expect: 100-continue message=Some+Value When calling ReturnString:public string ReturnString(string message) { return message; } unfortunately it does not map the message value to the message parameter. This sort of mapping unfortunately is not available in Web API. Web API does support binding to form variables but only as part of model binding, which binds object properties to the POST variables. Sending the same message as in the previous example you can use the following code to pick up POST variable data:public string ReturnMessageModel(MessageModel model) { return model.Message; } public class MessageModel { public string Message { get; set; }} Note that the model is bound and the message form variable is mapped to the Message property as would other variables to properties if there were more. This works but it's not very dynamic. There's no real easy way to retrieve form variables (or query string values for that matter) in Web API's Request object as far as I can discern. Well only if you consider this easy:public string ReturnString() { var formData = Request.Content.ReadAsAsync<FormDataCollection>().Result; return formData.Get("message"); } Oddly FormDataCollection does not allow for indexers to work so you have to use the .Get() method which is rather odd. If you're running under IIS/Cassini you can always resort to the old and trusty HttpContext access for request data:public string ReturnString() { return HttpContext.Current.Request.Form["message"]; } which works fine and is easier. It's kind of a bummer that HttpRequestMessage doesn't expose some sort of raw Request object that has access to dynamic data - given that it's meant to serve as a generic REST/HTTP API that seems like a crucial missing piece. I don't see any way to read query string values either. To me personally HttpContext works, since I don't see myself using self-hosted code much.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Street-Fighting Mathematics

    Sanjoy Mahajan's new book lays out practical tools for educated guessing and down-and-dirty problem-solving Problem solving - Math - Recreations - Competitions - Methods and Theories

    Read the article

  • Multicast delegates in c#

    - by Jalpesh P. Vadgama
    In yesterday’s post We learn about Delegates and how we can use delegates in C#. In today’s blog post we are going to learn about Multicast delegates. What is Multicast Delegates? As we all know we can assign methods as object to delegate and later on we can call that method with the help delegates. We can also assign more then methods to delegates that is called Multicast delegates. It’s provide functionality to execute more then method at a time. It’s maintain delegates as invocation list (linked list). Let’s understands that via a example. We are going to use yesterday’s example and then we will extend that code multicast delegates. Following code I have written to demonstrate the multicast delegates. using System; namespace Delegates { class Program { public delegate void CalculateNumber(int a, int b); static void Main(string[] args) { int a = 5; int b = 5; CalculateNumber addNumber = new CalculateNumber(AddNumber); CalculateNumber multiplyNumber = new CalculateNumber(MultiplyNumber); CalculateNumber multiCast = (CalculateNumber)Delegate.Combine (addNumber, multiplyNumber); multiCast.Invoke(a,b); Console.ReadLine(); } public static void AddNumber(int a, int b) { Console.WriteLine("Adding Number"); Console.WriteLine(5 + 6); } public static void MultiplyNumber(int a, int b) { Console.WriteLine("Multiply Number"); Console.WriteLine(5 + 6); } } } As you can see in the above code I have created two method one for adding two numbers and another for multiply two number. After that I have created two same CalculateNumber delegates addNumber and multiplyNumber then I have create a multicast delegates multiCast with combining two delegates. Now I want to call this both method so I have used Invoke method to call this delegates. As now our code is let’s run the application. Following is a output as expected. As you can we can execute multiple methods with multicast delegates the only thing you need to take care is that we need to type for both delegates. That’s it. Hope you like it. Stay tuned for more.. Till then happy programming.

    Read the article

  • Code Metrics: Number of IL Instructions

    - by DigiMortal
    In my previous posting about code metrics I introduced how to measure LoC (Lines of Code) in .NET applications. Now let’s take a step further and let’s take a look how to measure compiled code. This way we can somehow have a picture about what compiler produces. In this posting I will introduce you code metric called number of IL instructions. NB! Number of IL instructions is not something you can use to measure productivity of your team. If you want to get better idea about the context of this metric and LoC then please read my first posting about LoC. What are IL instructions? When code written in some .NET Framework language is compiled then compiler produces assemblies that contain byte code. These assemblies are executed later by Common Language Runtime (CLR) that is code execution engine of .NET Framework. The byte code is called Intermediate Language (IL) – this is more common language than C# and VB.NET by example. You can use ILDasm tool to convert assemblies to IL assembler so you can read them. As IL instructions are building blocks of all .NET Framework binary code these instructions are smaller and highly general – we don’t want very rich low level language because it executes slower than more general language. For every method or property call in some .NET Framework language corresponds set of IL instructions. There is no 1:1 relationship between line in high level language and line in IL assembler. There are more IL instructions than lines in C# code by example. How much instructions there are? I have no common answer because it really depends on your code. Here you can see some metrics from my current community project that is developed on SharePoint Server 2007. As average I have about 7 IL instructions per line of code. This is not metric you should use, it is just illustrative example so you can see the differences between numbers of lines and IL instructions. Why should I measure the number of IL instructions? Just take a look at chart above. Compiler does something that you cannot see – it compiles your code to IL. This is not intuitive process because you usually cannot say what is exactly the end result. You know it at greater plain but you don’t know it exactly. Therefore we can expect some surprises and that’s why we should measure the number of IL instructions. By example, you may find better solution for some method in your source code. It looks nice, it works nice and everything seems to be okay. But on server under load your fix may be way slower than previous code. Although you minimized the number of lines of code it ended up with increasing the number of IL instructions. How to measure the number of IL instructions? My choice is NDepend because Visual Studio is not able to measure this metric. Steps to make are easy. Open your NDepend project or create new and add all your application assemblies to project (you can also add Visual Studio solution to project). Run project analysis and wait until it is done. You can see over-all stats form global summary window. This is the same window I used to read the LoC and the number of IL instructions metrics for my chart. Meanwhile I made some changes to my code (enabled advanced caching for events and event registrations module) and then I ran code analysis again to get results for this section of this posting. NDepend is also able to tell you exactly what parts of code have problematically much IL instructions. The code quality section of CQL Query Explorer shows you how much problems there are with members in analyzed code. If you click on the line Methods too big (NbILInstructions) you can see all the problematic members of classes in CQL Explorer shown in image on right. In my case if have 10 methods that are too big and two of them have horrible number of IL instructions – just take a look at first two methods in this TOP10. Also note the query box. NDepend has easy and SQL-like query language to query code analysis results. You can modify these queries if you like and also you can define your own ones if default set is not enough for you. What is good result? As you can see from query window then the number of IL instructions per member should have maximally 200 IL instructions. Of course, like always, the less instructions you have, the better performing code you have. I don’t mean here little differences but big ones. By example, take a look at my first method in warnings list. The number of IL instructions it has is huge. And believe me – this method looks awful. Conclusion The number of IL instructions is useful metric when optimizing your code. For analyzing code at general level to find out too long methods you can use the number of LoC metric because it is more intuitive for you and you can therefore handle the situation more easily. Also you can use NDepend as code metrics tool because it has a lot of metrics to offer.

    Read the article

  • ASP.NET Web API - Screencast series Part 4: Paging and Querying

    - by Jon Galloway
    We're continuing a six part series on ASP.NET Web API that accompanies the getting started screencast series. This is an introductory screencast series that walks through from File / New Project to some more advanced scenarios like Custom Validation and Authorization. The screencast videos are all short (3-5 minutes) and the sample code for the series is both available for download and browsable online. I did the screencasts, but the samples were written by the ASP.NET Web API team. In Part 1 we looked at what ASP.NET Web API is, why you'd care, did the File / New Project thing, and did some basic HTTP testing using browser F12 developer tools. In Part 2 we started to build up a sample that returns data from a repository in JSON format via GET methods. In Part 3, we modified data on the server using DELETE and POST methods. In Part 4, we'll extend on our simple querying methods form Part 2, adding in support for paging and querying. This part shows two approaches to querying data (paging really just being a specific querying case) - you can do it yourself using parameters passed in via querystring (as well as headers, other route parameters, cookies, etc.). You're welcome to do that if you'd like. What I think is more interesting here is that Web API actions that return IQueryable automatically support OData query syntax, making it really easy to support some common query use cases like paging and filtering. A few important things to note: This is just support for OData query syntax - you're not getting back data in OData format. The screencast demonstrates this by showing the GET methods are continuing to return the same JSON they did previously. So you don't have to "buy in" to the whole OData thing, you're just able to use the query syntax if you'd like. This isn't full OData query support - full OData query syntax includes a lot of operations and features - but it is a pretty good subset: filter, orderby, skip, and top. All you have to do to enable this OData query syntax is return an IQueryable rather than an IEnumerable. Often, that could be as simple as using the AsQueryable() extension method on your IEnumerable. Query composition support lets you layer queries intelligently. If, for instance, you had an action that showed products by category using a query in your repository, you could also support paging on top of that. The result is an expression tree that's evaluated on-demand and includes both the Web API query and the underlying query. So with all those bullet points and big words, you'd think this would be hard to hook up. Nope, all I did was change the return type from IEnumerable<Comment> to IQueryable<Comment> and convert the Get() method's IEnumerable result using the .AsQueryable() extension method. public IQueryable<Comment> GetComments() { return repository.Get().AsQueryable(); } You still need to build up the query to provide the $top and $skip on the client, but you'd need to do that regardless. Here's how that looks: $(function () { //--------------------------------------------------------- // Using Queryable to page //--------------------------------------------------------- $("#getCommentsQueryable").click(function () { viewModel.comments([]); var pageSize = $('#pageSize').val(); var pageIndex = $('#pageIndex').val(); var url = "/api/comments?$top=" + pageSize + '&$skip=' + (pageIndex * pageSize); $.getJSON(url, function (data) { // Update the Knockout model (and thus the UI) with the comments received back // from the Web API call. viewModel.comments(data); }); return false; }); }); And the neat thing is that - without any modification to our server-side code - we can modify the above jQuery call to request the comments be sorted by author: $(function () { //--------------------------------------------------------- // Using Queryable to page //--------------------------------------------------------- $("#getCommentsQueryable").click(function () { viewModel.comments([]); var pageSize = $('#pageSize').val(); var pageIndex = $('#pageIndex').val(); var url = "/api/comments?$top=" + pageSize + '&$skip=' + (pageIndex * pageSize) + '&$orderby=Author'; $.getJSON(url, function (data) { // Update the Knockout model (and thus the UI) with the comments received back // from the Web API call. viewModel.comments(data); }); return false; }); }); So if you want to make use of OData query syntax, you can. If you don't like it, you're free to hook up your filtering and paging however you think is best. Neat. In Part 5, we'll add on support for Data Annotation based validation using an Action Filter.

    Read the article

  • CLR via C# 3rd Edition is out

    - by Abhijeet Patel
    Time for some book news update. CLR via C#, 3rd Edition seems to have been out for a little while now. The book was released in early Feb this year, and needless to say my copy is on it’s way. I can barely wait to dig in and chew on the goodies that one of the best technical authors and software professionals I respect has in store. The 2nd edition of the book was an absolute treat and this edition promises to be no less. Here is a brief description of what’s new and updated from the 2nd edition. Part I – CLR Basics Chapter 1-The CLR’s Execution Model Added about discussion about C#’s /optimize and /debug switches and how they relate to each other. Chapter 2-Building, Packaging, Deploying, and Administering Applications and Types Improved discussion about Win32 manifest information and version resource information. Chapter 3-Shared Assemblies and Strongly Named Assemblies Added discussion of TypeForwardedToAttribute and TypeForwardedFromAttribute. Part II – Designing Types Chapter 4-Type Fundamentals No new topics. Chapter 5-Primitive, Reference, and Value Types Enhanced discussion of checked and unchecked code and added discussion of new BigInteger type. Also added discussion of C# 4.0’s dynamic primitive type. Chapter 6-Type and Member Basics No new topics. Chapter 7-Constants and Fields No new topics. Chapter 8-Methods Added discussion of extension methods and partial methods. Chapter 9-Parameters Added discussion of optional/named parameters and implicitly-typed local variables. Chapter 10-Properties Added discussion of automatically-implemented properties, properties and the Visual Studio debugger, object and collection initializers, anonymous types, the System.Tuple type and the ExpandoObject type. Chapter 11-Events Added discussion of events and thread-safety as well as showing a cool extension method to simplify the raising of an event. Chapter 12-Generics Added discussion of delegate and interface generic type argument variance. Chapter 13-Interfaces No new topics. Part III – Essential Types Chapter 14-Chars, Strings, and Working with Text No new topics. Chapter 15-Enums Added coverage of new Enum and Type methods to access enumerated type instances. Chapter 16-Arrays Added new section on initializing array elements. Chapter 17-Delegates Added discussion of using generic delegates to avoid defining new delegate types. Also added discussion of lambda expressions. Chapter 18-Attributes No new topics. Chapter 19-Nullable Value Types Added discussion on performance. Part IV – CLR Facilities Chapter 20-Exception Handling and State Management This chapter has been completely rewritten. It is now about exception handling and state management. It includes discussions of code contracts and constrained execution regions (CERs). It also includes a new section on trade-offs between writing productive code and reliable code. Chapter 21-Automatic Memory Management Added discussion of C#’s fixed state and how it works to pin objects in the heap. Rewrote the code for weak delegates so you can use them with any class that exposes an event (the class doesn’t have to support weak delegates itself). Added discussion on the new ConditionalWeakTable class, GC Collection modes, Full GC notifications, garbage collection modes and latency modes. I also include a new sample showing how your application can receive notifications whenever Generation 0 or 2 collections occur. Chapter 22-CLR Hosting and AppDomains Added discussion of side-by-side support allowing multiple CLRs to be loaded in a single process. Added section on the performance of using MarshalByRefObject-derived types. Substantially rewrote the section on cross-AppDomain communication. Added section on AppDomain Monitoring and first chance exception notifications. Updated the section on the AppDomainManager class. Chapter 23-Assembly Loading and Reflection Added section on how to deploy a single file with dependent assemblies embedded inside it. Added section comparing reflection invoke vs bind/invoke vs bind/create delegate/invoke vs C#’s dynamic type. Chapter 24-Runtime Serialization This is a whole new chapter that was not in the 2nd Edition. Part V – Threading Chapter 25-Threading Basics Whole new chapter motivating why Windows supports threads, thread overhead, CPU trends, NUMA Architectures, the relationship between CLR threads and Windows threads, the Thread class, reasons to use threads, thread scheduling and priorities, foreground thread vs background threads. Chapter 26-Performing Compute-Bound Asynchronous Operations Whole new chapter explaining the CLR’s thread pool. This chapter covers all the new .NET 4.0 constructs including cooperative cancelation, Tasks, the aralle class, parallel language integrated query, timers, how the thread pool manages its threads, cache lines and false sharing. Chapter 27-Performing I/O-Bound Asynchronous Operations Whole new chapter explaining how Windows performs synchronous and asynchronous I/O operations. Then, I go into the CLR’s Asynchronous Programming Model, my AsyncEnumerator class, the APM and exceptions, Applications and their threading models, implementing a service asynchronously, the APM and Compute-bound operations, APM considerations, I/O request priorities, converting the APM to a Task, the event-based Asynchronous Pattern, programming model soup. Chapter 28-Primitive Thread Synchronization Constructs Whole new chapter discusses class libraries and thread safety, primitive user-mode, kernel-mode constructs, and data alignment. Chapter 29-Hybrid Thread Synchronization Constructs Whole new chapter discussion various hybrid constructs such as ManualResetEventSlim, SemaphoreSlim, CountdownEvent, Barrier, ReaderWriterLock(Slim), OneManyResourceLock, Monitor, 3 ways to solve the double-check locking technique, .NET 4.0’s Lazy and LazyInitializer classes, the condition variable pattern, .NET 4.0’s concurrent collection classes, the ReaderWriterGate and SyncGate classes.

    Read the article

  • My View on ASP.NET Web Forms versus MVC

    - by Ricardo Peres
    Introduction A lot has been said on Web Forms and MVC, but since I was recently asked about my opinion on the subject, here it is. First, I have to say that I really like both technologies and I don’t think any is going away – just remember SharePoint, which is built on top of Web Forms. I see them as complementary, targeting different needs and leveraging different skills. Let’s go through some of their differences. Rapid Application Development Rapid Application Development (RAD) is the development process by which you have an Integrated Development Environment (IDE), a visual design surface and a toolbox, and you drag components from the toolbox to the design surface and set their properties through a property inspector. It was introduced with some of the earliest Windows graphical IDEs such as Visual Basic and Delphi. With Web Forms you have RAD out of the box. Visual Studio offers a generally good (and extensible) designer for the layout of pages and web user controls. Designing a page may simply be about dragging controls from the toolbox, setting their properties and wiring up some events to event handlers, which are implemented in code behind .NET classes. Most people will be familiar with this kind of development and enjoy it. You can see what you are doing from the beginning. MVC also has designable pages – called views in MVC terminology – the problem is that they can be built using different technologies, some of which, at the moment (MVC 4) do not support RAD – Razor, for example. I believe it is just a matter of time for that to be implemented in Visual Studio, but it will mostly consist on HTML editing, and until that day comes, you have to live with source editing. Development Model Web Forms features the same development model that you are used to from Windows Forms and other similar technologies: events fired by controls and automatic persistence of their properties between postbacks. For that, it uses concepts such as view state, which some may love and others may hate, because it may be misused quite easily, but otherwise does its job well. Another fundamental concept is data binding, by which a collection of data can be fed to a control and have it render that data somehow – just thing of the GridView control. The focus is on the page, that’s where it all starts, and you can place everything in the same code behind class: data access, business logic, layout, etc. The controls take care of generating a great part of the HTML and JavaScript for you. With MVC there is no free lunch when it comes to data persistence between requests, you have to implement it yourself. As for event handling, that is at the core of MVC, in the form of controllers and action methods, you just don’t think of them as event handlers. In MVC you need to think more in HTTP terms, so action methods such as POST and GET are relevant to you, and may write actions to handle one or the other. Also of crucial importance is model binding: the way by which MVC converts your posted data into a .NET class. This is something that ASP.NET 4.5 Web Forms has introduced as well, but it is a cornerstone in MVC. MVC also has built-in validation of these .NET classes, which out of the box uses the Data Annotations API. You have full control of the generated HTML - except for that coming from the helper methods, usually small fragments - which requires a greater familiarity with the specifications. You normally rely much more on JavaScript APIs, they are even included in the Visual Studio template, that is because much less is done for you. Reuse It is difficult to accept a professional company/project that does not employ reuse. It can save a lot of time thus cutting costs significantly. Code reused in several projects matures as time goes by and helps developers learn from past experiences. ASP.NET Web Forms was built with reuse in mind, in the form of controls. Controls encapsulate functionality and are generally portable from project to project (with the notable exception of web user controls, those with an associated .ASCX markup file). ASP.NET has dozens of controls and it is very easy to develop new ones, so I believe this is a great advantage. A control can inject JavaScript code and external references as well as generate HTML an CSS. MVC on the other hand does not use controls – it is possible to use them, with some view engines like ASPX, but it is just not advisable because it breaks the flow – where do Init, Load, PreRender, etc, fit? The most similar to controls is extension methods, or helpers. They serve the same purpose – generating HTML, CSS or JavaScript – and can be reused between different projects. What differentiates them from controls is that there is no inheritance and no context – an extension method is just a static method which doesn’t know where it is being called. You also have partial views, which you can reuse in the same project, but there is no inheritance as well. This, in my view, is a weakness of MVC. Architecture Both technologies are highly extensible. I have writtenstarted writing a series of posts on ASP.NET Web Forms extensibility and will probably write another series on MVC extensibility as well. A number of scenarios are covered in any of these models, and some extensibility points apply to both, because, of course both stand upon ASP.NET. With Web Forms, if you’re like me, you start by defining you master pages, pages and controls, with some helper classes to glue everything. You may as well throw in some JavaScript, but probably you’re main work will be with plain old .NET code. The controls you define have the chance to inject JavaScript code and references, through either the ScriptManager or the page’s ClientScript object, as well as generating HTML and CSS code. The master page and page model with code behind classes offer a number of “hooks” by which you can change the normal way of things, for example, in a page you can access any control on the master page, add script or stylesheet references to its head and even change the page’s title. Also, with Web Forms, you typically have URLs in the form “/SomePath/SomePage.aspx?SomeParameter=SomeValue”, which isn’t really SEO friendly, no to mention the HTML that some controls produce, far from standards, optimization and best practices. In MVC, you also normally start by defining the master page (or layout) and views, which are the visible parts, and then define controllers on separate files. These controllers do not know anything about the views, except the names and types of the parameters that will be passed to and from them. The controller will be responsible for the data access and business logic, eventually relying on additional classes for this purpose. On a controller you only receive parameters and return a result, which may be a request for the rendering of a view, a redirection to another URL or a JSON object, to name just a few. The controller class does not know anything about the web, so you can effectively reuse it in a non-web project. This separation and the lack of programmatic access to the UI elements, makes it very difficult to implement, for example, something like SharePoint with MVC. OK, I know about Orchard, but it isn’t really a general purpose development framework, but instead, a CMS that happens to use MVC. Not having controls render HTML for you gives you in turn much more control over it – it is your responsibility to create it, which you can either consider a blessing or a curse, in the later case, you probably shouldn’t be using MVC at all. Also MVC URLs tend to be much more SEO-oriented, if you design your controllers and actions properly. Testing In a well defined architecture, you should separate business logic, data access logic and presentation logic, because these are all different things and it might even be the need to switch one implementation for another: for example, you might design a system which includes a data access layer, a business logic layer and two presentation layers, one on top of ASP.NET and the other with WPF; and the data access layer might be implemented first using NHibernate and later on switched for Entity Framework Code First. These changes are not that rare, so care should be taken in designing the system to make them possible. Web Forms are difficult to test, because it relies on event handlers which are only fired in web contexts, when a form is submitted or a page is requested. You can call them with reflection, but you have to set up a number of mocking objects first, HttpContext.Current first coming to my mind. MVC, on the other hand, makes testing controllers a breeze, so much that it even includes a template option for generating boilerplate unit test classes up from start. A well designed – from the unit test point of view - controller will receive everything it needs to work as parameters to its action methods, so you can pass whatever values you need very easily. That doesn’t mean, of course, that everything can be tested: views, for instance, are difficult to test without actually accessing the site, but MVC offers the possibility to compile views at build time, so that, at least, you know you don’t have syntax errors beforehand. Myths Some popular but unfounded myths around MVC include: You cannot use controls in MVC: not true, actually, you can, at least with the Web Forms (ASPX) view engine; the declaration and usage is exactly the same as with Web Forms; You cannot specify a base class for a view: with the ASPX view engine you can use the Inherits Page directive, with this and all the others you can use the pageBaseType and userControlBaseType attributes of the <page> element; MVC shields you from doing “bad things” on your views: well, you can place any code on a code block, at least with the ASPX view engine (you may be starting to see a pattern here), even data access code; The model is the entity model, tied to an O/RM: the model is actually any class that you use to pass values to a view, including (but generally not recommended) an entity model; Unit tests come with no cost: unit tests generally don’t cover the UI, although there are frameworks just for that (see WatiN, for example); also, for some tests, you will have to mock or replace either the HttpContext.Current property or the HttpContextBase class yourself; Everything is testable: views aren’t, without accessing the site; MVC relies on HTML5/some_cool_new_javascript_framework: there is no relation whatsoever, MVC renders whatever you want it to render and does not require any framework to be present. The thing is, the subsequent releases of MVC happened in a time when Microsoft has become much more involved in standards, so the files and technologies included in the Visual Studio templates reflect this, and it just happens to work well with jQuery, for example. Conclusion Well, this is how I see it. Some folks may think that I am being too rude on MVC, probably because I don’t like it, but that’s not true: like I said, I do like MVC and I am starting my new projects with it. I just don’t want to go along with that those that say that MVC is much superior to Web Forms, in fact, some things you can do much more easily with Web Forms than with MVC. I will be more than happy to hear what you think on this!

    Read the article

  • Liskov Substitution Principle and the Oft Forgot Third Wheel

    - by Stacy Vicknair
    Liskov Substitution Principle (LSP) is a principle of object oriented programming that many might be familiar with from the SOLID principles mnemonic from Uncle Bob Martin. The principle highlights the relationship between a type and its subtypes, and, according to Wikipedia, is defined by Barbara Liskov and Jeanette Wing as the following principle:   Let be a property provable about objects of type . Then should be provable for objects of type where is a subtype of .   Rectangles gonna rectangulate The iconic example of this principle is illustrated with the relationship between a rectangle and a square. Let’s say we have a class named Rectangle that had a property to set width and a property to set its height. 1: Public Class Rectangle 2: Overridable Property Width As Integer 3: Overridable Property Height As Integer 4: End Class   We all at some point here that inheritance mocks an “IS A” relationship, and by gosh we all know square IS A rectangle. So let’s make a square class that inherits from rectangle. However, squares do maintain the same length on every side, so let’s override and add that behavior. 1: Public Class Square 2: Inherits Rectangle 3:  4: Private _sideLength As Integer 5:  6: Public Overrides Property Width As Integer 7: Get 8: Return _sideLength 9: End Get 10: Set(value As Integer) 11: _sideLength = value 12: End Set 13: End Property 14:  15: Public Overrides Property Height As Integer 16: Get 17: Return _sideLength 18: End Get 19: Set(value As Integer) 20: _sideLength = value 21: End Set 22: End Property 23: End Class   Now, say we had the following test: 1: Public Sub SetHeight_DoesNotAffectWidth(rectangle As Rectangle) 2: 'arrange 3: Dim expectedWidth = 4 4: rectangle.Width = 4 5:  6: 'act 7: rectangle.Height = 7 8:  9: 'assert 10: Assert.AreEqual(expectedWidth, rectangle.Width) 11: End Sub   If we pass in a rectangle, this test passes just fine. What if we pass in a square?   This is where we see the violation of Liskov’s Principle! A square might "IS A” to a rectangle, but we have differing expectations on how a rectangle should function than how a square should! Great expectations Here’s where we pat ourselves on the back and take a victory lap around the office and tell everyone about how we understand LSP like a boss. And all is good… until we start trying to apply it to our work. If I can’t even change functionality on a simple setter without breaking the expectations on a parent class, what can I do with subtyping? Did Liskov just tell me to never touch subtyping again? The short answer: NO, SHE DIDN’T. When I first learned LSP, and from those I’ve talked with as well, I overlooked a very important but not appropriately stressed quality of the principle: our expectations. Our inclination is to want a logical catch-all, where we can easily apply this principle and wipe our hands, drop the mic and exit stage left. That’s not the case because in every different programming scenario, our expectations of the parent class or type will be different. We have to set reasonable expectations on the behaviors that we expect out of the parent, then make sure that those expectations are met by the child. Any expectations not explicitly expected of the parent aren’t expected of the child either, and don’t register as a violation of LSP that prevents implementation. You can see the flexibility mentioned in the Wikipedia article itself: A typical example that violates LSP is a Square class that derives from a Rectangle class, assuming getter and setter methods exist for both width and height. The Square class always assumes that the width is equal with the height. If a Square object is used in a context where a Rectangle is expected, unexpected behavior may occur because the dimensions of a Square cannot (or rather should not) be modified independently. This problem cannot be easily fixed: if we can modify the setter methods in the Square class so that they preserve the Square invariant (i.e., keep the dimensions equal), then these methods will weaken (violate) the postconditions for the Rectangle setters, which state that dimensions can be modified independently. Violations of LSP, like this one, may or may not be a problem in practice, depending on the postconditions or invariants that are actually expected by the code that uses classes violating LSP. Mutability is a key issue here. If Square and Rectangle had only getter methods (i.e., they were immutable objects), then no violation of LSP could occur. What this means is that the above situation with a rectangle and a square can be acceptable if we do not have the expectation for width to leave height unaffected, or vice-versa, in our application. Conclusion – the oft forgot third wheel Liskov Substitution Principle is meant to act as a guidance and warn us against unexpected behaviors. Objects can be stateful and as a result we can end up with unexpected situations if we don’t code carefully. Specifically when subclassing, make sure that the subclass meets the expectations held to its parent. Don’t let LSP think you cannot deviate from the behaviors of the parent, but understand that LSP is meant to highlight the importance of not only the parent and the child class, but also of the expectations WE set for the parent class and the necessity of meeting those expectations in order to help prevent sticky situations.   Code examples, in both VB and C# Technorati Tags: LSV,Liskov Substitution Principle,Uncle Bob,Robert Martin,Barbara Liskov,Liskov

    Read the article

  • Fluid VS Responsive Website Development Questions

    - by Aditya P
    As I understand these form the basis for targeting a wide array of devices based on the browser size, given it would be a time consuming to generate different layouts targeting different/specific devices and their resolutions. Questions: Firstly right to the jargon, is there any actual difference between the two or do they mean the same? Is it safe to classify the current development mainly a html5/css3 based one? What popular frameworks are available to easily implement this? What testing methods used in this regard? What are the most common compatibility issues in terms of different browser types? I understand there are methods like this http://css-tricks.com/resolution-specific-stylesheets/ which does this come under?. Are there any external browser detection methods besides the API calls specific to the browser that are employed in this regard? Points of interest [Prior Research before asking these questions] Why shouldn't "responsive" web design be a consideration? Responsive Web Design Tips, Best Practices and Dynamic Image Scaling Techniques A recent list of tutorials 30 Responsive Web Design and Development Tutorials by Eric Shafer on May 14, 2012 Update Ive been reading that the basic point of designing content for different layouts to facilitate a responsive web design is to present the most relevant information. now obviously between the smallest screen width and the highest we are missing out on design elements. I gather from here http://flashsolver.com/2012/03/24/5-top-commercial-responsive-web-designs/ The top of the line design layouts (widths) are desktop layout (980px) tablet layout (768px) smartphone layout – landscape (480px) smartphone layout – portrait (320px) Also we have a popular responsive website testing site http://resizemybrowser.com/ which lists different screen resolutions. I've also come across this while trying to find out the optimal highest layout size to account for http://stackoverflow.com/questions/10538599/default-web-page-width-1024px-or-980px which brings to light seemingly that 1366x768 is a popular web resolution. Is it safe to assume that just accounting for proper scaling from width 980px onwards to the maximum size would be sufficient to accommodate this? given we aren't presenting any new information for the new size. Does it make sense to have additional information ( which conflicts with purpose of responsive web design) to utilize the top size and beyond?

    Read the article

  • Don't Use Static? [closed]

    - by Joshiatto
    Possible Duplicate: Is static universally “evil” for unit testing and if so why does resharper recommend it? Heavy use of static methods in a Java EE web application? I submitted an application I wrote to some other architects for code review. One of them almost immediately wrote me back and said "Don't use "static". You can't write automated tests with static classes and methods. "Static" is to be avoided." I checked and fully 1/4 of my classes are marked "static". I use static when I am not going to create an instance of a class because the class is a single global class used throughout the code. He went on to mention something involving mocking, IOC/DI techniques that can't be used with static code. He says it is unfortunate when 3rd party libraries are static because of their un-testability. Is this other architect correct?

    Read the article

  • [News] Fluent.NET 1.0 disponible

    Fluent.NET est un framework Open Source proposant une surcouche des API .NET sous la forme d'interfaces fluentes. Le proc?d? s'appuie sur les extensions de m?thodes et facilite la lecture de code : "English speakers read from left to right, not from the outside in. So why are we writing code that way? Fluent.NET aims to correct this problem by adding extension methods where helper methods are typically used.". Le principe tend ? se g?n?raliser ces derni?res ann?es, notamment dans les langages de requ?tes objets.

    Read the article

  • Are CK Metrics still considered useful? Is there an open source tool to help?

    - by DeveloperDon
    Chidamber & Kemerer proposed several metrics for object oriented code. Among them, depth of inheritance tree, weighted number of methods, number of member functions, number of children, and coupling between objects. Using a base of code, they tried to correlated these metrics to the defect density and maintenance effort using covariant analysis. Are these metrics actionable in projects? Perhaps they can guide refactoring. For example weighted number of methods might show which God classes needed to be broken into more cohesive classes that address a single concern. Is there approach superseded by a better method, and is there a tool that can identify problem code, particularly in moderately large project being handed off to a new developer or team?

    Read the article

  • .NET Security Part 3

    - by Simon Cooper
    You write a security-related application that allows addins to be used. These addins (as dlls) can be downloaded from anywhere, and, if allowed to run full-trust, could open a security hole in your application. So you want to restrict what the addin dlls can do, using a sandboxed appdomain, as explained in my previous posts. But there needs to be an interaction between the code running in the sandbox and the code that created the sandbox, so the sandboxed code can control or react to things that happen in the controlling application. Sandboxed code needs to be able to call code outside the sandbox. Now, there are various methods of allowing cross-appdomain calls, the two main ones being .NET Remoting with MarshalByRefObject, and WCF named pipes. I’m not going to cover the details of setting up such mechanisms here, or which you should choose for your specific situation; there are plenty of blogs and tutorials covering such issues elsewhere. What I’m going to concentrate on here is the more general problem of running fully-trusted code within a sandbox, which is required in most methods of app-domain communication and control. Defining assemblies as fully-trusted In my last post, I mentioned that when you create a sandboxed appdomain, you can pass in a list of assembly strongnames that run as full-trust within the appdomain: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); Any assembly that is loaded into the sandbox with a strong name the same as one in the list of full-trust strong names is unconditionally given full-trust permissions within the sandbox, irregardless of permissions and sandbox setup. This is very powerful! You should only use this for assemblies that you trust as much as the code creating the sandbox. So now you have a class that you want the sandboxed code to call: // within assemblyWithApi public class MyApi { public static void MethodToDoThings() { ... } } // within the sandboxed dll public class UntrustedSandboxedClass { public void DodgyMethod() { ... MyApi.MethodToDoThings(); ... } } However, if you try to do this, you get quite an ugly exception: MethodAccessException: Attempt by security transparent method ‘UntrustedSandboxedClass.DodgyMethod()’ to access security critical method ‘MyApi.MethodToDoThings()’ failed. Security transparency, which I covered in my first post in the series, has entered the picture. Partially-trusted code runs at the Transparent security level, fully-trusted code runs at the Critical security level, and Transparent code cannot under any circumstances call Critical code. Security transparency and AllowPartiallyTrustedCallersAttribute So the solution is easy, right? Make MethodToDoThings SafeCritical, then the transparent code running in the sandbox can call the api: [SecuritySafeCritical] public static void MethodToDoThings() { ... } However, this doesn’t solve the problem. When you try again, exactly the same exception is thrown; MethodToDoThings is still running as Critical code. What’s going on? By default, a fully-trusted assembly always runs Critical code, irregardless of any security attributes on its types and methods. This is because it may not have been designed in a secure way when called from transparent code – as we’ll see in the next post, it is easy to open a security hole despite all the security protections .NET 4 offers. When exposing an assembly to be called from partially-trusted code, the entire assembly needs a security audit to decide what should be transparent, safe critical, or critical, and close any potential security holes. This is where AllowPartiallyTrustedCallersAttribute (APTCA) comes in. Without this attribute, fully-trusted assemblies run Critical code, and partially-trusted assemblies run Transparent code. When this attribute is applied to an assembly, it confirms that the assembly has had a full security audit, and it is safe to be called from untrusted code. All code in that assembly runs as Transparent, but SecurityCriticalAttribute and SecuritySafeCriticalAttribute can be applied to individual types and methods to make those run at the Critical or SafeCritical levels, with all the restrictions that entails. So, to allow the sandboxed assembly to call the full-trust API assembly, simply add APCTA to the API assembly: [assembly: AllowPartiallyTrustedCallers] and everything works as you expect. The sandboxed dll can call your API dll, and from there communicate with the rest of the application. Conclusion That’s the basics of running a full-trust assembly in a sandboxed appdomain, and allowing a sandboxed assembly to access it. The key is AllowPartiallyTrustedCallersAttribute, which is what lets partially-trusted code call a fully-trusted assembly. However, an assembly with APTCA applied to it means that you have run a full security audit of every type and member in the assembly. If you don’t, then you could inadvertently open a security hole. I’ll be looking at ways this can happen in my next post.

    Read the article

  • WSDL-world vs CLR-world – some differences

    - by nmarun
    A change in mindset is required when switching between a typical CLR application and a web service application. There are some things in a CLR environment that just don’t add-up in a WSDL arena (and vice-versa). I’m listing some of them here. When I say WSDL-world, I’m mostly talking with respect to a WCF Service and / or a Web Service. No (direct) Method Overloading: You definitely can have overloaded methods in a, say, Console application, but when it comes to a WCF / Web Services application, you need to adorn these overloaded methods with a special attribute so the service knows which specific method to invoke. When you’re working with WCF, use the Name property of the OperationContract attribute to provide unique names. 1: [OperationContract(Name = "AddInt")] 2: int Add(int arg1, int arg2); 3:  4: [OperationContract(Name = "AddDouble")] 5: double Add(double arg1, double arg2); By default, the proxy generates the code for this as: 1: [System.ServiceModel.OperationContractAttribute( 2: Action="http://tempuri.org/ILearnWcfService/AddInt", 3: ReplyAction="http://tempuri.org/ILearnWcfService/AddIntResponse")] 4: int AddInt(int arg1, int arg2); 5: 6: [System.ServiceModel.OperationContractAttribute( 7: Action="http://tempuri.org/ILearnWcfServiceExtend/AddDouble", 8: ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/AddDoubleResponse")] 9: double AddDouble(double arg1, double arg2); With Web Services though the story is slightly different. Even after setting the MessageName property of the WebMethod attribute, the proxy does not change the name of the method, but only the underlying soap message changes. 1: [WebMethod] 2: public string HelloGalaxy() 3: { 4: return "Hello Milky Way!"; 5: } 6:  7: [WebMethod(MessageName = "HelloAnyGalaxy")] 8: public string HelloGalaxy(string galaxyName) 9: { 10: return string.Format("Hello {0}!", galaxyName); 11: } The one thing you need to remember is to set the WebServiceBinding accordingly. 1: [WebServiceBinding(ConformsTo = WsiProfiles.None)] The proxy is: 1: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloGalaxy", 2: RequestNamespace="http://tempuri.org/", 3: ResponseNamespace="http://tempuri.org/", 4: Use=System.Web.Services.Description.SoapBindingUse.Literal, 5: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 6: public string HelloGalaxy() 7:  8: [System.Web.Services.WebMethodAttribute(MessageName="HelloGalaxy1")] 9: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloAnyGalaxy", 10: RequestElementName="HelloAnyGalaxy", 11: RequestNamespace="http://tempuri.org/", 12: ResponseElementName="HelloAnyGalaxyResponse", 13: ResponseNamespace="http://tempuri.org/", 14: Use=System.Web.Services.Description.SoapBindingUse.Literal, 15: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 16: [return: System.Xml.Serialization.XmlElementAttribute("HelloAnyGalaxyResult")] 17: public string HelloGalaxy(string galaxyName) 18:  You see the calling method name is the same in the proxy, however the soap message that gets generated is different. Using interchangeable data types: See details on this here. Type visibility: In a CLR-based application, if you mark a field as private, well we all know, it’s ‘private’. Coming to a WSDL side of things, in a Web Service, private fields and web methods will not get generated in the proxy. In WCF however, all your operation contracts will be public as they get implemented from an interface. Even in case your ServiceContract interface is declared internal/private, you will see it as a public interface in the proxy. This is because type visibility is a CLR concept and has no bearing on WCF. Also if a private field has the [DataMember] attribute in a data contract, it will get emitted in the proxy class as a public property for the very same reason. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: private int _x; 6:  7: [DataMember] 8: public int Id { get; set; } 9:  10: [DataMember] 11: public string FirstName { get; set; } 12:  13: [DataMember] 14: public string Header { get; set; } 15: } 16: } See the ‘_x’ field is a private member with the [DataMember] attribute, but the proxy class shows as below: 1: [System.Runtime.Serialization.DataMemberAttribute()] 2: public int _x { 3: get { 4: return this._xField; 5: } 6: set { 7: if ((this._xField.Equals(value) != true)) { 8: this._xField = value; 9: this.RaisePropertyChanged("_x"); 10: } 11: } 12: } Passing derived types to web methods / operation contracts: Once again, in a CLR application, I can have a derived class be passed as a parameter where a base class is expected. I have the following set up for my WCF service. 1: [DataContract] 2: public class Employee 3: { 4: [DataMember(Name = "Id")] 5: public int EmployeeId { get; set; } 6:  7: [DataMember(Name="FirstName")] 8: public string FName { get; set; } 9:  10: [DataMember] 11: public string Header { get; set; } 12: } 13:  14: [DataContract] 15: public class Manager : Employee 16: { 17: [DataMember] 18: private int _x; 19: } 20:  21: // service contract 22: [OperationContract] 23: Manager SaveManager(Employee employee); 24:  25: // in my calling code 26: Manager manager = new Manager {_x = 1, FirstName = "abc"}; 27: manager = LearnWcfServiceClient.SaveManager(manager); The above will throw an exception saying: In short, this is saying, that a Manager type was found where an Employee type was expected! Hierarchy flattening of interfaces in WCF: See details on this here. In CLR world, you’ll see the entire hierarchy as is. That’s another difference. Using ref parameters: * can use ref for parameters, but operation contract should not be one-way (gives an error when you do an update service reference)   => bad programming; create a return object that is composed of everything you need! This one kind of stumped me. Not sure why I tried this, but you can pass parameters prefixed with ref keyword* (* terms and conditions apply). The main issue is this, how would we know the changes that were made to a ‘ref’ input parameter are returned back from the service and updated to the local variable? Turns out both Web Services and WCF make this tracking happen by passing the input parameter in the response soap. This way when the deserializer does its magic, it maps all the elements of the response xml thereby updating our local variable. Here’s what I’m talking about. 1: [WebMethod(MessageName = "HelloAnyGalaxy")] 2: public string HelloGalaxy(ref string galaxyName) 3: { 4: string output = string.Format("Hello {0}", galaxyName); 5: if (galaxyName == "Andromeda") 6: { 7: galaxyName = string.Format("{0} (2.5 million light-years away)", galaxyName); 8: } 9: return output; 10: } This is how the request and response look like in soapUI. As I said above, the behavior is quite similar for WCF as well. But the catch comes when you have a one-way web methods / operation contracts. If you have an operation contract whose return type is void, is marked one-way and that has ref parameters then you’ll get an error message when you try to reference such a service. 1: [OperationContract(Name = "Sum", IsOneWay = true)] 2: void Sum(ref double arg1, ref double arg2); 3:  4: public void Sum(ref double arg1, ref double arg2) 5: { 6: arg1 += arg2; 7: } This is what I got when I did an update to my service reference: Makes sense, because a OneWay operation is… one-way – there’s no returning from this operation. You can also have a one-way web method: 1: [SoapDocumentMethod(OneWay = true)] 2: [WebMethod(MessageName = "HelloAnyGalaxy")] 3: public void HelloGalaxy(ref string galaxyName) This will throw an exception message similar to the one above when you try to update your web service reference. In the CLR space, there’s no such concept of a ‘one-way’ street! Yes, there’s void, but you very well can have ref parameters returned through such a method. Just a point here; although the ref/out concept sounds cool, it’s generally is a code-smell. The better approach is to always return an object that is composed of everything you need returned from a method. These are some of the differences that we need to bear when dealing with services that are different from our daily ‘CLR’ life.

    Read the article

  • Alternative printing method(s) for an unsupported printer

    - by B. Roland
    Hello! I have in my office, a Konica Minolta bizhub 211 multifunction printer, it works well with windows workstations... It has a lot of good features, like duplex... I haven't found any drivers for UNIX, so I'm looking for alternative methods, how can we make it useable in Ubuntu. I'm thinking on some windows based server, or what I know... I wrote here requesting for drivers: ubuntu.hu, linuxforums.org, forums.debian.net, ubuntuforums.org; and also to the manufacturer, but they said only, that "the first PostScript supported printer is only bizhub 223", so they don't care that thing. Please suggest working methods, Thanks, B. Roland

    Read the article

< Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >