Search Results

Search found 24515 results on 981 pages for '24 bit'.

Page 88/981 | < Previous Page | 84 85 86 87 88 89 90 91 92 93 94 95  | Next Page >

  • Le week-end de programmation de jeux vidéo sur Developpez.com a démarré ! Venez nous rejoindre sur le chat

    Du 22 au 24 aout, venez programmer un jeu vidéo sur le chat de Developpez.comAmies programmeuses, amis programmeurs,La quatrième édition arrive enfin ! J'ai l'honneur de vous annoncer que vous pouvez dès à présent réserver le week-end du 22 au 24 août pour développer un jeu vidéo avec les membres de Developpez.com. Préparez-vous, commandez les pizza, faites un stock de red bull, expulsez votre copain/copine (sauf s'il/elle sait dessiner), car vous allez passer un week-end intense pour réaliser un...

    Read the article

  • New Nvidia Video Driver for Linux Supports X Server 1.8

    <b>Softpedia:</b> "Nvidia announced a few days ago, on its forum, a new version of its proprietary driver for the Nvidia graphics cards. Nvidia 195.36.24 adds support for new GPUs, and fixes a few issues. But the most important thing is that Nvidia 195.36.24 has support for X Server 1.8."

    Read the article

  • CVE-2012-4244 Denial of Service vulnerability in ISC BIND

    - by Umang_D
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2012-4244 Denial of Service vulnerability 7.8 BIND Solaris 11 Contact Support Solaris 10 SPARC : 119783-24 , x86 : 119784-24 Solaris 9 SPARC : 112837-28 , x86 : 114265-27 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • Ubuntu 10.04 LTS - Dual monitor works only sometimes (ATI multi-desktop)

    - by Beres Botond
    I've been using my laptop with an external LCD monitor attached to it at work (Philips 201E). And at home with a different external monitor (Samsung 2032BW). I have an ATI graphics card (HD3450), with Ati Catalyst drivers enabled and I'm using the Single display desktop (Multi-Desktop) seeting. At work I have the external monitor on the left and laptop on the right, while at home the other way around. So when I switch between the two setups, I just needed to go to Ati Catalyst Control Center, change the order of the displays, change the resolution (Home - 1680x1050, Work - 1440x900), reboot and it was all fine. But since a while it doesn't work properly anymore: At home it still works fine. At work it doesn't work. Sometimes it works for some reason, after a few resolution/setting changes in ACCC and reboots... it's very strange and annoying. With the home monitor I can see the whole bootup process on both monitors (laptop + LCD) and it always just works fine. With the work monitor on the external LCD monitor I just see "No video input" until I get to the login screen, then it shows up there as well. But after login it will either: Flicker a few times, but then work OK. Or (more often) Flicker once and then go back to "No video input" again. I usually end up rebooting a few times until it works. Does anyone have any idea for fixing it? This is my xorg.conf currently: Section "ServerLayout" Identifier "amdcccle Layout" Screen 0 "amdcccle-Screen[6]-0" 0 0 Screen "amdcccle-Screen[6]-1" 1280 0 EndSection Section "Files" EndSection Section "Module" Load "glx" EndSection Section "ServerFlags" Option "Xinerama" "off" EndSection Section "Monitor" Identifier "0-LVDS" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" Option "PreferredMode" "1280x768" Option "TargetRefresh" "60" Option "Position" "0 0" Option "Rotate" "normal" Option "Disable" "false" EndSection Section "Monitor" Identifier "0-CRT1" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" Option "TargetRefresh" "60" Option "Position" "0 0" Option "Rotate" "normal" Option "Disable" "false" Option "PreferredMode" "1440x900" EndSection Section "Device" Identifier "Default Device" Driver "fglrx" EndSection Section "Device" Identifier "amdcccle-Device[6]-0" Driver "fglrx" Option "Monitor-LVDS" "0-LVDS" BusID "PCI:6:0:0" EndSection Section "Device" Identifier "amdcccle-Device[6]-1" Driver "fglrx" Option "Monitor-CRT1" "0-CRT1" BusID "PCI:6:0:0" Screen 1 EndSection Section "Screen" Identifier "Default Screen" DefaultDepth 24 SubSection "Display" Virtual 2560 1024 EndSubSection EndSection Section "Screen" Identifier "amdcccle-Screen[6]-0" Device "amdcccle-Device[6]-0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "amdcccle-Screen[6]-1" Device "amdcccle-Device[6]-1" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection

    Read the article

  • SAS Expanders vs Direct Attached (SAS)?

    - by jemmille
    I have a storage unit with 2 backplanes. One backplane holds 24 disks, one backplane holds 12 disks. Each backplane is independently connected to a SFF-8087 port (4 channel/12Gbit) to the raid card. Here is where my question really comes in. Can or how easily can a backplane be overloaded? All the disks in the machine are WD RE4 WD1003FBYX (black) drives that have average writes at 115MB/sec and average read of 125 MB/sec I know things would vary based on the raid or filesystem we put on top of that but it seems to be that a 24 disk backplane with only one SFF-8087 connector should be able to overload the bus to a point that might actually slow it down? Based on my math, if I had a RAID0 across all 24 disks and asked for a large file, I should, in theory should get 24*115 MB/sec wich translates to 22.08 GBit/sec of total throughput. Either I'm confused or this backplane is horribly designed, at least in a perfomance environment. I'm looking at switching to a model where each drive has it's own channel from the backplane (and new HBA's or raid card). EDIT: more details We have used both pure linux (centos), open solaris, software raid, hardware raid, EXT3/4, ZFS. Here are some examples using bonnie++ 4 Disk RAID-0, ZFS WRITE CPU RE-WRITE CPU READ CPU RND-SEEKS 194MB/s 19% 92MB/s 11% 200MB/s 8% 310/sec 194MB/s 19% 93MB/s 11% 201MB/s 8% 312/sec --------- ---- --------- ---- --------- ---- --------- 389MB/s 19% 186MB/s 11% 402MB/s 8% 311/sec 8 Disk RAID-0, ZFS WRITE CPU RE-WRITE CPU READ CPU RND-SEEKS 324MB/s 32% 164MB/s 19% 346MB/s 13% 466/sec 324MB/s 32% 164MB/s 19% 348MB/s 14% 465/sec --------- ---- --------- ---- --------- ---- --------- 648MB/s 32% 328MB/s 19% 694MB/s 13% 465/sec 12 Disk RAID-0, ZFS WRITE CPU RE-WRITE CPU READ CPU RND-SEEKS 377MB/s 38% 191MB/s 22% 429MB/s 17% 537/sec 376MB/s 38% 191MB/s 22% 427MB/s 17% 546/sec --------- ---- --------- ---- --------- ---- --------- 753MB/s 38% 382MB/s 22% 857MB/s 17% 541/sec Now 16 Disk RAID-0, it's gets interesting WRITE CPU RE-WRITE CPU READ CPU RND-SEEKS 359MB/s 34% 186MB/s 22% 407MB/s 18% 1397/sec 358MB/s 33% 186MB/s 22% 407MB/s 18% 1340/sec --------- ---- --------- ---- --------- ---- --------- 717MB/s 33% 373MB/s 22% 814MB/s 18% 1368/sec 20 Disk RAID-0, ZFS WRITE CPU RE-WRITE CPU READ CPU RND-SEEKS 371MB/s 37% 188MB/s 22% 450MB/s 19% 775/sec 370MB/s 37% 188MB/s 22% 447MB/s 19% 797/sec --------- ---- --------- ---- --------- ---- --------- 741MB/s 37% 376MB/s 22% 898MB/s 19% 786/sec 24 Disk RAID-1, ZFS WRITE CPU RE-WRITE CPU READ CPU RND-SEEKS 347MB/s 34% 193MB/s 22% 447MB/s 19% 907/sec 347MB/s 34% 192MB/s 23% 446MB/s 19% 933/sec --------- ---- --------- ---- --------- ---- --------- 694MB/s 34% 386MB/s 22% 894MB/s 19% 920/sec 28 Disk RAID-0, ZFS 32 Disk RAID-0, ZFS 36 Disk RAID-0, ZFS More details: Here is the exact unit: http://www.supermicro.com/products/chassis/4U/847/SC847E1-R1400U.cfm

    Read the article

  • Upgrade only one version of XP to Windows 8 on a dual boot computer

    - by Shane
    I have a computer running Windows XP Pro 32-bit and 64-bit in dual boot. I need to retain Windows XP 32-bit Pro, as I have expensive software that will only run on that specific version. I want to upgrade my 64-bit installation of XP to Windows 8 without losing the 32-bit installation. If I simply use the ISO to upgrade from within my XP 64-bit installation, will I retain dual boot for both XP 32-bit and Windows 8?

    Read the article

  • Installing Yaws server on Ubuntu 12.04 (Using a cloud service)

    - by Lee Torres
    I'm trying to get a Yaws web server working on a cloud service (Amazon AWS). I've compilled and installed a local copy on the server. My problem is that I can't get Yaws to run while running on either port 8000 or port 80. I have the following configuration in yaws.conf: port = 8000 listen = 0.0.0.0 docroot = /home/ubuntu/yaws/www/test dir_listings = true This produces the following successful launch/result: Eshell V5.8.5 (abort with ^G) =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Using config file /home/ubuntu/yaws.conf =INFO REPORT==== 16-Sep-2012::17:21:06 === Ctlfile : /home/ubuntu/.yaws/yaws/default/CTL =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Listening to 0.0.0.0:8000 for <3> virtual servers: - http://domU-12-31-39-0B-1A-F6:8000 under /home/ubuntu/yaws/www/trial - =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Listening to 0.0.0.0:4443 for <1> virtual servers: - When I try to access the the url (http://ec2-72-44-47-235.compute-1.amazonaws.com), it never connects. I've tried using paping to check if port 80 or 8000 is open(http://code.google.com/p/paping/) and I get a "Host can not be resolved" error, so obviously something isn't working. I've also tried setting the yaws.conf so its at Port 80, appearing like this: port = 8000 listen = 0.0.0.0 docroot = /home/ubuntu/yaws/www/test dir_listings = true and I get the following error: =ERROR REPORT==== 16-Sep-2012::17:24:47 === Yaws: Failed to listen 0.0.0.0:80 : {error,eacces} =ERROR REPORT==== 16-Sep-2012::17:24:47 === Can't listen to socket: {error,eacces} =ERROR REPORT==== 16-Sep-2012::17:24:47 === Top proc died, terminate gserv =ERROR REPORT==== 16-Sep-2012::17:24:47 === Top proc died, terminate gserv =INFO REPORT==== 16-Sep-2012::17:24:47 === application: yaws exited: {shutdown,{yaws_app,start,[normal,[]]}} type: permanent {"Kernel pid terminated",application_controller," {application_start_failure,yaws,>>>>>>{shutdown,>{yaws_app,start,[normal,[]]}}}"} I've also opened up the port 80 using iptables. Running sudo iptables -L gives this output: Chain INPUT (policy ACCEPT) target prot opt source destination ACCEPT tcp -- ip-192-168-2-0.ec2.internal ip-192-168-2-16.ec2.internal tcp dpt:http ACCEPT tcp -- 0.0.0.0 anywhere tcp dpt:http ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED ACCEPT tcp -- anywhere anywhere tcp dpt:http ACCEPT tcp -- anywhere anywhere tcp dpt:http Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination In addition, I've gone to the security group panel in the Amazon AWS configuration area, and add ports 80, 8000, and 8080 to ip source 0.0.0.0 Please note: if you try to access the URL of the virtual server now, it likely won't connect because I'm not running currently running the yaws daemon. I've tested it when I've run yaws either through yaws or yaws -i Thanks for the patience

    Read the article

  • Planning trunk capacity for multiple GbE switches

    - by wuckachucka
    Without measuring throughput (it's at the top of the list; this is just theoretical), I want to know the most standard method for trunking VLANs on multiple Gigabit (GbE) switches to a core Layer 3 GbE switch. Say you have three VLANs: VLAN10 (10.0.0.0/24) Servers: your typical Windows DC/file server, Exchange, and an Accounting/SQL server. VLAN20: (10.0.1.0/24) Sales: needs access to everything on VLAN10; doesn't need access to VLAN30 and vice-versa. VLAN20: (10.0.1.0/24) Support: needs access to everything on VLAN10; doesn't need access to VLAN20 and vice-versa. Here's how I think this should work in my head: Switch #1: Ports 2-20 are assigned to VLAN20; all the Sales workstations and printers are connected here. Optional 10GbE combo port #1 is trunked to L3 switch's 10 GbE combo port #1. Switch #2: Ports 2-20 are assigned to VLAN30; all the Support workstations and printers are connected here. Optional 10GbE combo port #1 is trunked to L3 switch's 10 GbE combo port #2. Core L3 switch: Ports 2-10 are assigned to VLAN10; all three servers are connected here. With a standard 10/100 x 24 switch, it'll usually come with one or two 1 GbE uplink ports; carrying over this logic to a 10/100/1000 x 24, the "optional" 10 GbE combo ports that most higher-end switches can get shouldn't really be an option. Keep in mind I haven't tested anything yet, I'm primarily moving in this direction for growth (don't want to buy 10/100 switches and have to replace those within a couple of years) and security (being able to control access between VLANs with L3 routing/packet filtering ACLs). Does this sound right? Do I really need the 10 GbE ports? It seems very non-standard and expensive, but it "feels" right when you think about 40 or 50 workstations trunking up to the L3 switch over 1 GbE standard ports. If say 20 workstations want to download a 10 GB image from the servers concurrently, wouldn't the trunk be the bottleneck? At least if the trunk was 10 GbE, you'd have 10x1GbE nodes being able to reach their theoretical max. What about switch stacking? Some of the D-Links I've been looking at have HDMI interfaces for stacking. As far as I know, stacking two switches creates one logical switch, but is this just for management I/O or does the switches use the (assuming it's HDMI 1.3) 10.2 Gbps for carrying data back and forth?

    Read the article

  • iptables blocking ssh communication

    - by Michal Sapsa
    I'm using this script for iptables: #!/bin/sh echo "1" > /proc/sys/net/ipv4/ip_forward iptables -F iptables -X iptables -F -t nat iptables -X -t nat iptables -F -t filter iptables -X -t filter iptables -t filter -P FORWARD DROP iptables -t filter -A FORWARD -s 192.168.0.0/255.255.0.0 -d 0/0 -j ACCEPT iptables -t filter -A FORWARD -s 0/0 -d 192.168.0.0/255.255.0.0 -j ACCEPT iptables -t nat -A POSTROUTING -s 10.8.0.1/255.255.255.0 -j MASQUERADE iptables -A FORWARD -s 10.8.0.1/255.255.255.0 -j ACCEPT iptables -t nat -A POSTROUTING -s 192.168.0.0/24 -d 0/0 -j MASQUERADE iptables -I FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu iptables -t nat -A PREROUTING -i eth1 -p udp --dport 16161 -j DNAT --to 192.168.0.251:16161 iptables -t nat -A PREROUTING -i eth1 -p udp --sport 16161 -j DNAT --to 192.168.0.251:16161 #openvpn iptables -I INPUT -p tcp --dport 1194 -j ACCEPT iptables -I INPUT -p udp --dport 1194 -j ACCEPT I end up with some iptables rules that should work but don't work - probably because of me. # Generated by iptables-save v1.4.12 on Mon May 26 13:15:43 2014 *raw :PREROUTING ACCEPT [1657523:1357257330] :OUTPUT ACCEPT [36804:34834370] -A PREROUTING -p icmp -j TRACE -A PREROUTING -p tcp -j TRACE -A OUTPUT -p icmp -j TRACE -A OUTPUT -p tcp -j TRACE COMMIT # Completed on Mon May 26 13:15:43 2014 # Generated by iptables-save v1.4.12 on Mon May 26 13:15:43 2014 *nat :PREROUTING ACCEPT [5033:345623] :INPUT ACCEPT [154:34662] :OUTPUT ACCEPT [6:1968] :POSTROUTING ACCEPT [2:120] -A PREROUTING -i eth0 -p tcp -m tcp --dport 16161 -j DNAT --to-destination 192.168.0.251:22 -A PREROUTING -i eth1 -p tcp -m tcp --dport 16161 -j DNAT --to-destination 192.168.0.251:22 -A POSTROUTING -s 10.8.0.0/24 -j MASQUERADE -A POSTROUTING -s 192.168.0.0/24 -j MASQUERADE COMMIT # Completed on Mon May 26 13:15:44 2014 # Generated by iptables-save v1.4.12 on Mon May 26 13:15:44 2014 *filter :INPUT ACCEPT [548:69692] :FORWARD DROP [8:384] :OUTPUT ACCEPT [2120:1097479] -A INPUT -p udp -m udp --dport 1194 -j ACCEPT -A INPUT -p tcp -m tcp --dport 1194 -j ACCEPT -A FORWARD -p tcp -m tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu -A FORWARD -s 192.168.0.0/16 -j ACCEPT -A FORWARD -d 192.168.0.0/16 -j ACCEPT -A FORWARD -s 10.8.0.0/24 -j ACCEPT -A FORWARD -i eth0 -o eth1 -p tcp -m tcp --dport 22 -j ACCEPT -A FORWARD -i eth1 -o eth0 -p tcp -m tcp --dport 22 -j ACCEPT COMMIT TRACE at PREROUTEING AND OUTPUT are only for debuging this thing. When I ssh at public ip with port 16161 I don't get any message, only TimeOut so it looks like I don't get communication back to remote server. ETH0 is the world, ETH1 is LAN Any IPTABLES Masters willing to give a hand ? iptables -vL Chain INPUT (policy ACCEPT 20548 packets, 3198K bytes) pkts bytes target prot opt in out source destination 38822 7014K ACCEPT udp -- any any anywhere anywhere udp dpt:openvpn 0 0 ACCEPT tcp -- any any anywhere anywhere tcp dpt:openvpn Chain FORWARD (policy DROP 1129 packets, 64390 bytes) pkts bytes target prot opt in out source destination 214K 11M TCPMSS tcp -- any any anywhere anywhere tcpflags: SYN,RST/SYN TCPMSS clamp to PMTU 4565K 1090M ACCEPT all -- any any 192.168.0.0/16 anywhere 5916K 7315M ACCEPT all -- any any anywhere 192.168.0.0/16 0 0 ACCEPT all -- any any 10.8.0.0/24 anywhere 0 0 ACCEPT tcp -- any any anywhere 192.168.0.251 tcp dpt:16161 Chain OUTPUT (policy ACCEPT 59462 packets, 19M bytes) pkts bytes target prot opt in out source destination

    Read the article

  • How secure is a subnet?

    - by HorusKol
    I have an unfortunate complication in my network - some users/computers are attached to a completely private and firewalled office network that we administer (10.n.n.x/24 intranet), but others are attached to a subnet provided by a third party (129.n.n.x/25) as they need to access the internet via the third party's proxy. I have previously set up a gateway/router to allow the 10.n.n.x/24 network internet access: # Allow established connections, and those !not! coming from the public interface # eth0 = public interface # eth1 = private interface iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT iptables -A INPUT -m state --state NEW ! -i eth0 -j ACCEPT iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT # Allow outgoing connections from the private interface iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT # Masquerade (NAT) iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE # Don't forward any other traffic from the public to the private iptables -A FORWARD -i eth0 -o eth1 -j REJECT However, I now need to enable access to users on our 129.n.n.x/25 subnet to some private servers on the 10.n.n.x/24 network. I figured that I could do something like: # Allow established connections, and those !not! coming from the public interface # eth0 = public interface # eth1 = private interface #1 (10.n.n.x/24) # eth2 = private interface #2 (129.n.n.x/25) iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT iptables -A INPUT -m state --state NEW ! -i eth0 -j ACCEPT iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT iptables -A FORWARD -i eth0 -o eth2 -m state --state ESTABLISHED,RELATED -j ACCEPT # Allow outgoing connections from the private interfaces iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT iptables -A FORWARD -i eth2 -o eth0 -j ACCEPT # Allow the two public connections to talk to each other iptables -A FORWARD -i eth1 -o eth2 -j ACCEPT iptables -A FORWARD -i eth2 -o eth1 -j ACCEPT # Masquerade (NAT) iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE # Don't forward any other traffic from the public to the private iptables -A FORWARD -i eth0 -o eth1 -j REJECT iptables -A FORWARD -i eth0 -o eth2 -j REJECT My concern is that I know that the computers on our 129.n.n.x/25 subnet can be accessed via a VPN through the larger network operated by the provider - therefore, would it be possible for someone on the provider's supernet (correct term? inverse of subnet?) to be able to access our private 10.n.n.x/24 intranet?

    Read the article

  • RHEL 4.8 / Sybase 12.5.4 64 bit install error - I have libaio i368 installed I need libaio x86_64 in

    - by Jon
    I am trying to install Sybase ASE 12.5.4 64 bit. I know the machine has a 64 bit processor It is giving me an error during install saying: "error while loading shared libraries: libaio.s0.1" I run the command: rpm -q --qf '%{NAME}-%{VERSION}-%{RELEASE} (%{ARCH})\n' libaio Which returns: libaio-0.3.105-2 (i386) I found a src rpm for libaio-0.3.102. I followed the steps to install which included using make. It appeared to install without error. But when I run the rpm -q command again I still only see the i386 version installed. Not really sure where to go from here. Ideally I would like to find a regular rpm of libaio x86_64 for RHEL 4.8. If I were to find one would I upgrade the package that is already there? Would I remove and install the new one. Or would I install and two separate version of the library?

    Read the article

  • Is there a serious issue with setting the SUID bit on tcpdump?

    - by Dean
    I'm running tcpdump on a remote machine, and piping the output to Wireshark on my local machine over SSH. In order to do this, I had to set the SUID bit on tcpdump. For background, the remote machine is an Amazon EC2 running "Amazon Linux AMI 2012.09". On this image, there is no root password, and it is not possible to log in as root. You can't use sudo without a TTY, and therefore you have to set the SUID. What are the practical risks of setting this bit on tcpdump? Is there any need to be paranoid? Should I unset it whenever I'm not capturing?

    Read the article

  • How do I silence strace's message "[ Process PID=15733 runs in 64 bit mode. ]" ?

    - by Ross Rogers
    I'm using memoize.py, but strace keeps injecting the following into the program output each time a process is executed: [ Process PID=15733 runs in 64 bit mode. ] or [ Process PID=16503 runs in 32 bit mode. ] How can I silence strace such that it doesn't inject these statements into the log file? At the very least, I'd like these statements to only go into the output file that memoize.py is instructing strace to use. It's already telling strace to put its output into a specific file ithrough arguments -o /tmp/OUTFILE. Note that strace is being called with the -f parameter to follow child processes.

    Read the article

  • Installed 4GB memory but Windows XP 32 bit only reporting 2GB?

    - by AnthonyWJones
    I've just taken an existing XP Pro 32 bit system that had only 0.5GB of memory installed and maxed it out to 4GB. The BIOS reports the 4GB ram however when XP is booted and I look at the computer properties only 2GB of RAM is reported. Can anyone explain this? Before we go up any blind allys the /3GB switch is not the answer here, I have no need for a single process to use more the 2GB of memory. I'm wondering if the the 32 bit XP Pro is deliberately limited to 2GB. I seem to remember seeing an excellent table on a Microsoft site listing all the various SKUs of Windows and what each one was limited to. However I can't seem to find that table now.

    Read the article

  • Installed 4GB memory but Windows XP 32 bit only reporting 2GB?

    - by AnthonyWJones
    I've just taken an existing XP Pro 32 bit system that had only 0.5GB of memory installed and maxed it out to 4GB. The BIOS reports the 4GB ram however when XP is booted and I look at the computer properties only 2GB of RAM is reported. Can anyone explain this? Before we go up any blind allys the /3GB switch is not the answer here, I have no need for a single process to use more the 2GB of memory. I'm wondering if the the 32 bit XP Pro is deliberately limited to 2GB. I seem to remember seeing an excellent table on a Microsoft site listing all the various SKUs of Windows and what each one was limited to. However I can't seem to find that table now.

    Read the article

  • Linux mdadm software RAID 6 - does it support bit corruption recovery?

    - by user101203
    Wikipedia says "RAID 2 is the only standard RAID level, other than some implementations of RAID 6, which can automatically recover accurate data from single-bit corruption in data." Does anyone know if the RAID 6 mdadm implementation in Linux is one such implementation that can automatically detect and recover from single-bit data corruption. This pertains to CentOS / Red Hat 6 if those are different from other versions. I tried searching online but didn't have much luck. With SATA error rates being 1 in 1E14 bits, and a 2TB SATA disk containing 1.6E13 bits, this is especially relevant to preventing data corruption. Thanks!

    Read the article

  • Initializing SD card in SPI issues

    - by Sembazuru
    Sorry for the length of this question, but I thought it best to show as much detail to fend of questions asking if I had done A when I had already done A... ;-) I've had a look at the "micro-SD card initialization using SPI interface" thread and didn't see any answers that matched my issue (i.e. things I haven't already tried). I have a similar issue where I'm trying to access a SD card through a micro-controller's SPI interface (specifically an HC908). I've tried following the flow charts in the Physical Layer Simplified Specification v2.00 and it seems to initialize correctly on Transcend 1GB & 2GB and an AE&C 1GB card. But I'm having problems on 3 other random cards from my stash of old cards that I've used on my camera. My code is all HC908 assembler. I scoped out the SPI clock line and during initialization it's running about 350kHz (the only speed multiplier that the HC908 supplies at my low MCU clock speed that falls within the 100-400kHz window). Here are the results of the three cards that aren't completing my initialization routine (all done consecutively w/o changing any code or timing parameters): Canon 16Meg card (labeled as SD): Set card select high Send 80 SPI clock cycles (done by writing 0xFF 10 times) Set card select low Send CMD0 [0x400000000095] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x01 (indicates idle) Send CMD8 [0x48000001AA87] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x05 (idle and illegal command) Because illegal command set local flag to indicate v1 or MMC card Send CMD58 [0x7A00000000FD] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x05 (idle and illegal command) because illegal command branch to error routine Send CMD13 [0x4D000000000D] (show status buffer) and Loop up to 8 times waiting for high bit on response to go low R1= 0x05 (idle and illegal command) Is the illegal command flag stuck? Should I be doing something after CMD8 to clear that flag? SanDisk UltraII 256Meg Set card select high Send 80 SPI clock cycles (done by writing 0xFF 10 times) Set card select low Send CMD0 [0x400000000095] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x01 (idle) Send CMD8 [0x48000001AA87] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x05 (idle and illegal command) Because illegal command set local flag to indicate v1 or MMC card Send CMD58 [0x7A00000000FD] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x01 (idle) Send 0xFF 4 times to read OCR OCR = 0xFFFFFFFF Send CMD55 [0x770000000065] (1st part of ACMD41) and Loop up to 8 times waiting for high bit on response to go low R1 = 0x01 (idle) Send CMD41 [0x6900000000E5] (2nd part of ACMD41) and Loop up to 8 times waiting for high bit on response to go low R1 = 0x05 (idle and illegal command) Because illegal command, assume card is MMC Send CMD1 [0x4100000000F9] (for MMC) and Loop up to 8 times waiting for high bit on response to go low R1 = 0x05 (idle and illegal command) Repeat the CMD1 50 times (my arbitrary number to wait until idle clears) Every R1 response is 0x05 (idle and illegal command) Why is OCR all F? Doesn't seem proper at all. Also, why does ACMD41 and CMD1 respond illegal command? Is CMD1 failing because the card is waiting for a valid ACMD after the CMD55 even with the illegal command response? SanDisk ExtremeIII 2G: Set card select high Send 80 SPI clock cycles (done by writing 0xFF 10 times) Set card select low Send CMD0 [0x400000000095] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x01 (idle) Send CMD8 [0x40000001AA87] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x7F (??? My loop shows the responses for each iteration and I got 0xFF 0xFF 0xC1 0x7F... is the card getting out of sync?) Send CMD58 [0x7A00000000FD] and Loop up to 8 times waiting for high bit on response to go low R1 = 0x01 (idle and back in sync) Send 0xFF 4 times to read OCR OCR = 0x00FF80 Send CMD55 [0x770000000065] (1st part of ACMD41) and Loop up to 8 times waiting for high bit on response to go low R1 = 0x5F (??? loop responses are 0xFF 0xFF 0xF0 0x5F... again out of sync?) Send CMD41 [0x6900000000E5] (2nd part of ACMD41) and Loop up to 8 times waiting for high bit on response to go low R1 = 0x05 (idle and illegal command, but back in sync???) Because illegal command, assume card is MMC Send CMD1 [0x4100000000F9] (for MMC) and Loop up to 8 times waiting for high bit on response to go low R1 = 0x7F (??? loop responses are 0xFF 0xFF 0xC1 0x7F... again out of sync?) Repeat CMD1 and Loop up to 8 times waiting for high bit on response to go low R1 = 0x01 (idle) Repeat CMD1 and Loop up to 8 times waiting for high bit on response to go low R1 = 0x7F (??? loop responses are 0xFF 0xFF 0xC1 0x7F... again out of sync?) Repeat CMD1 and Loop up to 8 times waiting for high bit on response to go low R1 = 0x00 (out of idle) Send CMD9 [0x4900000000AF] (get CSD) and Loop up to 8 times waiting for high bit on response to go low R1 = 0x3F (??? loop responses are 0xFF 0xFF 0xC1 0x3F... again out of sync?) Code craps out because Illegal command bit is high. WTF is wrong with that card? Sometimes in sync, other times not. (The above pattern is repeatable.) I've scoped this one out and I'm not seeing any rogue clock cycles going through between MOSI/MISO transfers. Anyone have any clues? Need any more info? Thanx in advance for spending the time to read through all of this.

    Read the article

  • C: 8x8 -> 16 bit multiply precision guaranteed by integer promotions?

    - by craig-blome
    I'm trying to figure out if the C Standard (C90, though I'm working off Derek Jones' annotated C99 book) guarantees that I will not lose precision multiplying two unsigned 8-bit values and storing to a 16-bit result. An example statement is as follows: unsigned char foo; unsigned int foo_u16 = foo * 10; Our Keil 8051 compiler (v7.50 at present) will generate a MUL AB instruction which stores the MSB in the B register and the LSB in the accumulator. If I cast foo to a unsigned int first: unsigned int foo_u16 = (unsigned int)foo * 10; then the compiler correctly decides I want a unsigned int there and generates an expensive call to a 16x16 bit integer multiply routine. I would like to argue beyond reasonable doubt that this defensive measure is not necessary. As I read the integer promotions described in 6.3.1.1, the effect of the first line shall be as if foo and 10 were promoted to unsigned int, the multiplication performed, and the result stored as unsigned int in foo_u16. If the compiler knows an instruction that does 8x8-16 bit multiplications without loss of precision, so much the better; but the precision is guaranteed. Am I reading this correctly? Best regards, Craig Blome

    Read the article

  • Compile for mixed platform (32, 64) and reference a 32 or 64 bit DLL resolved at runtime

    - by Nigel Aston
    Using VS2010 under windows 32 or 64 bit. Our C# app calls a 3rd party DLL (managed) that interfaces to an unmanaged DLL. The 3rd party DLL API appears identical in 32 or 64 bit although underneath it links to a 32 or 64 bit unmanaged DLL. We want our C# app to run on either 32 or 64 bit OS, ideally it will auto detect the OS and load the appropriate 32rd party DLL - via a simple factory class which tests the Enviroment. So the neatest solution would be a runtime folder containing: OurApp.exe 3rdParty32.DLL 3rdPartyUnmanaged32.DLL 3rdParty64.DLL 3rdPartyUnmanaged64.DLL However, the interface for the managed 3rdParty 32 and 64 dll is identical so both cannot be referenced within the same VS2010 project: when adding the second the warning triangle is shown and it does not get referenced. Is my only answer to create two extra library DLL projects to reference the 3rdParty 32 and 64 Dlls? So I would end up with this project arrangement: Project 1: Builds OurApp.exe, dynamically creates an object for project2 or project3. Project 2: Builds OurApp32.DLL which references 3rdParty32.dll Project 3: Builds OurApp64.DLL which references 3rdParty64.dll

    Read the article

  • NetBeans Development 7 - Windows 7 64-bit … JNI native calls ... a how to guide

    - by CirrusFlyer
    I provide this for you to hopefully save you some time and pain. As part of my expereince in getting to know NB Development v7 on my Windows 64-bit workstation I found another frustrating adventure in trying to get the JNI (Java Native Interface) abilities up and working in my project. As such, I am including a brief summary of steps required (as all the documentation I found was completely incorrect for these versions of Windows and NetBeans on how to do JNI). It took a couple of days of experimentation and reviewing every webpage I could find that included these technologies as keyword searches. Yuk!! Not fun. To begin, as NetBeans Development is "all about modules" if you are reading this you probably have a need for one, or more, of your modules to perform JNI calls. Most of what is available on this site or the Internet in general (not to mention the help file in NB7) is either completely wrong for these versions, or so sparse as to be essentially unuseful to anyone other than a JNI expert. Here is what you are looking for ... the "cut to the chase" - "how to guide" to get a JNI call up and working on your NB7 / Windows 64-bit box. 1) From within your NetBeans Module (not the host appliation) declair your native method(s) and make sure you can compile the Java source without errors. Example: package org.mycompanyname.nativelogic; public class NativeInterfaceTest { static { try { if (System.getProperty( "os.arch" ).toLowerCase().equals( "amd64" ) ) System.loadLibrary( <64-bit_folder_name_on_file_system>/<file_name.dll> ); else System.loadLibrary( <32-bit_folder_name_on_file_system>/<file_name.dll> ); } catch (SecurityException se) {} catch (UnsatisfieldLinkError ule) {} catch (NullPointerException npe) {} } public NativeInterfaceTest() {} native String echoString(String s); } Take notice to the fact that we only load the Assembly once (as it's in a static block), because othersise you will throw exceptions if attempting to load it again. Also take note of our single (in this example) native method titled "echoString". This is the method that our C / C++ application is going to implement, then via the majic of JNI we'll call from our Java code. 2) If using a 64-bit version of Windows (which we are here) we need to open a 64-bit Visual Studio Command Prompt (versus the standard 32-bit version), and execute the "vcvarsall" BAT file, along with an "amd64" command line argument, to set the environment up for 64-bit tools. Example: <path_to_Microsoft_Visual_Studio_10.0>/VC/vcvarsall.bat amd64 Take note that you can use any version of the C / C++ compiler from Microsoft you wish. I happen to have Visual Studio 2005, 2008, and 2010 installed on my box so I chose to use "v10.0" but any that support 64-bit development will work fine. The other important aspect here is the "amd64" param. 3) In the Command Prompt change drives \ directories on your computer so that you are at the root of the fully qualified Class location on the file system that contains your native method declairation. Example: The fully qualified class name for my natively declair method is "org.mycompanyname.nativelogic.NativeInterfaceTest". As we successfully compiled our Java in Step 1 above, we should find it contained in our NetBeans Module something similar to the following: "/build/classes/org/mycompanyname/nativelogic/NativeInterfaceTest.class" We need to make sure our Command Prompt sets, as the current directly, "/build/classes" because of our next step. 4) In this step we'll create our C / C++ Header file that contains the JNI required statments. Type the following in the Command Prompt: javah -jni org.mycompanyname.nativelogic.NativeInterfaceTest and hit enter. If you receive any kind of error that states this is an unrecognized command that simply means your Windows computer does not know the PATH to that command (it's in your /bin folder). Either run the command from there, or include the fully qualified path name when invoking this application, or set your computer's PATH environmental variable to include that path in its search. This should produce a file called "org_mycompanyname_nativelogic_NativeInterfaceTest.h" ... a C Header file. I'd make a copy of this in case you need a backup later. 5) Edit the NativeInterfaceTest.h header file and include an implementation for the echoString() method. Example: JNIEXPORT jstring JNICALL Java_org_mycompanyname_nativelogic_NativeInterfaceTest_echoString (JNIEnv *env, jobject jobj, jstring js) { return((*env)->NewStringUTF(env, "My JNI is up and working after lots of research")); } Notice how you can't simply return a normal Java String (because you're in C at the moment). You have to tell the passed in JVM variable to create a Java String for you that will be returned back. Check out the following Oracle web page for other data types and how to create them for JNI purposes. 6) Close and Save your changes to the Header file. Now that you've added an implementation to the Header change the file extention from ".h" to ".c" as it's now a C source code file that properly implements the JNI required interface. Example: NativeInterfaceTest.c 7) We need to compile the newly created source code file and Link it too. From within the Command Prompt type the following: cl /I"path_to_my_jdks_include_folder" /I"path_to_my_jdks_include_win32_folder" /D:AMD64=1 /LD NativeInterfaceTest.c /FeNativeInterfaceTest.dll /link /machine:x64 Example: cl /I"D:/Program Files/Java/jdk1.6.0_21/include" /I"D:/Program Files/java/jdk1.6.0_21/include/win32" /D:AMD64=1 /LD NativeInterfaceTest.c /FeNativeInterfaceTest.dll /link /machine:x64 Notice the quotes around the paths to the 'include" and 'include/win32' folders is required because I have spaces in my folder names ... 'Program Files'. You can include them if you have no spaces without problems, but they are mandatory if you have spaces when using a command prompt. This will generate serveral files, but it's the DLL we're interested in. This is what the System.loadLirbary() java method is looking for. 8) Congratuations! You're at the last step. Simply take the DLL Assembly and paste it at the following location: <path_of_NetBeansProjects_folder>/<project_name>/<module_name>/build/cluster/modules/lib/x64 Note that you'll probably have to create the "lib" and "x64" folders. Example: C:\Users\<user_name>\Documents\NetBeansProjects\<application_name>\<module_name>\build\cluster\modules\lib\x64\NativeInterfaceTest.dll Java code ... notice how we don't inlude the ".dll" file extension in the loadLibrary() call? System.loadLibrary( "/x64/NativeInterfaceTest" ); Now, in your Java code you can create a NativeInterfaceTest object and call the echoString() method and it will return the String value you typed in the NativeInterfaceTest.c source code file. Hopefully this will save you the brain damage I endured trying to figure all this out on my own. Good luck and happy coding!

    Read the article

  • Database platform migration from Windows-32bit to Linux-64bit

    - by [email protected]
    We have a customer which have all they core business database on RAC over Windows OS. Last year they were affected by a virus that destroyed the registry and all their RAC environments were "OUT OF ORDER", the result, thousand people on vacation for a day.They were distrustful about Linux and after came an agreement to migrate their Enterprise Manager from Windows to Linux (OMS and Repository). How we did demonstrate how powerful and easy is RMAN to migrate databases across platforms.Fist of check of target platform is available from sourceSQL> select platform_name from v$db_transportable_platform;PLATFORM_NAME-----------------------------------------------------------Microsoft Windows IA (32-bit)Linux IA (32-bit)HP Tru64 UNIXLinux IA (64-bit)HP Open VMSMicrosoft Windows IA (64-bit)Linux 64-bit for AMDMicrosoft Windows 64-bit for AMDSolaris Operating System (x86)Check database object as directories that can change across platforms, also check external tables.Startup source database in read only modeRun the following RMAN ScriptRMAN> connect target / RMAN> convert database on target platform convert script 'c:/temp/convert_grid.rman'transport script 'c:/TEMP/transporta_grid.sql' new database 'gridbd' format 'c:/temp/gridmydb%U' db_file_name_convert 'C:\oracle\oradata\grid','/oracle/gridbd/data2/data';(Notice tha path change on db_file_name_convert)Move from source to target:PfileNew scriptsexternal table filesbfilesdata filesCheck pfile, and ensure that the paths are OKCreate temporary control file to connect rmanExecute the RMAN scriptRMAN> connect target / RMAN> @/home/oracle/pboixeda/win2lnx.rmanShutdown the instance and remove temporary control filesRecreate controlfile/s, take care about the used paths.Execute the transport script, transporta_grid.sqlDue we were moving from a 32-bit architecture to a 64-bit architecture, there is bug reported in 386990.1 note, we had to recreate OLAP , check the note for more details. Alter or Recreate all necessary objects Launch utlrpAfter this experience with Linux they are on the way to migrate all their RAC from 10gR2 on Windows to 11gR2 Linux 64 bit.Hope it helps

    Read the article

  • Optimizing Solaris 11 SHA-1 on Intel Processors

    - by danx
    SHA-1 is a "hash" or "digest" operation that produces a 160 bit (20 byte) checksum value on arbitrary data, such as a file. It is intended to uniquely identify text and to verify it hasn't been modified. Max Locktyukhin and others at Intel have improved the performance of the SHA-1 digest algorithm using multiple techniques. This code has been incorporated into Solaris 11 and is available in the Solaris Crypto Framework via the libmd(3LIB), the industry-standard libpkcs11(3LIB) library, and Solaris kernel module sha1. The optimized code is used automatically on systems with a x86 CPU supporting SSSE3 (Intel Supplemental SSSE3). Intel microprocessor architectures that support SSSE3 include Nehalem, Westmere, Sandy Bridge microprocessor families. Further optimizations are available for microprocessors that support AVX (such as Sandy Bridge). Although SHA-1 is considered obsolete because of weaknesses found in the SHA-1 algorithm—NIST recommends using at least SHA-256, SHA-1 is still widely used and will be with us for awhile more. Collisions (the same SHA-1 result for two different inputs) can be found with moderate effort. SHA-1 is used heavily though in SSL/TLS, for example. And SHA-1 is stronger than the older MD5 digest algorithm, another digest option defined in SSL/TLS. Optimizations Review SHA-1 operates by reading an arbitrary amount of data. The data is read in 512 bit (64 byte) blocks (the last block is padded in a specific way to ensure it's a full 64 bytes). Each 64 byte block has 80 "rounds" of calculations (consisting of a mixture of "ROTATE-LEFT", "AND", and "XOR") applied to the block. Each round produces a 32-bit intermediate result, called W[i]. Here's what each round operates: The first 16 rounds, rounds 0 to 15, read the 512 bit block 32 bits at-a-time. These 32 bits is used as input to the round. The remaining rounds, rounds 16 to 79, use the results from the previous rounds as input. Specifically for round i it XORs the results of rounds i-3, i-8, i-14, and i-16 and rotates the result left 1 bit. The remaining calculations for the round is a series of AND, XOR, and ROTATE-LEFT operators on the 32-bit input and some constants. The 32-bit result is saved as W[i] for round i. The 32-bit result of the final round, W[79], is the SHA-1 checksum. Optimization: Vectorization The first 16 rounds can be vectorized (computed in parallel) because they don't depend on the output of a previous round. As for the remaining rounds, because of step 2 above, computing round i depends on the results of round i-3, W[i-3], one can vectorize 3 rounds at-a-time. Max Locktyukhin found through simple factoring, explained in detail in his article referenced below, that the dependencies of round i on the results of rounds i-3, i-8, i-14, and i-16 can be replaced instead with dependencies on the results of rounds i-6, i-16, i-28, and i-32. That is, instead of initializing intermediate result W[i] with: W[i] = (W[i-3] XOR W[i-8] XOR W[i-14] XOR W[i-16]) ROTATE-LEFT 1 Initialize W[i] as follows: W[i] = (W[i-6] XOR W[i-16] XOR W[i-28] XOR W[i-32]) ROTATE-LEFT 2 That means that 6 rounds could be vectorized at once, with no additional calculations, instead of just 3! This optimization is independent of Intel or any other microprocessor architecture, although the microprocessor has to support vectorization to use it, and exploits one of the weaknesses of SHA-1. Optimization: SSSE3 Intel SSSE3 makes use of 16 %xmm registers, each 128 bits wide. The 4 32-bit inputs to a round, W[i-6], W[i-16], W[i-28], W[i-32], all fit in one %xmm register. The following code snippet, from Max Locktyukhin's article, converted to ATT assembly syntax, computes 4 rounds in parallel with just a dozen or so SSSE3 instructions: movdqa W_minus_04, W_TMP pxor W_minus_28, W // W equals W[i-32:i-29] before XOR // W = W[i-32:i-29] ^ W[i-28:i-25] palignr $8, W_minus_08, W_TMP // W_TMP = W[i-6:i-3], combined from // W[i-4:i-1] and W[i-8:i-5] vectors pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) movdqa W, W_TMP // 4 dwords in W are rotated left by 2 psrld $30, W // rotate left by 2 W = (W >> 30) | (W << 2) pslld $2, W_TMP por W, W_TMP movdqa W_TMP, W // four new W values W[i:i+3] are now calculated paddd (K_XMM), W_TMP // adding 4 current round's values of K movdqa W_TMP, (WK(i)) // storing for downstream GPR instructions to read A window of the 32 previous results, W[i-1] to W[i-32] is saved in memory on the stack. This is best illustrated with a chart. Without vectorization, computing the rounds is like this (each "R" represents 1 round of SHA-1 computation): RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR With vectorization, 4 rounds can be computed in parallel: RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR Optimization: AVX The new "Sandy Bridge" microprocessor architecture, which supports AVX, allows another interesting optimization. SSSE3 instructions have two operands, a input and an output. AVX allows three operands, two inputs and an output. In many cases two SSSE3 instructions can be combined into one AVX instruction. The difference is best illustrated with an example. Consider these two instructions from the snippet above: pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) With AVX they can be combined in one instruction: vpxor W_minus_16, W, W_TMP // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) This optimization is also in Solaris, although Sandy Bridge-based systems aren't widely available yet. As an exercise for the reader, AVX also has 256-bit media registers, %ymm0 - %ymm15 (a superset of 128-bit %xmm0 - %xmm15). Can %ymm registers be used to parallelize the code even more? Optimization: Solaris-specific In addition to using the Intel code described above, I performed other minor optimizations to the Solaris SHA-1 code: Increased the digest(1) and mac(1) command's buffer size from 4K to 64K, as previously done for decrypt(1) and encrypt(1). This size is well suited for ZFS file systems, but helps for other file systems as well. Optimized encode functions, which byte swap the input and output data, to copy/byte-swap 4 or 8 bytes at-a-time instead of 1 byte-at-a-time. Enhanced the Solaris mdb(1) and kmdb(1) debuggers to display all 16 %xmm and %ymm registers (mdb "$x" command). Previously they only displayed the first 8 that are available in 32-bit mode. Can't optimize if you can't debug :-). Changed the SHA-1 code to allow processing in "chunks" greater than 2 Gigabytes (64-bits) Performance I measured performance on a Sun Ultra 27 (which has a Nehalem-class Xeon 5500 Intel W3570 microprocessor @3.2GHz). Turbo mode is disabled for consistent performance measurement. Graphs are better than words and numbers, so here they are: The first graph shows the Solaris digest(1) command before and after the optimizations discussed here, contained in libmd(3LIB). I ran the digest command on a half GByte file in swapfs (/tmp) and execution time decreased from 1.35 seconds to 0.98 seconds. The second graph shows the the results of an internal microbenchmark that uses the Solaris libpkcs11(3LIB) library. The operations are on a 128 byte buffer with 10,000 iterations. The results show operations increased from 320,000 to 416,000 operations per second. Finally the third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. The results show for 1 kernel thread, operations increased from 410 to 600 MBytes/second. For 8 kernel threads, operations increase from 1540 to 1940 MBytes/second. Availability This code is in Solaris 11 FCS. It is available in the 64-bit libmd(3LIB) library for 64-bit programs and is in the Solaris kernel. You must be running hardware that supports Intel's SSSE3 instructions (for example, Intel Nehalem, Westmere, or Sandy Bridge microprocessor architectures). The easiest way to determine if SSSE3 is available is with the isainfo(1) command. For example, nehalem $ isainfo -v $ isainfo -v 64-bit amd64 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu If the output also shows "avx", the Solaris executes the even-more optimized 3-operand AVX instructions for SHA-1 mentioned above: sandybridge $ isainfo -v 64-bit amd64 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this code. Solaris libraries and kernel automatically determine if it's running on SSSE3 or AVX-capable machines and execute the correctly-tuned code for that microprocessor. Summary The Solaris 11 Crypto Framework, via the sha1 kernel module and libmd(3LIB) and libpkcs11(3LIB) libraries, incorporated a useful SHA-1 optimization from Intel for SSSE3-capable microprocessors. As with other Solaris optimizations, they come automatically "under the hood" with the current Solaris release. References "Improving the Performance of the Secure Hash Algorithm (SHA-1)" by Max Locktyukhin (Intel, March 2010). The source for these SHA-1 optimizations used in Solaris "SHA-1", Wikipedia Good overview of SHA-1 FIPS 180-1 SHA-1 standard (FIPS, 1995) NIST Comments on Cryptanalytic Attacks on SHA-1 (2005, revised 2006)

    Read the article

  • External usb 3.0 hard drive is not recognised when plugged into usb 3 port (ubuntu natty 64 bit).

    - by kimangroo
    I have an Iomega Prestige Portable External Hard Drive 1TB USB 3.0. It works fine on windows 7 as a usb 3.0 drive. It isn't detected on ubuntu natty 64bit, 2.6.38-8-generic. fdisk -l cannot see it at all: Disk /dev/sda: 500.1 GB, 500107862016 bytes 255 heads, 63 sectors/track, 60801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x1bed746b Device Boot Start End Blocks Id System /dev/sda1 1 1689 13560832 27 Unknown /dev/sda2 * 1689 1702 102400 7 HPFS/NTFS /dev/sda3 1702 19978 146805760 7 HPFS/NTFS /dev/sda4 19978 60802 327914497 5 Extended /dev/sda5 25555 60802 283120640 7 HPFS/NTFS /dev/sda6 19978 23909 31571968 83 Linux /dev/sda7 23909 25555 13218816 82 Linux swap / Solaris Partition table entries are not in disk order lsusb can see it: Bus 003 Device 003: ID 059b:0070 Iomega Corp. Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 002 Device 004: ID 05fe:0011 Chic Technology Corp. Browser Mouse Bus 002 Device 003: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode) Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 005: ID 0489:e00f Foxconn / Hon Hai Bus 001 Device 004: ID 0c45:64b5 Microdia Bus 001 Device 003: ID 08ff:168f AuthenTec, Inc. Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub And dmesg | grep -i xhci (I may have unplugged the drive and plugged it back in again after booting): [ 1.659060] pci 0000:04:00.0: xHCI HW did not halt within 2000 usec status = 0x0 [ 11.484971] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 [ 11.484997] xhci_hcd 0000:04:00.0: setting latency timer to 64 [ 11.485002] xhci_hcd 0000:04:00.0: xHCI Host Controller [ 11.485064] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 [ 11.636149] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 [ 11.636241] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X [ 11.636246] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X [ 11.636251] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X [ 11.636256] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X [ 11.636261] xhci_hcd 0000:04:00.0: irq 47 for MSI/MSI-X [ 11.639654] xHCI xhci_add_endpoint called for root hub [ 11.639655] xHCI xhci_check_bandwidth called for root hub [ 11.956366] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 2 [ 12.001073] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.007059] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.012932] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.018922] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.049139] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.056754] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.131607] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 12.179717] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.686876] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 12.687058] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 12.687152] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 43.330737] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 2 [ 43.422579] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 43.422658] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af00 [ 43.422665] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af40 [ 43.422671] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af80 [ 43.422677] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669afc0 [ 43.531159] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 125.160248] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.766466] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 3 [ 903.807789] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.813530] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.819400] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.825104] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.855067] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862314] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862597] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.913211] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 904.424416] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 904.424599] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 904.424700] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 935.139021] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 3 [ 935.226075] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 935.226140] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b00 [ 935.226148] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b40 [ 935.226153] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b80 [ 935.226159] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186bc0 [ 935.343339] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst I thought it might be that the firmware wasn't compatible with linux or something, but when booting a live image of partedmagic, (2.6.38.4-pmagic), the drive was detected fine, I could mount it and got usb 3.0 speeds (at least they double the speeds I got from plugging same drive in usb 2 ports). dmesg in partedmagic did say something about no SuperSpeed endpoint which was an error I saw in a previous dmesg of ubuntu: Jun 27 15:49:02 (none) user.info kernel: [ 2.978743] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 Jun 27 15:49:02 (none) user.debug kernel: [ 2.978771] xhci_hcd 0000:04:00.0: setting latency timer to 64 Jun 27 15:49:02 (none) user.info kernel: [ 2.978781] xhci_hcd 0000:04:00.0: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 2.978856] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 Jun 27 15:49:02 (none) user.info kernel: [ 3.089458] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 Jun 27 15:49:02 (none) user.debug kernel: [ 3.089541] xhci_hcd 0000:04:00.0: irq 42 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089544] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089546] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089548] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089550] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X Jun 27 15:49:02 (none) user.warn kernel: [ 3.092857] usb usb3: No SuperSpeed endpoint companion for config 1 interface 0 altsetting 0 ep 129: using minimum values Jun 27 15:49:02 (none) user.info kernel: [ 3.092864] usb usb3: New USB device found, idVendor=1d6b, idProduct=0003 Jun 27 15:49:02 (none) user.info kernel: [ 3.092866] usb usb3: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Jun 27 15:49:02 (none) user.info kernel: [ 3.092867] usb usb3: Product: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 3.092869] usb usb3: Manufacturer: Linux 2.6.38.4-pmagic xhci_hcd Jun 27 15:49:02 (none) user.info kernel: [ 3.092870] usb usb3: SerialNumber: 0000:04:00.0 Jun 27 15:49:02 (none) user.debug kernel: [ 3.092961] xHCI xhci_add_endpoint called for root hub Jun 27 15:49:02 (none) user.debug kernel: [ 3.092963] xHCI xhci_check_bandwidth called for root hub Well I have no idea what's going wrong, and I haven't had much luck from google and the forums so far. A number of unanswered threads with people with similar error messages and problems only. Hopefully someone here can help or point me in the right direction?!

    Read the article

  • How to install the latest version of google earth on ubuntu 12.10 64-bit?

    - by user114769
    Chris here with a huge problem with the Google earth latest version. Gosh.. whenever I try to lunch the app this comes out. I'v Tried this web site nothing worked: (THANK YOU SO MUCH FOR EVEN READING THIS. MAY YOU GUYS HAVE A NICE DAY. christopher@christopher-E4300:~$ google-earth Google Earth has caught signal 11. We apologize for the inconvenience, but Google Earth has crashed. This is a bug in the program, and should never happen under normal circumstances. A bug report and debugging data have been written to this text file: /home/christopher/.googleearth/crashlogs/crashlog-50cbd67e.txt Please include this file if you submit a bug report to Google. https://help.ubuntu.com/community/GoogleEarth#Installing_the_.deb_file_downloaded_from_the_Google_Earth_Website Here is the content of /home/christopher/.googleearth/crashlogs/crashlog-50cbd67e.txt Major Version 7 Minor Version 0 Build Number 0001 Build Date Oct 29 2012 Build Time 19:13:39 OS Type 3 OS Major Version 3 OS Minor Version 5 OS Build Version 0 OS Patch Version 0 Crash Signal 11 Crash Time 1355535998 Up Time 0.789556 Stacktrace from glibc: ./libgoogleearth_free.so(+0x1e9cfb)[0xf757dcfb] ./libgoogleearth_free.so(+0x1e9f43)[0xf757df43] [0xf7726400]

    Read the article

< Previous Page | 84 85 86 87 88 89 90 91 92 93 94 95  | Next Page >