Search Results

Search found 9894 results on 396 pages for 'primary interop assembly'.

Page 87/396 | < Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >

  • PowerPoint.Application not raising events in C#

    - by AdmSteck
    I have a simple application written in C# and .Net 2.0 that displays several PowerPoint 2003 files in a loop. (It is going to be used for a information board in our cafeteria) The application works fine on my development machine but when I deploy it to another machine the events I have registered for SlideShowNextSlide and PresentationClose are never fired. I have tried registering the events with this method. private void InitPPT() { app.SlideShowNextSlide += new Microsoft.Office.Interop.PowerPoint.EApplication_SlideShowNextSlideEventHandler(app_SlideShowNextSlide); app.PresentationClose += new Microsoft.Office.Interop.PowerPoint.EApplication_PresentationCloseEventHandler(app_PresentationClose); app.SlideShowEnd += new Microsoft.Office.Interop.PowerPoint.EApplication_SlideShowEndEventHandler(app_PresentationClose); } And with this method that I found here: private void InitPPT() { IConnectionPointContainer oConnPointContainer = (IConnectionPointContainer)app; Guid guid = typeof(Microsoft.Office.Interop.PowerPoint.EApplication).GUID; oConnPointContainer.FindConnectionPoint(ref guid, out m_oConnectionPoint); m_oConnectionPoint.Advise(this, out m_Cookie); } Do I need to register some dll's on the client machine or am I missing something.

    Read the article

  • True or False: Good design calls for every table to have a primary key, if nothing else, a running i

    - by Velika
    Consider a grocery store scenario (I'm making this up) where you have FACT records that represent a sale transaction, where the columns of the Fact table include SaleItemFact Table ------------------ CustomerID ProductID Price DistributorID DateOfSale Etc Etc Etc Even if there are duplicates in the table when you consider ALL the keys, I would contend that a surrogate running numeric key (i.e. identity column) should be made up, e.g., TransactionNumber of type Integer. I can see someone arguing that a Fact table might not have a unique key (though I'd invent one and waste the 4 bytes, but how about a dimension table?

    Read the article

  • NHibernate: Can I access a generated primary key after saving a model?

    - by littlecharva
    Howdy, So I've got a simple table with an ID field that's incrementally generated on INSERT. I've set the mapping up in NHibernate to reflect this: <id name="ID"> <generator class="identity" /> </id> And it all works fine. Trouble is, I need to get the generated ID after I've saved a new model to use elsewhere: var model = new MyModel(); session.SaveOrUpdate(model); But at this stage model.ID == null, not the ID. Any ideas? Anthony

    Read the article

  • access PowerPoint chart c#

    - by babar11
    Hi, I have a problem in a c# projet. In fact, i did a PowerPoint-add-in and i want to generate Charts on Slides. I create a slide with : using PowerPoint = Microsoft.Office.Interop.PowerPoint; using Microsoft.Office.Interop.Graph; Microsoft.Office.Interop.Graph.Chart objChart; objChart = (Microsoft.Office.Interop.Graph.Chart)objShape.OLEFormat.Object;` The chart is create on the slide but i can't access to the data to update or insert. I have try with the Datasheet like below : //DataSheet test = objChart.Application.DataSheet; //test.Cells.Clear() This delete the data of the chart but i dont find a solution to insert values in the chart data after. Best Regards, Chomel Jeremy

    Read the article

  • Layers - Logical seperation vs physical

    - by P.Brian.Mackey
    Some programmers recommend logical seperation of layers over physical. For example, given a DL, this means we create a DL namespace not a DL assembly. Benefits include: faster compilation time simpler deployment Faster startup time for your program Less assemblies to reference Im on a small team of 5 devs. We have over 50 assemblies to maintain. IMO this ratio is far from ideal. I prefer an extreme programming approach. Where if 100 assemblies are easier to maintain than 10,000...then 1 assembly must be easier than 100. Given technical limits, we should strive for < 5 assemblies. New assemblies are created out of technical need not layer requirements. Developers are worried for a few reasons. A. People like to work in their own environment so they dont step on eachothers toes. B. Microsoft tends to create new assemblies. E.G. Asp.net has its own DLL, so does winforms. Etc. C. Devs view this drive for a common assembly as a threat. Some team members Have a tendency to change the common layer without regard for how it will impact dependencies. My personal view: I view A. as silos, aka cowboy programming and suggest we implement branching to create isolation. C. First, that is a human problem and we shouldnt create technical work arounds for human behavior. Second, my goal is not to put everything in common. Rather, I want partitions to be made in namespaces not assemblies. Having a shared assembly doesnt make everything common. I want the community to chime in and tell me if Ive gone off my rocker. Is a drive for a single assembly or my viewpoint illogical or otherwise a bad idea?

    Read the article

  • how to recover lost partitions data

    - by TheJoester
    I have a 2TB SATA drive that was being used as file storage on my UBUNTU computer. I was re-imaging my windows box so I used that drive to back up some files to it. I did this by taking the drive from my windows PC and putting it in my UBUNTU PC, mounted it and copied the files over. After the windows refresh I thought it would be easier to take the 2 TB drive and dock it in the external dock my Windows case has built in. Anyway it would recognize in BIOS but windows would not see it (because it was EXT3 or EXT4) so when I went into the disk manager it advised me the drive needed to be initialized. Me not thinking I initialized it as a GUID Partition table. Now it sees it as a blank drive, even in UBUNTU. I have done nothing else to write or change the drive. I was wondering if there is a qay to repair the old partitioning and get access to my files back? many thanks! EDIT: I followed the instructions in the link @kniwor sent me. I used the command sudo gpart -W /dev/sda /dev/sda and here was the result: Guessed primary partition table: Primary partition(1) type: 007(0x07)(OS/2 HPFS, NTFS, QNX or Advanced UNIX) size: 0mb #s(1) s(2861671176-2861671176) chs: (1023/254/63)-(1023/254/63)d (178130/202/1)-(178130/202/1)r Primary partition(2) type: 007(0x07)(OS/2 HPFS, NTFS, QNX or Advanced UNIX) size: 0mb #s(1) s(3484550160-3484550160) chs: (1023/254/63)-(1023/254/63)d (216903/55/1)-(216903/55/1)r Primary partition(3) type: 000(0x00)(unused) size: 0mb #s(0) s(0-0) chs: (0/0/0)-(0/0/0)d (0/0/0)-(0/0/0)r Primary partition(4) type: 000(0x00)(unused) size: 0mb #s(0) s(0-0) chs: (0/0/0)-(0/0/0)d (0/0/0)-(0/0/0)r Not sure it found what I wanted. suggestions?

    Read the article

  • What naming conventions exist for the primary Node.js file?

    - by Tom Dworzanski
    This question has been completely edited in hopes that it will be reopened. The naming of the main Node.js file is something left to the user and and does not seem to be defined by any well established convention. In hopes of finding a good name, I am curious if there are naming conventions in other parts of the Node.js ecosystem that might suggest a name to use. Some names I have seen are: app.js, index.js, main.js, server.js, etc. Please provide only well documented standards in answers.

    Read the article

  • Reflector issue when decompiling a WPF assembly (i.e. PresentationCore, PresentationFramework).

    - by Rafales
    Hi; I just downloaded the last version of Reflector from RedGate and I was unable to decompile classes in some core WPF assemblies like PresentationCore and PresentationFramework. Here is a link to a picture that describes my problem: http://997966480542455630-a-1802744773732722657-s-sites.googlegroups.com/site/badrdocs/files/Reflector_issue.png?attachauth=ANoY7cqzFOr_iIPHnS2V67hKSpxXdlr4B0fOh7u2pzWImgJp6QKELErlVpOoCkDP3IVd4zvbnCBDWHXw-hY_eeGu5UUqWiuW5bbAb2YDTETnZYJ3bMvfN6WF28u2ERar9DcjeuqXslKt1bv7SY8dW82da0ndleAaoBDBe0QuY1jHVfOPK4HkXqpZOqKF0nMZNCP36rhFkBgzdG8SSYnA4YwKmYwD_mS2Kg%3D%3D&attredirects=1 Thank you for your help.

    Read the article

  • Reportviewer stored procedure [closed]

    - by Liesl
    I want to write a stored procedure for my invoice reportviewer. After invoice is generated in reportviewer it must also add the data to my Invoice table. This is all my tables in my database: CREATE TABLE [dbo].[Waybills]( [WaybillID] [int] IDENTITY(1,1) NOT NULL, [SenderName] [varchar](50) NULL, [SenderAddress] [varchar](50) NULL, [SenderContact] [int] NULL, [ReceiverName] [varchar](50) NULL, [ReceiverAddress] [varchar](50) NULL, [ReceiverContact] [int] NULL, [UnitDescription] [varchar](50) NULL, [UnitWeight] [int] NULL, [DateReceived] [date] NULL, [Payee] [varchar](50) NULL, [CustomerID] [int] NULL, PRIMARY KEY CLUSTERED CREATE TABLE [dbo].[Customer]( [CustomerID] [int] IDENTITY(1,1) NOT NULL, [customerName] [varchar](30) NULL, [CustomerAddress] [varchar](30) NULL, [CustomerContact] [varchar](30) NULL, [VatNo] [int] NULL, CONSTRAINT [PK_Customer] PRIMARY KEY CLUSTERED ) CREATE TABLE [dbo].[Cycle]( [CycleID] [int] IDENTITY(1,1) NOT NULL, [CycleNumber] [int] NULL, [StartDate] [date] NULL, [EndDate] [date] NULL ) ON [PRIMARY] CREATE TABLE [dbo].[Payments]( [PaymentID] [int] IDENTITY(1,1) NOT NULL, [Amount] [money] NULL, [PaymentDate] [date] NULL, [CustomerID] [int] NULL, PRIMARY KEY CLUSTERED Create table Invoices ( InvoiceID int IDENTITY(1,1), InvoiceNumber int, InvoiceDate date, BalanceBroughtForward money, OutstandingAmount money, CustomerID int, WaybillID int, PaymentID int, CycleID int PRIMARY KEY (InvoiceID), FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID), FOREIGN KEY (WaybillID) REFERENCES Waybills(WaybillID), FOREIGN KEY (PaymentID) REFERENCES Payments(PaymentID), FOREIGN KEY (CycleID) REFERENCES Cycle(CycleID) ) I want my sp to find all waybills for specific customer in a specific cycle with payments made from this client. All this data must then be added into the INVOICE table. Can someone please help me or show me on the right direction? create proc GenerateInvoice @StartDate date, @EndDate date, @Payee varchar(30) AS SELECT Waybills.WaybillNumber Waybills.SenderName, Waybills.SenderAddress, Waybills.SenderContact, Waybills.ReceiverName, Waybills.ReceiverAddress, Waybills.ReceiverContact, Waybills.UnitDescription, Waybills.UnitWeight, Waybills.DateReceived, Waybills.Payee, Payments.Amount, Payments.PaymentDate, Cycle.CycleNumber, Cycle.StartDate, Cycle.EndDate FROM Waybills CROSS JOIN Payments CROSS JOIN Cycle WHERE Waybills.ReceiverName = @Payee AND (Waybills.DateReceived BETWEEN (@StartDate) AND (@EndDate)) Insert Into Invoices (InvoiceNumber, InvoiceDate, BalanceBroughtForward, OutstandingAmount) Values (@InvoiceNumber, @InvoiceDate, @BalanceBroughtForward, @ OutstandingAmount) go

    Read the article

  • Making Separate Assemblies For Different Types Of Tests For The Same Component?

    - by sooprise
    I was told by a few members here that splitting up my unit tests into different assemblies for different components is the best way to structure unit tests. Now, I have a few questions about that idea. What are the advantages of this? Organization, and isolation of errors? Let's say I have a component named "calculator", and I create an assembly for the unit tests on "calculator". Would I create a separate assembly for the integration tests I want to run on "calculator"? Or is the definition of an integration test a test across multiple components, like "calculator" and whatever else, which would require a separate assembly to test both of them together? In that case, would I have one assembly to do all of the integration testing for every component combination?

    Read the article

  • In SQL Server 2000, how to delete the specified rows in a table that does not have a primary key?

    - by Yousui
    Hi, Let's say we have a table with some data in it. IF OBJECT_ID('dbo.table1') IS NOT NULL BEGIN DROP TABLE dbo.table1; END CREATE TABLE table1 ( DATA INT ); --------------------------------------------------------------------- -- Generating testing data --------------------------------------------------------------------- INSERT INTO dbo.table1(data) SELECT 100 UNION ALL SELECT 200 UNION ALL SELECT NULL UNION ALL SELECT 400 UNION ALL SELECT 400 UNION ALL SELECT 500 UNION ALL SELECT NULL; How to delete the 2nd, 5th, 6th records in the table? The order id defined by the following query. SELECT data FROM dbo.table1 ORDER BY data DESC; Note, this is in SQL Server 2000 environment. Thanks.

    Read the article

  • Sharing assembly code between WPF, Silverlight and Windows Phone: quite impractical for big projects !

    - by user310291
    It is said here: http://blogs.msdn.com/b/mikeormond/archive/2010/12/09/writing-cross-platform-xaml-applications.aspx Within Visual Studio, if you add files to the project via “Add Existing Item”, and select the “Add As Link” option you can work on the same file from multiple projects. Oh my I'm on a project which have multiple countries, brands, components layers and each time I will add a file you want me to "Add as Link" ? This is a nightmare maintenance ! Is there any other solutions ?

    Read the article

  • .NET-MVC Modelbinder not binding because of primary key, all other fields are right. What's happenin

    - by ropstah
    I want to perform an Add object scenario in .NET using the modelbinder. Function AddObject() As ActionResult Return View() End Function <AcceptVerbs(HttpVerbs.Post)> _ Function AddObject(<Bind(Exclude:="ObjectId")> ByVal o As BLL.Object) As ActionResult o.Save() End Function However, I get an error: 'o.ObjectId' is not declared or the module containing it is not loaded in the debugging session. While inspecting the object, all other fields are set properly. I've tried all combinations regarding: with/without Html.Hidden("ObjectId") to with/without <Bind(Exclude:="ObjectId")> and even setting o.ObjectId to Nothing, all with the same results. What am I doing wrong?

    Read the article

  • Creating instance of interface in C#

    - by Max
    I'm working with MS Excel interop in C# and I don't understand how this particular line of code works: var excel = new Microsoft.Office.Interop.Excel.Application(); where Microsoft.Office.Interop.Excel.Application is an INTERFACE defined as: [Guid("000208D5-0000-0000-C000-000000000046")] [CoClass(typeof(ApplicationClass))] public interface Application : _Application, AppEvents_Event { } I'm thinking that some magic happens when the interface is decorated with a CoClass attribute, but still how is it possible that we can create an instance of an interface with a new keyword? Shouldn't it generate a compile time error?

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • ReflectionTypeLoadException with Silverlight serialization attributes

    - by RPS
    Hi all, I´m trying to inspect the types in a silverlight 4 assembly from a .NET 3.5 application. I have loaded the silverlight assembly with a Assembly.ReflectionOnlyLoadFrom sentence. contractsAssembly = Assembly.ReflectionOnlyLoadFrom(contractsAssemblyPath); When the .NET application tries to perform a call to GetTypes(), it throws a ReflectionTypeLoadException. Type[] types = contractsAssembly.GetTypes(); The LoaderExceptions property in the ReflectionTypeLoadException contains a list of exceptions, all of them regarding a problem loading a type that has serialization attributes. Type 'XXXX' in assembly 'YYYY' has method 'OnSerializing' with an incorrect signature for the serialization attribute that it is decorated with. The type XXXX has the following definitions in it: [System.Runtime.Serialization.OnSerializing] public void OnSerializing(System.Runtime.Serialization.StreamingContext context) [System.Runtime.Serialization.OnSerialized] public void OnSerialized(System.Runtime.Serialization.StreamingContext context) [System.Runtime.Serialization.OnDeserializing] public void OnDeserializing(System.Runtime.Serialization.StreamingContext context) [System.Runtime.Serialization.OnDeserialized] public void OnDeserialized(System.Runtime.Serialization.StreamingContext context) I have tried changing the method signature to internal or private, but with no luck. When I perform a GetTypes() call in a silverlight application that inspects this assembly I have no problems, so I thought that this was due to an incompatibility between .NET Framework and Silverlight. However, I see that .NET tools such as Reflector can inspect this Silverlight assembly, so there is a way to inspect Silverlight assemblies with serialization attributes from a .NET applciation. Could someone shed me some light on this? Many thanks in advance. Jose Antonio

    Read the article

  • How to override ATTR_DEFAULT_IDENTIFIER_OPTIONS in Models in Doctrine?

    - by user309083
    Here someone explained that setting a 'primary' attribute for any row in your Model will override Doctrine_Manager's ATTR_DEFAULT_IDENTIFIER_OPTIONS attribute: http://stackoverflow.com/questions/2040675/how-do-you-override-a-constant-in-doctrines-models This works, however if you have a many to many relation whereby the intermediate table is created, even if you have set both columns in the intermediate to primary an error still results when Doctrine tries to place an index on the nonexistant 'id' column upon table creation. Here's my code: //Bootstrap // set the default primary key to be named 'id', integer, 4 bytes Doctrine_Manager::getInstance()->setAttribute( Doctrine_Core::ATTR_DEFAULT_IDENTIFIER_OPTIONS, array('name' => 'id', 'type' => 'integer', 'length' => 4)); //User Model class User extends Doctrine_Record { public function setTableDefinition() { $this->setTableName('users'); } public function setUp() { $this->hasMany('Role as roles', array( 'local' => 'id', 'foreign' => 'user_id', 'refClass' => 'UserRole', 'onDelete' => 'CASCADE' )); } } //Role Model class Role extends Doctrine_Record { public function setTableDefinition() { $this->setTableName('roles'); } public function setUp() { $this->hasMany('User as users', array( 'local' => 'id', 'foreign' => 'role_id', 'refClass' => 'UserRole' )); } } //UserRole Model class UserRole extends Doctrine_Record { public function setTableDefinition() { $this->setTableName('roles_users'); $this->hasColumn('user_id', 'integer', 4, array('primary'=>true)); $this->hasColumn('role_id', 'integer', 4, array('primary'=>true)); } } Resulting error: SQLSTATE[42000]: Syntax error or access violation: 1072 Key column 'id' doesn't exist in table. Failing Query: "CREATE TABLE roles_users (user_id INT UNSIGNED NOT NULL, role_id INT UNSIGNED NOT NULL, INDEX id_idx (id), PRIMARY KEY(user_id, role_id)) ENGINE = INNODB". Failing Query: CREATE TABLE roles_users (user_id INT UNSIGNED NOT NULL, role_id INT UNSIGNED NOT NULL, INDEX id_idx (id), PRIMARY KEY(user_id, role_id)) ENGINE = INNODB I'm creating my tables using Doctrine::createTablesFromModels();

    Read the article

< Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >