Search Results

Search found 10563 results on 423 pages for 'complex numbers'.

Page 88/423 | < Previous Page | 84 85 86 87 88 89 90 91 92 93 94 95  | Next Page >

  • How to model and handle presentation DTO's to abstract from complicated domain model?

    - by arrages
    Hi I am developing an application that needs to work with a complex domain model using Hibernate. This application uses Spring MVC and using the domain objects in the presentation layer is very messy so I think I should use DTO's that go to and from my service layer so that these match what I need in my views. Now lets assume I have a CarLease entity whose properties are not simple java primitives but it's composed with other entities like Make, Model, etc public class CarLease { private Make make; Private Model model; . . . } most properties are in this fashion and they are selectable using drop down selects on the jsp view, each will post back an ID to the controller. Now considering some standard use cases: create, edit, display How would you go about modeling the presentation DTO's to be used as form backing objects and communication between presentation and service layers?? Would you create a different DTO for each case (create, edit, display), would you make DTO's for the complex attributes? if so where would you translate the ID to entity? how and where would you handle validation, DTO/Domain assembly, what would you return from service layer methods? (create, edit, get) As you can see, I now I will benefit by separating my view from the domain objects (very complex with lots of stuff I don't need.) but I am having a hard time finding any real world examples and best practices for this. I need some architecture guidance from top to bottom, please keep in mind I will use Spring MVC in case that may leverage on your anwser. thanks in advance.

    Read the article

  • Algorithm to determine if array contains n...n+m?

    - by Kyle Cronin
    I saw this question on Reddit, and there were no positive solutions presented, and I thought it would be a perfect question to ask here. This was in a thread about interview questions: Write a method that takes an int array of size m, and returns (True/False) if the array consists of the numbers n...n+m-1, all numbers in that range and only numbers in that range. The array is not guaranteed to be sorted. (For instance, {2,3,4} would return true. {1,3,1} would return false, {1,2,4} would return false. The problem I had with this one is that my interviewer kept asking me to optimize (faster O(n), less memory, etc), to the point where he claimed you could do it in one pass of the array using a constant amount of memory. Never figured that one out. Along with your solutions please indicate if they assume that the array contains unique items. Also indicate if your solution assumes the sequence starts at 1. (I've modified the question slightly to allow cases where it goes 2, 3, 4...) edit: I am now of the opinion that there does not exist a linear in time and constant in space algorithm that handles duplicates. Can anyone verify this? The duplicate problem boils down to testing to see if the array contains duplicates in O(n) time, O(1) space. If this can be done you can simply test first and if there are no duplicates run the algorithms posted. So can you test for dupes in O(n) time O(1) space?

    Read the article

  • Confusion with a while statement evaluating if a number is triangular

    - by Darkkurama
    I've been having troubles trying to figure out how to solve a function. I've been assigned the development of a little programme which tells if a number is "triangular" (a number is triangular when the addition of certain consecutive numbers in the [1,n] interval is n. Following the definition, the number 10 is triangular, because in the [1,10] interval, 1+2+3+4=10). I've coded this so far: class TriangularNumber{ boolean numTriangular(int n) { boolean triangular = false; int i = n; while(n>=0 && triangular){ //UE06 is a class which contains the function "f0", which makes the addition of all the numbers in a determined interval UE06 p = new UE06(); if ((p.f0(1, i))==n) triangular = true; else i=i-1; } return triangular; } boolean testTriangular = numTriangular(10) == true && numTriangular(7) == false && numTriangular(6) == true; public static void main(String[] args){ TriangularNumber p = new TriangularNumber(); System.out.println("testTriangular = " + p.testTriangular); } } According to those boolean tests I made, the function is wrong. As I see the function, it goes like this: I state that the input number in the initial state isn't triangular (triangular=false) and i=n (determining the interval [1,i] where the function is going to be evaluated While n is greater or equals 0 and the number isn't triangular, the loop starts The loop goes like this: if the addition of all the numbers in the [1,i] interval is n, the number is triangular, causing the loop to end. If that statement is false, i goes from i to (i-1), starting the loop again with that particular interval, and so on till the addition is n. I can't spot the error in my "algorithm", any advice? Thanks!

    Read the article

  • What data stucture should I use for BigInt class

    - by user1086004
    I would like to implement a BigInt class which will be able to handle really big numbers. I want only to add and multiply numbers, however the class should also handle negative numbers. I wanted to represent the number as a string, but there is a big overhead with converting string to int and back for adding. I want to implement addition as on the high school, add corresponding order and if the result is bigger than 10, add the carry to next order. Then I thought that it would be better to handle it as a array of unsigned long long int and keep the sign separated by bool. With this I'm afraid of size of the int, as C++ standard as far as I know guarantees only that int < float < double. Correct me if I'm wrong. So when I reach some number I should move in array forward and start adding number to the next array position. Is there any data structure that is appropriate or better for this? Thanks in advance.

    Read the article

  • WPF binding comboboxes to parent- child model

    - by PaulB
    I've got a model with a few tiers in it - something along the lines of ... Company Employees Phone numbers So I've got a ListBox showing all the companys in the model. Each ListBoxItem then contains two comboboxes ... one for employees, one for phone numbers. I can successfully get the employee combo to bind correctly and show the right people, but I'd like the phone combo to show the numbers for the selected employee. I'm just setting the DataContext of the ListBox to the model above and using the following data template for each item <DataTemplate x:Key="CompanyBody"> <StackPanel Orientation="Horizontal"> <Label Content="{Binding Path=CompanyName}"></Label> <ComboBox Name="EmployeesCombo" ItemsSource="{Binding Path=Company.Employees}"></ComboBox> <!-- What goes here --> <ComboBox DataContext="???" ItemsSource="??" ></ComboBox> </StackPanel> </DataTemplate> I've tried (naively) <ComboBox ItemsSource="{Binding Path=Company.Employees.PhoneNumbers}" ></ComboBox> and <ComboBox DataContext="EmployeesCombo.SelectedValue" ItemsSource="{Binding Path=PhoneNumbers}" ></ComboBox> and all other manner of combinations ...

    Read the article

  • How to easily apply a function to a collection in C++

    - by Jesse Beder
    I'm storing images as arrays, templated based on the type of their elements, like Image<unsigned> or Image<float>, etc. Frequently, I need to perform operations on these images; for example, I might need to add two images, or square an image (elementwise), and so on. All of the operations are elementwise. I'd like get as close as possible to writing things like: float Add(float a, float b) { return a+b; } Image<float> result = Add(img1, img2); and even better, things like complex ComplexCombine(float a, float b) { return complex(a, b); } Image<complex> result = ComplexCombine(img1, img2); or struct FindMax { unsigned currentMax; FindMax(): currentMax(0) {} void operator(unsigned a) { if(a > currentMax) currentMax = a; } }; FindMax findMax; findMax(img); findMax.currentMax; // now contains the maximum value of 'img' Now, I obviously can't exactly do that; I've written something so that I can call: Image<float> result = Apply(img1, img2, Add); but I can't seem to figure out a generic way for it to detect the return type of the function/function object passed, so my ComplexCombine example above is out; also, I have to write a new one for each number of arguments I'd like to pass (which seems inevitable). Any thoughts on how to achieve this (with as little boilerplate code as possible)?

    Read the article

  • Read large amount of data from file in Java

    - by Crozin
    Hello I've got text file that contains 1 000 002 numbers in following formation: 123 456 1 2 3 4 5 6 .... 999999 100000 Now I need to read that data and allocate it to int variables (the very first two numbers) and all the rest (1 000 000 numbers) to an array int[]. It's not a hard task, but - it's horrible slow. My first attempt was java.util.Scanner: Scanner stdin = new Scanner(new File("./path")); int n = stdin.nextInt(); int t = stdin.nextInt(); int array[] = new array[n]; for (int i = 0; i < n; i++) { array[i] = stdin.nextInt(); } It works as excepted but it takes about 7500 ms to execute. I need to fetch that data in up to several hundred of milliseconds. Then I tried java.io.BufferedReader: Using BufferedReader.readLine() and String.split() I got the same results in about 1700 ms, but it's still too many. How can I read that amount of data in less that 1 second? The final result should be equal to: int n = 123; int t = 456; int array[] = { 1, 2, 3, 4, ..., 999999, 100000 };

    Read the article

  • Tracking a fragment of a file in two places with git

    - by mabraham
    Hi, I have code such as void myfunc() { introduction(); while(condition()) { complex(); loop(); interior(); code(); } cleanup(); } which I wish to duplicate into two versions, viz: void myfuncA() { introduction(); minorchangeA(); while(condition()) { complex(); loop(); interior(); code(); } cleanup(); } void myfuncB() { introduction(); minorchangeB(); while(condition()) { complex(); modifiedB(); loop(); interior(); code(); } cleanup(); extracleanupB(); } git claims to track content rather than files, so do I need to tell it that there are chunks here that are common to both myfuncA and myfuncB so that when merging with upstream changes to myfunc that those changes should propagate to both myfuncA and myfuncB? If so, how? The code could be written so that myfuncAB did the correct thing at each point by testing for condition A or B, but that could seriously hinder readability or performance.

    Read the article

  • What are your best practices for ensuring the correctness of the reports from SQL?

    - by snezmqd4
    Part of my work involves creating reports and data from SQL Server to be used as information for decision. The majority of the data is aggregated, like inventory, sales and costs totals from departments, and other dimensions. When I am creating the reports, and more specifically, I am developing the SELECTs to extract the aggregated data from the OLTP database, I worry about mistaking a JOIN or a GROUP BY, for example, returning incorrect results. I try to use some "best practices" to prevent me for "generating" wrong numbers: When creating an aggregated data set, always explode this data set without the aggregation and look for any obvious error. Export the exploded data set to Excel and compare the SUM(), AVG(), etc, from SQL Server and Excel. Involve the people who would use the information and ask for some validation (ask people to help to identify mistakes on the numbers). Never deploy those things in the afternoon - when possible, try to take a look at the T-SQL on the next morning with a refreshed mind. I had many bugs corrected using this simple procedure. Even with those procedures, I always worry about the numbers. What are your best practices for ensuring the correctness of the reports?

    Read the article

  • Matching up text in 2 different columns in a table?

    - by user297663
    Hey guys, I have recently been working on a pastebin script (for fun) and I've come across a problem that I can't seem to solve in CSS. I have a table with 2 columns. 1 column is used to display the line numbers and the 2nd column is used to display the code. I can't seem to get the numbers match up with the lines in the code so it looks all weird (example: www.zamnproductions.com/paste.php?id=32). Take a look at my code (the snippet): <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> td.num { vertical-align: top; } td.numbers { display:table-cell; padding:1px; vertical-align: top; line-height:25px; } td.code { display:table-cell; vertical-align: top; line-height:20px; } #hide { display:none; } #leftcontent { position: absolute; left:10px; top:119px; width:200px; background:#fff; border:0px solid #000; } #centercontent { background:#fff; margin-left: 199px; margin-right:199px; border:0px solid #000; voice-family: "\"}\""; voice-family: inherit; margin-left: 201px; margin-right:201px; } htmlbody #centercontent { margin-left: 202px; margin-right:201px; } Here is the part where the table is made: listNumbers($_GET['id']); ? viewCode($_GET['id']); ?

    Read the article

  • Is there a more concise regular expression to accomplish this task?

    - by mpminnich
    First off, sorry for the lame title, but I couldn't think of a better one. I need to test a password to ensure the following: Passwords must contain at least 3 of the following: upper case letters lower case letters numbers special characters Here's what I've come up with (it works, but I'm wondering if there is a better way to do this): Dim lowerCase As New Regex("[a-z]") Dim upperCase As New Regex("[A-Z]") Dim numbers As New Regex("\d") Dim special As New Regex("[\\\.\+\*\?\^\$\[\]\(\)\|\{\}\/\'\#]") Dim count As Int16 = 0 If Not lowerCase.IsMatch(txtUpdatepass.Text) Then count += 1 End If If Not upperCase.IsMatch(txtUpdatepass.Text) Then count += 1 End If If Not numbers.IsMatch(txtUpdatepass.Text) Then count += 1 End If If Not special.IsMatch(txtUpdatepass.Text) Then count += 1 End If If at least 3 of the criteria have not been met, I handle it. I'm not well versed in regular expressions and have been reading numerous tutorials on the web. Is there a way to combine all 4 regexes into one? But I guess doing that would not allow me to check if at least 3 of the criteria are met. On a side note, is there a site that has an exhaustive list of all characters that would need to be escaped in the regex (those that have special meaning - eg. $, ^, etc.)? As always, TIA. I can't express enough how awesome I think this site is.

    Read the article

  • C/C++ Bit Array or Bit Vector

    - by MovieYoda
    Hi, I am learning C/C++ programming & have encountered the usage of 'Bit arrays' or 'Bit Vectors'. Am not able to understand their purpose? here are my doubts - Are they used as boolean flags? Can one use int arrays instead? (more memory of course, but..) What's this concept of Bit-Masking? If bit-masking is simple bit operations to get an appropriate flag, how do one program for them? is it not difficult to do this operation in head to see what the flag would be, as apposed to decimal numbers? I am looking for applications, so that I can understand better. for Eg - Q. You are given a file containing integers in the range (1 to 1 million). There are some duplicates and hence some numbers are missing. Find the fastest way of finding missing numbers? For the above question, I have read solutions telling me to use bit arrays. How would one store each integer in a bit?

    Read the article

  • generate k distinct number less then n

    - by davit-datuashvili
    hi i have following question task is this generate k distinct positive numbers less then n without duplication my method is following first create array size of k where we should write these numbers int a[]=new int[k]; //now i am going to cretae another array where i check if (at given number position is 1 then generate number again else put this number in a array and continue cycle i put here a piece of code and explanations int a[]=new int[k]; int t[]=new int[n+1]; Random r=new Random(); for (int i==0;i<t.length;i++){ t[i]=0;//initialize it to zero } int m=0;//initialize it also for (int i=0;i<a.length;i++){ m=r.nextInt(n);//random element between 0 and n if (t[m]==1){ //i have problem with this i want in case of duplication element occurs repeats this steps afain until there will be different number else{ t[m]=1; x[i]=m; } } so i fill concret my problem if t[m]==1 it means that this element occurs already so i want to generate new number but problem is that number of generated numbers will not be k beacuse if i==0 and occurs duplicate element and we write continue then it will switch at i==1 i need like goto for repeat step or for (int i=0;i<x.length;i++){ loop: m=r.nextInt(n); if ( x[m]==1){ continue loop; } else{ x[m]=1; a[i]=m; continue;//continue next step at i=1 and so on } } i need this code in java please help

    Read the article

  • Fastest method to define whether a number is a triangular number

    - by psihodelia
    A triangular number is the sum of the n natural numbers from 1 to n. What is the fastest method to find whether a given positive integer number is a triangular one? I suppose, there must be a hidden pattern in a binary representation of such numbers (like if you need to find whether a number is even/odd you check its least significant bit). Here is a cut of the first 1200th up to 1300th triangular numbers, you can easily see a bit-pattern here (if not, try to zoom out): (720600, '10101111111011011000') (721801, '10110000001110001001') (723003, '10110000100000111011') (724206, '10110000110011101110') (725410, '10110001000110100010') (726615, '10110001011001010111') (727821, '10110001101100001101') (729028, '10110001111111000100') (730236, '10110010010001111100') (731445, '10110010100100110101') (732655, '10110010110111101111') (733866, '10110011001010101010') (735078, '10110011011101100110') (736291, '10110011110000100011') (737505, '10110100000011100001') (738720, '10110100010110100000') (739936, '10110100101001100000') (741153, '10110100111100100001') (742371, '10110101001111100011') (743590, '10110101100010100110') (744810, '10110101110101101010') (746031, '10110110001000101111') (747253, '10110110011011110101') (748476, '10110110101110111100') (749700, '10110111000010000100') (750925, '10110111010101001101') (752151, '10110111101000010111') (753378, '10110111111011100010') (754606, '10111000001110101110') (755835, '10111000100001111011') (757065, '10111000110101001001') (758296, '10111001001000011000') (759528, '10111001011011101000') (760761, '10111001101110111001') (761995, '10111010000010001011') (763230, '10111010010101011110') (764466, '10111010101000110010') (765703, '10111010111100000111') (766941, '10111011001111011101') (768180, '10111011100010110100') (769420, '10111011110110001100') (770661, '10111100001001100101') (771903, '10111100011100111111') (773146, '10111100110000011010') (774390, '10111101000011110110') (775635, '10111101010111010011') (776881, '10111101101010110001') (778128, '10111101111110010000') (779376, '10111110010001110000') (780625, '10111110100101010001') (781875, '10111110111000110011') (783126, '10111111001100010110') (784378, '10111111011111111010') (785631, '10111111110011011111') (786885, '11000000000111000101') (788140, '11000000011010101100') (789396, '11000000101110010100') (790653, '11000001000001111101') (791911, '11000001010101100111') (793170, '11000001101001010010') (794430, '11000001111100111110') (795691, '11000010010000101011') (796953, '11000010100100011001') (798216, '11000010111000001000') (799480, '11000011001011111000') (800745, '11000011011111101001') (802011, '11000011110011011011') (803278, '11000100000111001110') (804546, '11000100011011000010') (805815, '11000100101110110111') (807085, '11000101000010101101') (808356, '11000101010110100100') (809628, '11000101101010011100') (810901, '11000101111110010101') (812175, '11000110010010001111') (813450, '11000110100110001010') (814726, '11000110111010000110') (816003, '11000111001110000011') (817281, '11000111100010000001') (818560, '11000111110110000000') (819840, '11001000001010000000') (821121, '11001000011110000001') (822403, '11001000110010000011') (823686, '11001001000110000110') (824970, '11001001011010001010') (826255, '11001001101110001111') (827541, '11001010000010010101') (828828, '11001010010110011100') (830116, '11001010101010100100') (831405, '11001010111110101101') (832695, '11001011010010110111') (833986, '11001011100111000010') (835278, '11001011111011001110') (836571, '11001100001111011011') (837865, '11001100100011101001') (839160, '11001100110111111000') (840456, '11001101001100001000') (841753, '11001101100000011001') (843051, '11001101110100101011') (844350, '11001110001000111110') For example, can you also see a rotated normal distribution curve, represented by zeros between 807085 and 831405?

    Read the article

  • Iterating over a String to check for a number and printing out the String value if it doesn't have a number

    - by wheelerlc64
    I have set up my function for checking for a number in a String, and printing out that String if it has no numbers, and putting up an error message if it does. Here is my code: public class NumberFunction { public boolean containsNbr(String str) { boolean containsNbr = false; if(str != null && !str.isEmpty()) { for(char c : str.toCharArray()) { if(containsNbr = Character.isDigit(c)) { System.out.println("Can't contain numbers in the word."); break; } else { System.out.println(str); } } } return containsNbr; } } import com.imports.validationexample.function.NumberFunction; public class Main { public static void main(String[] args) { NumberFunction nf = new NumberFunction(); System.out.println(nf.containsNbr("bill4")); } } I am trying to get it to print out the result to the console, but the result keeps printing multiple times and prints the boolean value, which I do not want, something like this: bill4 bill4 bill4 bill4 Can't contain numbers in the word. true Why is this happening? I've tried casting but that hasn't worked out either. Any help would be much appreciated.

    Read the article

  • Find existence of number in a sorted list in constant time? (Interview question)

    - by Rich
    I'm studying for upcoming interviews and have encountered this question several times (written verbatim) Find or determine non existence of a number in a sorted list of N numbers where the numbers range over M, M N and N large enough to span multiple disks. Algorithm to beat O(log n); bonus points for constant time algorithm. First of all, I'm not sure if this is a question with a real solution. My colleagues and I have mused over this problem for weeks and it seems ill formed (of course, just because we can't think of a solution doesn't mean there isn't one). A few questions I would have asked the interviewer are: Are there repeats in the sorted list? What's the relationship to the number of disks and N? One approach I considered was to binary search the min/max of each disk to determine the disk that should hold that number, if it exists, then binary search on the disk itself. Of course this is only an order of magnitude speedup if the number of disks is large and you also have a sorted list of disks. I think this would yield some sort of O(log log n) time. As for the M N hint, perhaps if you know how many numbers are on a disk and what the range is, you could use the pigeonhole principle to rule out some cases some of the time, but I can't figure out an order of magnitude improvement. Also, "bonus points for constant time algorithm" makes me a bit suspicious. Any thoughts, solutions, or relevant history of this problem?

    Read the article

  • How can I put back a character that I've read when I detect it's the start of a new row?

    - by gcc
    char nm; int i=0; double thelow, theupp; double numbers[200]; for(i=0;i<4;++i) { { char nm; double thelow,theupp; /*after erased ,created again*/ scanf("%c %lf %lf", &nm, &thelow, &theupp); for (k = 0; ; ++k) ; { scanf("%lf",numbers[k]); if(numbers[k]=='\n') break; } /*calling function and sending data(nm,..) to it*/ } /*after } is seen (nm ..) is erased*/ ; } I want say compiler : hey my dear code read only i-th row,dont touch characters at placed in next line. because characters at placed in next line is token after i increased by 1 and nm ,thelow,theupp is being zero or erased after then again created. how can I do ? input; D -1.5 0.5 .012 .025 .05 .1 .1 .1 .025 .012 0 0 0 .012 .025 .1 .2 .1 .05 .039 .025 .025 B 1 3 .117 .058 .029 .015 .007 .007 .007 .015 .022 .029 .036 .044 .051 .058 .066 .073 .080 .088 .095 .103

    Read the article

  • Printing the results in the original order

    - by Sam
    String[] numbers = new String[] {"3", "4", "s", "a", "c", "h", "i", "n", "t", "e", "n", "d", "u", "l", "k"}; Map<String, Integer> map = new HashMap<String, Integer>(); for (int i = 0; i < numbers.length; i++) { String key = numbers[i]; if (map.containsKey(key)) { int occurrence = map.get(key); occurrence++; map.put(key, occurrence); } else { map.put(key, 1); }// end of if else }// end of for loop Iterator<String> iterator = map.keySet().iterator(); while (iterator.hasNext()) { String key = iterator.next(); int occurrence = map.get(key); System.out.println(key + " occur " + occurrence + " time(s)."); } This program tries to count the number of occurrences of a string. When I execute it I am getting the answer, but the output is not in the original order, it is shuffled. How can I output the strings in the original order?

    Read the article

  • Microsoft and jQuery

    - by Rick Strahl
    The jQuery JavaScript library has been steadily getting more popular and with recent developments from Microsoft, jQuery is also getting ever more exposure on the ASP.NET platform including now directly from Microsoft. jQuery is a light weight, open source DOM manipulation library for JavaScript that has changed how many developers think about JavaScript. You can download it and find more information on jQuery on www.jquery.com. For me jQuery has had a huge impact on how I develop Web applications and was probably the main reason I went from dreading to do JavaScript development to actually looking forward to implementing client side JavaScript functionality. It has also had a profound impact on my JavaScript skill level for me by seeing how the library accomplishes things (and often reviewing the terse but excellent source code). jQuery made an uncomfortable development platform (JavaScript + DOM) a joy to work on. Although jQuery is by no means the only JavaScript library out there, its ease of use, small size, huge community of plug-ins and pure usefulness has made it easily the most popular JavaScript library available today. As a long time jQuery user, I’ve been excited to see the developments from Microsoft that are bringing jQuery to more ASP.NET developers and providing more integration with jQuery for ASP.NET’s core features rather than relying on the ASP.NET AJAX library. Microsoft and jQuery – making Friends jQuery is an open source project but in the last couple of years Microsoft has really thrown its weight behind supporting this open source library as a supported component on the Microsoft platform. When I say supported I literally mean supported: Microsoft now offers actual tech support for jQuery as part of their Product Support Services (PSS) as jQuery integration has become part of several of the ASP.NET toolkits and ships in several of the default Web project templates in Visual Studio 2010. The ASP.NET MVC 3 framework (still in Beta) also uses jQuery for a variety of client side support features including client side validation and we can look forward toward more integration of client side functionality via jQuery in both MVC and WebForms in the future. In other words jQuery is becoming an optional but included component of the ASP.NET platform. PSS support means that support staff will answer jQuery related support questions as part of any support incidents related to ASP.NET which provides some piece of mind to some corporate development shops that require end to end support from Microsoft. In addition to including jQuery and supporting it, Microsoft has also been getting involved in providing development resources for extending jQuery’s functionality via plug-ins. Microsoft’s last version of the Microsoft Ajax Library – which is the successor to the native ASP.NET AJAX Library – included some really cool functionality for client templates, databinding and localization. As it turns out Microsoft has rebuilt most of that functionality using jQuery as the base API and provided jQuery plug-ins of these components. Very recently these three plug-ins were submitted and have been approved for inclusion in the official jQuery plug-in repository and been taken over by the jQuery team for further improvements and maintenance. Even more surprising: The jQuery-templates component has actually been approved for inclusion in the next major update of the jQuery core in jQuery V1.5, which means it will become a native feature that doesn’t require additional script files to be loaded. Imagine this – an open source contribution from Microsoft that has been accepted into a major open source project for a core feature improvement. Microsoft has come a long way indeed! What the Microsoft Involvement with jQuery means to you For Microsoft jQuery support is a strategic decision that affects their direction in client side development, but nothing stopped you from using jQuery in your applications prior to Microsoft’s official backing and in fact a large chunk of developers did so readily prior to Microsoft’s announcement. Official support from Microsoft brings a few benefits to developers however. jQuery support in Visual Studio 2010 means built-in support for jQuery IntelliSense, automatically added jQuery scripts in many projects types and a common base for client side functionality that actually uses what most developers are already using. If you have already been using jQuery and were worried about straying from the Microsoft line and their internal Microsoft Ajax Library – worry no more. With official support and the change in direction towards jQuery Microsoft is now following along what most in the ASP.NET community had already been doing by using jQuery, which is likely the reason for Microsoft’s shift in direction in the first place. ASP.NET AJAX and the Microsoft AJAX Library weren’t bad technology – there was tons of useful functionality buried in these libraries. However, these libraries never got off the ground, mainly because early incarnations were squarely aimed at control/component developers rather than application developers. For all the functionality that these controls provided for control developers they lacked in useful and easily usable application developer functionality that was easily accessible in day to day client side development. The result was that even though Microsoft shipped support for these tools in the box (in .NET 3.5 and 4.0), other than for the internal support in ASP.NET for things like the UpdatePanel and the ASP.NET AJAX Control Toolkit as well as some third party vendors, the Microsoft client libraries were largely ignored by the developer community opening the door for other client side solutions. Microsoft seems to be acknowledging developer choice in this case: Many more developers were going down the jQuery path rather than using the Microsoft built libraries and there seems to be little sense in continuing development of a technology that largely goes unused by the majority of developers. Kudos for Microsoft for recognizing this and gracefully changing directions. Note that even though there will be no further development in the Microsoft client libraries they will continue to be supported so if you’re using them in your applications there’s no reason to start running for the exit in a panic and start re-writing everything with jQuery. Although that might be a reasonable choice in some cases, jQuery and the Microsoft libraries work well side by side so that you can leave existing solutions untouched even as you enhance them with jQuery. The Microsoft jQuery Plug-ins – Solid Core Features One of the most interesting developments in Microsoft’s embracing of jQuery is that Microsoft has started contributing to jQuery via standard mechanism set for jQuery developers: By submitting plug-ins. Microsoft took some of the nicest new features of the unpublished Microsoft Ajax Client Library and re-wrote these components for jQuery and then submitted them as plug-ins to the jQuery plug-in repository. Accepted plug-ins get taken over by the jQuery team and that’s exactly what happened with the three plug-ins submitted by Microsoft with the templating plug-in even getting slated to be published as part of the jQuery core in the next major release (1.5). The following plug-ins are provided by Microsoft: jQuery Templates – a client side template rendering engine jQuery Data Link – a client side databinder that can synchronize changes without code jQuery Globalization – provides formatting and conversion features for dates and numbers The first two are ports of functionality that was slated for the Microsoft Ajax Library while functionality for the globalization library provides functionality that was already found in the original ASP.NET AJAX library. To me all three plug-ins address a pressing need in client side applications and provide functionality I’ve previously used in other incarnations, but with more complete implementations. Let’s take a close look at these plug-ins. jQuery Templates http://api.jquery.com/category/plugins/templates/ Client side templating is a key component for building rich JavaScript applications in the browser. Templating on the client lets you avoid from manually creating markup by creating DOM nodes and injecting them individually into the document via code. Rather you can create markup templates – similar to the way you create classic ASP server markup – and merge data into these templates to render HTML which you can then inject into the document or replace existing content with. Output from templates are rendered as a jQuery matched set and can then be easily inserted into the document as needed. Templating is key to minimize client side code and reduce repeated code for rendering logic. Instead a single template can be used in many places for updating and adding content to existing pages. Further if you build pure AJAX interfaces that rely entirely on client rendering of the initial page content, templates allow you to a use a single markup template to handle all rendering of each specific HTML section/element. I’ve used a number of different client rendering template engines with jQuery in the past including jTemplates (a PHP style templating engine) and a modified version of John Resig’s MicroTemplating engine which I built into my own set of libraries because it’s such a commonly used feature in my client side applications. jQuery templates adds a much richer templating model that allows for sub-templates and access to the data items. Like John Resig’s original Micro Template engine, the core basics of the templating engine create JavaScript code which means that templates can include JavaScript code. To give you a basic idea of how templates work imagine I have an application that downloads a set of stock quotes based on a symbol list then displays them in the document. To do this you can create an ‘item’ template that describes how each of the quotes is renderd as a template inside of the document: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div><div>${LastPrice}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div><div>${LastQuoteTimeString}</div> </div> </script> The ‘template’ is little more than HTML with some markup expressions inside of it that define the template language. Notice the embedded ${} expressions which reference data from the quote objects returned from an AJAX call on the server. You can embed any JavaScript or value expression in these template expressions. There are also a number of structural commands like {{if}} and {{each}} that provide for rudimentary logic inside of your templates as well as commands ({{tmpl}} and {{wrap}}) for nesting templates. You can find more about the full set of markup expressions available in the documentation. To load up this data you can use code like the following: <script type="text/javascript"> //var Proxy = new ServiceProxy("../PageMethods/PageMethodsService.asmx/"); $(document).ready(function () { $("#btnGetQuotes").click(GetQuotes); }); function GetQuotes() { var symbols = $("#txtSymbols").val().split(","); $.ajax({ url: "../PageMethods/PageMethodsService.asmx/GetStockQuotes", data: JSON.stringify({ symbols: symbols }), // parameter map type: "POST", // data has to be POSTed contentType: "application/json", timeout: 10000, dataType: "json", success: function (result) { var quotes = result.d; var jEl = $("#stockTemplate").tmpl(quotes); $("#quoteDisplay").empty().append(jEl); }, error: function (xhr, status) { alert(status + "\r\n" + xhr.responseText); } }); }; </script> In this case an ASMX AJAX service is called to retrieve the stock quotes. The service returns an array of quote objects. The result is returned as an object with the .d property (in Microsoft service style) that returns the actual array of quotes. The template is applied with: var jEl = $("#stockTemplate").tmpl(quotes); which selects the template script tag and uses the .tmpl() function to apply the data to it. The result is a jQuery matched set of elements that can then be appended to the quote display element in the page. The template is merged against an array in this example. When the result is an array the template is automatically applied to each each array item. If you pass a single data item – like say a stock quote – the template works exactly the same way but is applied only once. Templates also have access to a $data item which provides the current data item and information about the tempalte that is currently executing. This makes it possible to keep context within the context of the template itself and also to pass context from a parent template to a child template which is very powerful. Templates can be evaluated by using the template selector and calling the .tmpl() function on the jQuery matched set as shown above or you can use the static $.tmpl() function to provide a template as a string. This allows you to dynamically create templates in code or – more likely – to load templates from the server via AJAX calls. In short there are options The above shows off some of the basics, but there’s much for functionality available in the template engine. Check the documentation link for more information and links to additional examples. The plug-in download also comes with a number of examples that demonstrate functionality. jQuery templates will become a native component in jQuery Core 1.5, so it’s definitely worthwhile checking out the engine today and get familiar with this interface. As much as I’m stoked about templating becoming part of the jQuery core because it’s such an integral part of many applications, there are also a couple shortcomings in the current incarnation: Lack of Error Handling Currently if you embed an expression that is invalid it’s simply not rendered. There’s no error rendered into the template nor do the various  template functions throw errors which leaves finding of bugs as a runtime exercise. I would like some mechanism – optional if possible – to be able to get error info of what is failing in a template when it’s rendered. No String Output Templates are always rendered into a jQuery matched set and there’s no way that I can see to directly render to a string. String output can be useful for debugging as well as opening up templating for creating non-HTML string output. Limited JavaScript Access Unlike John Resig’s original MicroTemplating Engine which was entirely based on JavaScript code generation these templates are limited to a few structured commands that can ‘execute’. There’s no code execution inside of script code which means you’re limited to calling expressions available in global objects or the data item passed in. This may or may not be a big deal depending on the complexity of your template logic. Error handling has been discussed quite a bit and it’s likely there will be some solution to that particualar issue by the time jQuery templates ship. The others are relatively minor issues but something to think about anyway. jQuery Data Link http://api.jquery.com/category/plugins/data-link/ jQuery Data Link provides the ability to do two-way data binding between input controls and an underlying object’s properties. The typical scenario is linking a textbox to a property of an object and have the object updated when the text in the textbox is changed and have the textbox change when the value in the object or the entire object changes. The plug-in also supports converter functions that can be applied to provide the conversion logic from string to some other value typically necessary for mapping things like textbox string input to say a number property and potentially applying additional formatting and calculations. In theory this sounds great, however in reality this plug-in has some serious usability issues. Using the plug-in you can do things like the following to bind data: person = { firstName: "rick", lastName: "strahl"}; $(document).ready( function() { // provide for two-way linking of inputs $("form").link(person); // bind to non-input elements explicitly $("#objFirst").link(person, { firstName: { name: "objFirst", convertBack: function (value, source, target) { $(target).text(value); } } }); $("#objLast").link(person, { lastName: { name: "objLast", convertBack: function (value, source, target) { $(target).text(value); } } }); }); This code hooks up two-way linking between a couple of textboxes on the page and the person object. The first line in the .ready() handler provides mapping of object to form field with the same field names as properties on the object. Note that .link() does NOT bind items into the textboxes when you call .link() – changes are mapped only when values change and you move out of the field. Strike one. The two following commands allow manual binding of values to specific DOM elements which is effectively a one-way bind. You specify the object and a then an explicit mapping where name is an ID in the document. The converter is required to explicitly assign the value to the element. Strike two. You can also detect changes to the underlying object and cause updates to the input elements bound. Unfortunately the syntax to do this is not very natural as you have to rely on the jQuery data object. To update an object’s properties and get change notification looks like this: function updateFirstName() { $(person).data("firstName", person.firstName + " (code updated)"); } This works fine in causing any linked fields to be updated. In the bindings above both the firstName input field and objFirst DOM element gets updated. But the syntax requires you to use a jQuery .data() call for each property change to ensure that the changes are tracked properly. Really? Sure you’re binding through multiple layers of abstraction now but how is that better than just manually assigning values? The code savings (if any) are going to be minimal. As much as I would like to have a WPF/Silverlight/Observable-like binding mechanism in client script, this plug-in doesn’t help much towards that goal in its current incarnation. While you can bind values, the ‘binder’ is too limited to be really useful. If initial values can’t be assigned from the mappings you’re going to end up duplicating work loading the data using some other mechanism. There’s no easy way to re-bind data with a different object altogether since updates trigger only through the .data members. Finally, any non-input elements have to be bound via code that’s fairly verbose and frankly may be more voluminous than what you might write by hand for manual binding and unbinding. Two way binding can be very useful but it has to be easy and most importantly natural. If it’s more work to hook up a binding than writing a couple of lines to do binding/unbinding this sort of thing helps very little in most scenarios. In talking to some of the developers the feature set for Data Link is not complete and they are still soliciting input for features and functionality. If you have ideas on how you want this feature to be more useful get involved and post your recommendations. As it stands, it looks to me like this component needs a lot of love to become useful. For this component to really provide value, bindings need to be able to be refreshed easily and work at the object level, not just the property level. It seems to me we would be much better served by a model binder object that can perform these binding/unbinding tasks in bulk rather than a tool where each link has to be mapped first. I also find the choice of creating a jQuery plug-in questionable – it seems a standalone object – albeit one that relies on the jQuery library – would provide a more intuitive interface than the current forcing of options onto a plug-in style interface. Out of the three Microsoft created components this is by far the least useful and least polished implementation at this point. jQuery Globalization http://github.com/jquery/jquery-global Globalization in JavaScript applications often gets short shrift and part of the reason for this is that natively in JavaScript there’s little support for formatting and parsing of numbers and dates. There are a number of JavaScript libraries out there that provide some support for globalization, but most are limited to a particular portion of globalization. As .NET developers we’re fairly spoiled by the richness of APIs provided in the framework and when dealing with client development one really notices the lack of these features. While you may not necessarily need to localize your application the globalization plug-in also helps with some basic tasks for non-localized applications: Dealing with formatting and parsing of dates and time values. Dates in particular are problematic in JavaScript as there are no formatters whatsoever except the .toString() method which outputs a verbose and next to useless long string. With the globalization plug-in you get a good chunk of the formatting and parsing functionality that the .NET framework provides on the server. You can write code like the following for example to format numbers and dates: var date = new Date(); var output = $.format(date, "MMM. dd, yy") + "\r\n" + $.format(date, "d") + "\r\n" + // 10/25/2010 $.format(1222.32213, "N2") + "\r\n" + $.format(1222.33, "c") + "\r\n"; alert(output); This becomes even more useful if you combine it with templates which can also include any JavaScript expressions. Assuming the globalization plug-in is loaded you can create template expressions that use the $.format function. Here’s the template I used earlier for the stock quote again with a couple of formats applied: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div> <div>${$.format(LastPrice,"N2")}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div> <div>${$.format(LastQuoteTime,"MMM dd, yyyy")}</div> </div> </script> There are also parsing methods that can parse dates and numbers from strings into numbers easily: alert($.parseDate("25.10.2010")); alert($.parseInt("12.222")); // de-DE uses . for thousands separators As you can see culture specific options are taken into account when parsing. The globalization plugin provides rich support for a variety of locales: Get a list of all available cultures Query cultures for culture items (like currency symbol, separators etc.) Localized string names for all calendar related items (days of week, months) Generated off of .NET’s supported locales In short you get much of the same functionality that you already might be using in .NET on the server side. The plugin includes a huge number of locales and an Globalization.all.min.js file that contains the text defaults for each of these locales as well as small locale specific script files that define each of the locale specific settings. It’s highly recommended that you NOT use the huge globalization file that includes all locales, but rather add script references to only those languages you explicitly care about. Overall this plug-in is a welcome helper. Even if you use it with a single locale (like en-US) and do no other localization, you’ll gain solid support for number and date formatting which is a vital feature of many applications. Changes for Microsoft It’s good to see Microsoft coming out of its shell and away from the ‘not-built-here’ mentality that has been so pervasive in the past. It’s especially good to see it applied to jQuery – a technology that has stood in drastic contrast to Microsoft’s own internal efforts in terms of design, usage model and… popularity. It’s great to see that Microsoft is paying attention to what customers prefer to use and supporting the customer sentiment – even if it meant drastically changing course of policy and moving into a more open and sharing environment in the process. The additional jQuery support that has been introduced in the last two years certainly has made lives easier for many developers on the ASP.NET platform. It’s also nice to see Microsoft submitting proposals through the standard jQuery process of plug-ins and getting accepted for various very useful projects. Certainly the jQuery Templates plug-in is going to be very useful to many especially since it will be baked into the jQuery core in jQuery 1.5. I hope we see more of this type of involvement from Microsoft in the future. Kudos!© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • How to set _optimizer_search_limit and _optimizer_max_permutations in Oracle10g.

    - by user52856
    I am working on a product that must support both MSSQL and Oracle (10g and 11g). I have some very complex queries that seem to run without issue on MSSQL 2005/2008, but very, very slow with Oracle. The CPU on the oracle server skyrockets for long periods of time, and it seems like the optimizer may be trying to find the best execution plan for the very complex query. I did some Googling to figure out how to limit the amount of time the optimizer spends on this, and came up with _optimizer_search_limit and _optimizer_max_permutations. Both of these parameters are hidden in Oracle 10g, and setting them in init.ora doesn't seem to make any difference. How do I set these parameters in Oracle. Or am I just totally barking up the wrong tree with the assumption that the optimizer is spending several minutes finding an execution plan? Thanks.

    Read the article

  • How do I calculate the amount of tuning needed for my server ?

    - by Low Kian Seong
    I have a server which is running a few discrete Python, Java application which most of the time imports data into a PostGreSQL database. I would like to know from people out there who have experience tuning enterprise grade servers how do i go about calculating in a holistic way the amount of tuning needed for my server for example vm.swappiness, vm.overcommit_ratio and other numerical tunings needed for my server. I tried to enable sar on my server to capture daily numbers but these are more along the lines of total numbers and I can't figure out how to allocate memory for my applications. Help would be appreciated. Thanks.

    Read the article

  • Weird files in User folder

    - by Nano8Blazex
    In my user folder (C:/Users/myAccount/) theres a set of interesting hidden files that I've never seen before (right now it's a fresh install of Windows 7 Ultimate). These are: NTUSER.DAT, ntuser.dat.LOG1, ntuser.dat.LOG2, and NTUSER.DAT(whole chain of numbers and letters).TM.bif, NTUSER.DAT(whole chain of numbers and letters).TMContaineretcetc.regtrans-ms, and another similar one. When I try to delete them, it says the system is using them. I've never seen these files before. Are they ok to delete? Or should I leave them in my home folder? I always keep "Show hidden files" as well as "Show System files" checked, since I prefer being able to see all the files on my computer. If I shouldn't delete them, is there at least a way to tidy them up a bit? Thanks.

    Read the article

  • Understanding the memory consumption on iPhone

    - by zoul
    Hello! I am working on a 2D iPhone game using OpenGL ES and I keep hitting the 24 MB memory limit – my application keeps crashing with the error code 101. I tried real hard to find where the memory goes, but the numbers in Instruments are still much bigger than what I would expect. I ran the application with the Memory Monitor, Object Alloc, Leaks and OpenGL ES instruments. When the application gets loaded, free physical memory drops from 37 MB to 23 MB, the Object Alloc settles around 7 MB, Leaks show two or three leaks a few bytes in size, the Gart Object Size is about 5 MB and Memory Monitor says the application takes up about 14 MB of real memory. I am perplexed as where did the memory go – when I dig into the Object Allocations, most of the memory is in the textures, exactly as I would expect. But both my own texture allocation counter and the Gart Object Size agree that the textures should take up somewhere around 5 MB. I am not aware of allocating anything else that would be worth mentioning, and the Object Alloc agrees. Where does the memory go? (I would be glad to supply more details if this is not enough.) Update: I really tried to find where I could allocate so much memory, but with no results. What drives me wild is the difference between the Object Allocations (~7 MB) and real memory usage as shown by Memory Monitor (~14 MB). Even if there were huge leaks or huge chunks of memory I forget about, the should still show up in the Object Allocations, shouldn’t they? I’ve already tried the usual suspects, ie. the UIImage with its caching, but that did not help. Is there a way to track memory usage “debugger-style”, line by line, watching each statement’s impact on memory usage? What I have found so far: I really am using that much memory. It is not easy to measure the real memory consumption, but after a lot of counting I think the memory consumption is really that high. My fault. I found no easy way to measure the memory used. The Memory Monitor numbers are accurate (these are the numbers that really matter), but the Memory Monitor can’t tell you where exactly the memory goes. The Object Alloc tool is almost useless for tracking the real memory usage. When I create a texture, the allocated memory counter goes up for a while (reading the texture into the memory), then drops (passing the texture data to OpenGL, freeing). This is OK, but does not always happen – sometimes the memory usage stays high even after the texture has been passed on to OpenGL and freed from “my” memory. This means that the total amount of memory allocated as shown by the Object Alloc tool is smaller than the real total memory consumption, but bigger than the real consumption minus textures (real – textures < object alloc < real). Go figure. I misread the Programming Guide. The memory limit of 24 MB applies to textures and surfaces, not the whole application. The actual red line lies a bit further, but I could not find any hard numbers. The consensus is that 25–30 MB is the ceiling. When the system gets short on memory, it starts sending the memory warning. I have almost nothing to free, but other applications do release some memory back to the system, especially Safari (which seems to be caching the websites). When the free memory as shown in the Memory Monitor goes zero, the system starts killing. I had to bite the bullet and rewrite some parts of the code to be more efficient on memory, but I am probably still pushing it. I

    Read the article

< Previous Page | 84 85 86 87 88 89 90 91 92 93 94 95  | Next Page >