Search Results

Search found 6090 results on 244 pages for 'digest authentication'.

Page 88/244 | < Previous Page | 84 85 86 87 88 89 90 91 92 93 94 95  | Next Page >

  • Would OpenID or OAuth work for authorization/authentication on a distributed web service?

    - by David Eyk
    We're in the early stages of designing a RESTful/resource-oriented web service API for a computational lingustics application. Because many of the resources we plan to serve are rights-encumbered, a key design decision has been to specify the platform so that each resource provider can expose their own web service that complies with the API spec. This way, the rights owner maintains control over their content (and thus the ability to throttle or deny access at will) and a direct relationship with the consumer, while still being able to participate in in the collaborative network. At the same time, to simplify the job of writing a client for this service, we want to allow a client access to the distributed service through one end-point, with the server handling content negotiation and retrieval from the appropriate providers. Right now, we're at an impasse on authentication/authorization schemes. One of our number has argued for the (technical) simplicity of a central authentication registry, but others are concerned about the organizational complexity of such a scheme. It seems to me, based on an albeit limited understanding of the technologies, that a combination of OpenID and OAuth would do the trick, with a client authenticating with the end-point via OpenID, and the server taking action on the user's behalf with the various content providers using OAuth. I've only ever seen implementations (e.g. stackoverflow, twitter, etc.) where a human was present to intervene, and I still need to do more research on these technologies. Would a scheme like this work for an automated web service, or would it make the client too difficult to implement and operate?

    Read the article

  • Incorporating Devise Authentication into an already existing user structure?

    - by Kevin
    I have a fully functional authentication system with a user table that has over fifty columns. It's simple but it does hash encryption with salt, uses email instead of usernames, and has two separate kinds of users with an admin as well. I'm looking to incorporate Devise authentication into my application to beef up the extra parts like email validation, forgetting passwords, remember me tokens, etc... I just wanted to see if anyone has any advice or problems they've encountered when incorporating Devise into an already existing user structure. The essential fields in my user model are: t.string :first_name, :null => false t.string :last_name, :null => false t.string :email, :null => false t.string :hashed_password t.string :salt t.boolean :is_userA, :default => false t.boolean :is_userB, :default => false t.boolean :is_admin, :default => false t.boolean :active, :default => true t.timestamps For reference sake, here's the Devise fields from the migration: t.database_authenticatable :null => false t.confirmable t.recoverable t.rememberable t.trackable That eventually turn into these actual fields in the schema: t.string "email", :default => "", :null => false t.string "encrypted_password", :limit => 128, :default => "", :null => false t.string "password_salt", :default => "", :null => false t.string "confirmation_token" t.datetime "confirmed_at" t.datetime "confirmation_sent_at" t.string "reset_password_token" t.string "remember_token" t.datetime "remember_created_at" t.integer "sign_in_count", :default => 0 t.datetime "current_sign_in_at" t.datetime "last_sign_in_at" t.string "current_sign_in_ip" t.string "last_sign_in_ip" t.datetime "created_at" t.datetime "updated_at" What do you guys recommend? Do I just remove email, hashed_password, and salt from my migration and put in the 5 Devise migration fields and everything will be OK or do I need to do something else?

    Read the article

  • Dealing with expired authentication for a partially filled form?

    - by aaronls
    I have a large webform, and would like to prompt the user to login if their session expires, or have them login when they submit the form. It seems that having them login when they submit the form creates alot of challenges because they get redirected to the login page and then the postback data for the original form submission is lost. So I'm thinking about how to prompt them to login asynchrounsly when the session expires. So that they stay on the original form page, have a panel appear telling them the session has expired and they need to login, it submits the login asynchronously, the login panel disapears, and the user is still on the original partially filled form and can submit it. Is this easily doable using the existing ASP.NET Membership controls? When they submit the form will I need to worry about the session key? I mean, I am wondering if the session key the form submits will be the original one from before the session expired which won't match the new one generated after logging in again asynchrounously(I still do not understand the details of how ASP.NET tracks authentication/session IDs). Edit: Yes I am actually concerned about authentication expiration. The user must be authenticated for the submitted data to be considered valid.

    Read the article

  • Spring Security - Persistent Remember Me Issue

    - by Taylor L
    I've been trying to track down why Spring Security isn't creating the Spring Security remember me cookie (SPRING_SECURITY_REMEMBER_ME_COOKIE). At first glance, the logs make it seem like the login is failing, but the login is actually successful in the sense that if I navigate to a page that requires authentication I am not redirected back to the login page. However, the logs appear to be saying the login credentials are invalid. I'm using Spring 3.0.1, Spring Security 3.0.1, and Google App Engine 1.3.1. Any ideas as to what is going on? Mar 16, 2010 10:05:56 AM org.springframework.security.web.authentication.rememberme.PersistentTokenBasedRememberMeServices onLoginSuccess FINE: Creating new persistent login for user [email protected] Mar 16, 2010 10:10:07 AM org.springframework.security.web.authentication.rememberme.AbstractRememberMeServices loginFail FINE: Interactive login attempt was unsuccessful. Mar 16, 2010 10:10:07 AM org.springframework.security.web.authentication.rememberme.AbstractRememberMeServices cancelCookie FINE: Cancelling cookie Below is the relevant portion of the applicationContext-security.xml. <http auto-config="false"> <intercept-url pattern="/css/**" filters="none" /> <intercept-url pattern="/img/**" filters="none" /> <intercept-url pattern="/js/**" filters="none" /> <intercept-url pattern="/app/admin/**" filters="none" /> <intercept-url pattern="/app/login/**" filters="none" /> <intercept-url pattern="/app/register/**" filters="none" /> <intercept-url pattern="/app/error/**" filters="none" /> <intercept-url pattern="/" filters="none" /> <intercept-url pattern="/**" access="ROLE_USER" /> <logout logout-success-url="/" /> <form-login login-page="/app/login" default-target-url="/" authentication-failure-url="/app/login?login_error=1" /> <session-management invalid-session-url="/app/login" /> <remember-me services-ref="rememberMeServices" key="myKey" /> </http> <authentication-manager alias="authenticationManager"> <authentication-provider user-service-ref="userDetailsService"> <password-encoder hash="sha-256" base64="true"> <salt-source user-property="username" /> </password-encoder> </authentication-provider> </authentication-manager> <beans:bean id="userDetailsService" class="com.my.service.auth.UserDetailsServiceImpl" /> <beans:bean id="rememberMeServices" class="org.springframework.security.web.authentication.rememberme.PersistentTokenBasedRememberMeServices"> <beans:property name="userDetailsService" ref="userDetailsService" /> <beans:property name="tokenRepository" ref="persistentTokenRepository" /> <beans:property name="key" value="myKey" /> </beans:bean> <beans:bean id="persistentTokenRepository" class="com.my.service.auth.PersistentTokenRepositoryImpl" />

    Read the article

  • Convert Console Output to Array

    - by theundertaker
    Using netsh wlan show networks mode=bssid on Windows CMD yields a listing of available wireless networks. Is it possible to convert the list, which looks something like this: Interface name : Wireless Network Connection There are 11 networks currently visible. SSID 1 : Custom Gifts Memphis Network type : Infrastructure Authentication : Open Encryption : WEP BSSID 1 : 00:24:93:0c:49:e0 Signal : 16% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 6 9 12 18 24 36 48 54 SSID 2 : airportthru Network type : Adhoc Authentication : Open Encryption : None BSSID 1 : 62:4c:fe:9c:08:18 Signal : 53% Radio type : 802.11g Channel : 10 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 3 : belkin.ffe Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : 08:86:3b:9c:8f:fe Signal : 23% Radio type : 802.11n Channel : 1 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 4 : 3333 Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : 00:0f:cc:6d:ba:ac Signal : 18% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 22 24 36 48 54 BSSID 2 : 06:02:6f:c3:06:27 Signal : 20% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 5 : linksys Network type : Infrastructure Authentication : Open Encryption : None BSSID 1 : 98:fc:11:69:35:46 Signal : 38% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 6 : iHub_0060350392e0 Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : 00:c0:02:7d:5f:4e Signal : 18% Radio type : 802.11g Channel : 11 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 7 : TopFlight Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : 00:14:6c:7a:c4:70 Signal : 16% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 8 : 2WIRE430 Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : b8:e6:25:cb:56:a1 Signal : 16% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 9 : LUBIN Network type : Infrastructure Authentication : WPA-Personal Encryption : TKIP BSSID 1 : 00:13:10:8d:a7:32 Signal : 65% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 10 : TV2 Network Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : b8:c7:5d:07:6e:cf Signal : 79% Radio type : 802.11n Channel : 11 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 11 : guywork Network type : Infrastructure Authentication : Open Encryption : WEP BSSID 1 : 00:18:e7:cf:02:20 Signal : 15% Radio type : 802.11n Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 ... into an array using JavaScript or C#? I know it is but it seems like it may be rather difficult. Are there other avenues of obtaining such network information in the requested format? A JavaScript object would be perfect.

    Read the article

  • SQL Server connection help...

    - by Gopal
    Using SQL Server 2005 I have the server connection name as (server1) in windows authentication mode, I want to change windows authentication mode to sql server authentication mode... when i try to change sql server authentication mode with username = sa & password = sa, it showing error... How to change the authentication mode or how to create a new sql connection?

    Read the article

  • Integrating Twitter Into An ASP.NET Website Using OAuth

    Earlier this year I wrote an article about Twitterizer, an open-source .NET library that can be used to integrate your application with Twitter. Using Twitterizer you can allow your visitors to post tweets, view their timeline, and much more, all without leaving your website. The original article, Integrating Twitter Into An ASP.NET Website, showed how to post tweets and view a timeline to a particular Twitter account using Twitterizer 1.0. To post a tweet to a specific account, Twitterizer 1.0 uses basic authentication. Basic authentication is a very simple authentication scheme. For an application to post a tweet to JohnDoe's Twitter account, it would submit JohnDoe's username and password (along with the tweet text) to Twitter's servers. Basic authentication, while easy to implement, is not an ideal authentication scheme as it requires that the integrating application know the username(s) and password(s) of the accounts that it is connected to. Consequently, a user must share her password in order to connect her Twitter account with the application. Such password sharing is not only insecure, but it can also cause difficulties down the line if the user changes her password or decides that she no longer wants to connect her account to certain applications (but wants to remain connected to others). To remedy these issues, Twitter introduced support for OAuth, which is a simple, secure protocol for granting API access. In a nutshell, OAuth allows a user to connect an application to their Twitter account without having to share their password. Instead, the user is sent to Twitter's website where they confirm whether they want to connect to the application. Upon confirmation, Twitter generates an token that is then sent back to the application. The application then submits this token when integrating with the user's account. The token serves as proof that the user has allowed this application access to their account. (Twitter users can view what application's they're connected to and may revoke these tokens on an application-by-application basis.) In late 2009, Twitter announced that it was ending its support for basic authentication in June 2010. As a result, the code examined in Integrating Twitter Into An ASP.NET Website, which uses basic authentication, will no longer work once the cut off date is reached. The good news is that the Twitterizer version 2.0 supports OAuth. This article examines how to use Twitterizer 2.0 and OAuth from a website. Specifically, we'll see how to retrieve and display a user's latest tweets and how to post a tweet from an ASP.NET page. Read on to learn more! Read More >

    Read the article

  • Integrating Twitter Into An ASP.NET Website Using OAuth

    Earlier this year I wrote an article about Twitterizer, an open-source .NET library that can be used to integrate your application with Twitter. Using Twitterizer you can allow your visitors to post tweets, view their timeline, and much more, all without leaving your website. The original article, Integrating Twitter Into An ASP.NET Website, showed how to post tweets and view a timeline to a particular Twitter account using Twitterizer 1.0. To post a tweet to a specific account, Twitterizer 1.0 uses basic authentication. Basic authentication is a very simple authentication scheme. For an application to post a tweet to JohnDoe's Twitter account, it would submit JohnDoe's username and password (along with the tweet text) to Twitter's servers. Basic authentication, while easy to implement, is not an ideal authentication scheme as it requires that the integrating application know the username(s) and password(s) of the accounts that it is connected to. Consequently, a user must share her password in order to connect her Twitter account with the application. Such password sharing is not only insecure, but it can also cause difficulties down the line if the user changes her password or decides that she no longer wants to connect her account to certain applications (but wants to remain connected to others). To remedy these issues, Twitter introduced support for OAuth, which is a simple, secure protocol for granting API access. In a nutshell, OAuth allows a user to connect an application to their Twitter account without having to share their password. Instead, the user is sent to Twitter's website where they confirm whether they want to connect to the application. Upon confirmation, Twitter generates an token that is then sent back to the application. The application then submits this token when integrating with the user's account. The token serves as proof that the user has allowed this application access to their account. (Twitter users can view what application's they're connected to and may revoke these tokens on an application-by-application basis.) In late 2009, Twitter announced that it was ending its support for basic authentication in June 2010. As a result, the code examined in Integrating Twitter Into An ASP.NET Website, which uses basic authentication, will no longer work once the cut off date is reached. The good news is that the Twitterizer version 2.0 supports OAuth. This article examines how to use Twitterizer 2.0 and OAuth from a website. Specifically, we'll see how to retrieve and display a user's latest tweets and how to post a tweet from an ASP.NET page. Read on to learn more! Read More >Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Is there an open source Wordpress plug-in to implement Facebook/Twitter/OpenID/... authentication?

    - by Nicolas
    Hi, I'm looking for a way to implement Facebook/Twitter/OpenID/... authentication on my WordPress blog. I have found plugins for Twitter, plugins for Facebook, plugins for OpenID.. but I'm afraid integration of all thos plugins will be tough. Also, I have found RPX that is doing the job perfectly, but I would prefer an open source soultion rather than relying on RPX web service. Would you have any clue? Nicolas

    Read the article

  • Forms authentication failed for the request. Reason: The ticket supplied has expired.

    - by Max Toro
    My event log is flooded with this message: Forms authentication failed for the request. Reason: The ticket supplied has expired. I think this happens when people timeout instead of logout. First of all , this is not an error, it's Type: Information I don't want this information, how do I stop ASP.NET from logging it? My application is not web-farmed, and uses a static machine key.

    Read the article

  • How does WCF RIA Services handle authentication/authorization/security?

    - by Edward Tanguay
    Since no one answered this question: What issues to consider when rolling your own data-backend for Silverlight / AJAX on non-ASP.NET server? Let me ask it another way: How does WCF RIA Services handle authentication/authorization/security at a low level? e.g. how does the application on the server determine that the incoming http request to change data is coming from a valid client and not from non-desirable source, e.g. a denial-of-service bot?

    Read the article

  • Best way for user authentication on JavaEE 6 using JSF 2.0?

    - by ngeek
    I'm wondering what the current state of art recommendation is regarding user authentication for a web application making use of JSF 2.0 (and if any components do exist) and JEE6 core mechanisms (login/check permissions/logouts) with user information hold in a JPA entity. The Sun tutorial is a bit sparse on this (only handles servlets). This is without making use of a whole other framework, like Spring-Security (acegi), or Seam, but trying to stick hopefully with the new Java EE 6 platform (web profile) if possible. Thanks, Niko

    Read the article

  • Look Inside WebLogic Server Embedded LDAP with an LDAP Explorer

    - by james.bayer
    Today a question came up on our internal WebLogic Server mailing lists about an issue deleting a Group from WebLogic Server.  The group had a special character in the name. The WLS console refused to delete the group with the message a java.net.MalformedURLException and another message saying “Errors must be corrected before proceeding.” as shown below. The group aa:bb is the one with the issue.  Click to enlarge. WebLogic Server includes an embedded LDAP server that can be used for managing users and groups for “reasonably small environments (10,000 or fewer users)”.  For organizations scaling larger or using more high-end features, I recommend looking at one of Oracle’s very popular enterprise directory services products like Oracle Internet Directory or Oracle Directory Server Enterprise Edition.  You can configure multiple authenicators in WebLogic Server so that you can use multiple directories at the same time. I am not sure WebLogic Server supports special characters in group names for the Embedded LDAP server, but in this case both the console and WLST reported the same issue deleting the group with the special character in the name.  Here’s the WLST output: wls:/hotspot_domain/serverConfig/SecurityConfiguration/hotspot_domain/Realms/myrealm/AuthenticationProviders/DefaultAuthenticator> cmo.removeGroup('aa:bb') Traceback (innermost last): File "<console>", line 1, in ? weblogic.security.providers.authentication.LDAPAtnDelegateException: [Security:090296]invalid URL ldap:///ou=people,ou=myrealm,dc=hotspot_domain??sub?(&(objectclass=person)(wlsMemberOf=cn=aa:bb,ou=groups,ou=myrealm,dc=hotspot_domain)) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.advance(LDAPAtnGroupMembersNameList.java:254) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.<init>(LDAPAtnGroupMembersNameList.java:119) at weblogic.security.providers.authentication.LDAPAtnDelegate.listGroupMembers(LDAPAtnDelegate.java:1392) at weblogic.security.providers.authentication.LDAPAtnDelegate.removeGroup(LDAPAtnDelegate.java:1989) at weblogic.security.providers.authentication.DefaultAuthenticatorImpl.removeGroup(DefaultAuthenticatorImpl.java:242) at weblogic.security.providers.authentication.DefaultAuthenticatorMBeanImpl.removeGroup(DefaultAuthenticatorMBeanImpl.java:407) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at weblogic.management.jmx.modelmbean.WLSModelMBean.invoke(WLSModelMBean.java:437) at com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.invoke(DefaultMBeanServerInterceptor.java:836) at com.sun.jmx.mbeanserver.JmxMBeanServer.invoke(JmxMBeanServer.java:761) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase$16.run(WLSMBeanServerInterceptorBase.java:449) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase.invoke(WLSMBeanServerInterceptorBase.java:447) at weblogic.management.mbeanservers.internal.JMXContextInterceptor.invoke(JMXContextInterceptor.java:263) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase$16.run(WLSMBeanServerInterceptorBase.java:449) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase.invoke(WLSMBeanServerInterceptorBase.java:447) at weblogic.management.mbeanservers.internal.SecurityInterceptor.invoke(SecurityInterceptor.java:444) at weblogic.management.jmx.mbeanserver.WLSMBeanServer.invoke(WLSMBeanServer.java:323) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder$11$1.run(JMXConnectorSubjectForwarder.java:663) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder$11.run(JMXConnectorSubjectForwarder.java:661) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder.invoke(JMXConnectorSubjectForwarder.java:654) at javax.management.remote.rmi.RMIConnectionImpl.doOperation(RMIConnectionImpl.java:1427) at javax.management.remote.rmi.RMIConnectionImpl.access$200(RMIConnectionImpl.java:72) at javax.management.remote.rmi.RMIConnectionImpl$PrivilegedOperation.run(RMIConnectionImpl.java:1265) at java.security.AccessController.doPrivileged(Native Method) at javax.management.remote.rmi.RMIConnectionImpl.doPrivilegedOperation(RMIConnectionImpl.java:1367) at javax.management.remote.rmi.RMIConnectionImpl.invoke(RMIConnectionImpl.java:788) at javax.management.remote.rmi.RMIConnectionImpl_WLSkel.invoke(Unknown Source) at weblogic.rmi.internal.BasicServerRef.invoke(BasicServerRef.java:667) at weblogic.rmi.internal.BasicServerRef$1.run(BasicServerRef.java:522) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:146) at weblogic.rmi.internal.BasicServerRef.handleRequest(BasicServerRef.java:518) at weblogic.rmi.internal.wls.WLSExecuteRequest.run(WLSExecuteRequest.java:118) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:207) at weblogic.work.ExecuteThread.run(ExecuteThread.java:176) Caused by: java.net.MalformedURLException at netscape.ldap.LDAPUrl.readNextConstruct(LDAPUrl.java:651) at netscape.ldap.LDAPUrl.parseUrl(LDAPUrl.java:277) at netscape.ldap.LDAPUrl.<init>(LDAPUrl.java:114) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.advance(LDAPAtnGroupMembersNameList.java:224) ... 41 more It’s fairly clear that in order to work that the : character needs to be URL encoded to %3A or similar.  But all is not lost, there is another way.  You can configure an LDAP Explorer like JXplorer to WebLogic Server Embedded LDAP and browse/edit the entries. Follow the instructions here, being sure to change the authentication credentials to the Embedded LDAP server to some value you know, as by default they are some unknown value.  You’ll need to reboot the WebLogic Server Admin Server after making this change. Now configure JXplorer to connect as described in the documentation.  I’ve circled the important inputs.  In this example, my domain name is “hotspot_domain” which listens on the localhost listen address and port 7001.  The cn=Admin user name is a constant identifier for the Administrator of the embedded LDAP and that does not change, but you need to know what it is so you can enter it into the tool you use. Once you connect successfully, you can explore the entries and in this case delete the group that is no longer desired.

    Read the article

  • Reading the tea leaves from Windows Azure support

    - by jamiet
    A few idle thoughts… Three months ago I had an issue regarding Windows Azure where I was unable to login to the management portal. At the time I contacted Azure support, the issue was soon resolved and I thought no more about it. Until today that is when I received an email from Azure support providing a detailed analysis of the root cause, the fix and moreover precise details about when and where things occurred. The email itself is interesting and I have included the entirety of it below. A few things were interesting to me: The level of detail and the diligence in investigating and reporting the issue I found really rather impressive. They even outline the number of users that were affected (127 in case you can’t be bothered reading). Compare this to the quite pathetic support that another division within Microsoft, Skype, provided to Greg Low recently: Skype support and dead parrot sketches   This line: “Windows Azure performed a planned change from using the Microsoft account service (formerly Windows Live ID) to the Azure Active Directory (AAD) as its primary authentication mechanism on August 24th. This change was made to enable future innovation in the area of authentication – particularly for organizationally owned identities, identity federation, stronger authentication methods and compliance certification. ” I also found to be particularly interesting. I have long thought that one of the reasons Microsoft has proved to be such a money-making machine in the enterprise is because they provide the infrastructure and then upsell on top of that – and nothing is more infrastructural than Active Directory. It has struck me of late that they are trying to make the same play of late in the cloud by tying all their services into Azure Active Directory and here we see a clear indication of that by making AAD the authentication mechanism for anyone using Windows Azure. I get the feeling that we’re going to hear much much more about AAD in the future; isn’t it about time we could log on to SQL Azure Windows Azure SQL Database without resorting to SQL authentication, for example? And why do Microsoft have two identity providers – Microsoft Account (aka Windows Live ID) and AAD – isn’t it about time those things were combined? As I said, just some idle thoughts. Below is the transcript of the email if you are interested. @Jamiet  This is regarding the support request <redacted> where in you were not able to login into the windows azure management portal with live id. We are providing you with the summary, root cause analysis and information about permanent fix: Incident Title: You were unable to access Windows Azure Portal after Microsoft Account to Azure Active Directory account Migration. Service Impacted: Management Portal Incident Start Date and Time: 8/24/2012 4:30:00 PM Date and Time Service was Restored: 10/17/2012 12:00:00 AM Summary: Windows Azure performed a planned change from using the Microsoft account service (formerly Windows Live ID) to the Azure Active Directory (AAD) as its primary authentication mechanism on August 24th.   This change was made to enable future innovation in the area of authentication – particularly for organizationally owned identities, identity federation, stronger authentication methods and compliance certification.   While this migration was largely transparent to Windows Azure users, a small number of users whose sign-in names were part of a Windows Live Custom Domain were unable to login.   This incompatibility was not discovered during the Quality Assurance testing phase prior to the migration. Customer Impact: Customers whose sign-in names were part of a Windows Live Custom Domain were unable to sign-in the Management Portal after ~4:00 p.m. PST on August 24th, 2012.   We determined that the issue did impact at least 127 users in 98 of these Windows Live Custom Domains and had a maximum potential impact of 1,110 users in total. Root Cause: The root cause of the issue was an incompatibility in the AAD authentication service to handle logins from Microsoft accounts whose sign-in names were part of a Windows Live Custom Domains.  This issue was not discovered during the Quality Assurance testing phase prior to the migration from Microsoft Account (MSA) to AAD. Mitigations: The issue was mitigated for the majority of affected users by 8:20 a.m. PST on August 25th, 2012 by running some internal scripts to correct many known Windows Live Custom Domains.   The remaining affected domains fell into two categories: Windows Live Custom Domains that were not corrected by 8/25/2012. An additional 48 Windows Live Custom Domains were fixed in the weeks following the incident within 2 business days after the AAD team received an escalation from product support regarding those accounts. Windows Live Custom domains that were also provisioned in Office365. Some of the affected Windows Live Custom Domains had already been provisioned in AAD because their owners signed up for Office365 which is a service that also uses AAD.   In these cases the Azure customers had to work around the issue by renaming their Microsoft Account or using a different Microsoft Account to administer their Azure subscription. Permanent Fix: The Azure Active Directory team permanently fixed the issue for all customers on 10/17/2012 in an upgraded release of the AAD service.

    Read the article

  • convert password encryption from java to php

    - by Obay
    I'm trying to create a PHP version of an existing JSP program, however I'm stuck at the password encryption part. Could you please tell me how to convert this one? I know it tries to get the md5() but after that, I don't get it. I get lost in the Stringbuffer and for() parts. Can you help me out? public static String encryptPassword( String password ) { String encrypted = ""; try { MessageDigest digest = MessageDigest.getInstance( "MD5" ); byte[] passwordBytes = password.getBytes( ); digest.reset( ); digest.update( passwordBytes ); byte[] message = digest.digest( ); StringBuffer hexString = new StringBuffer(); for ( int i=0; i < message.length; i++) { hexString.append( Integer.toHexString( 0xFF & message[ i ] ) ); } encrypted = hexString.toString(); } catch( Exception e ) { } return encrypted; }

    Read the article

  • getHeaderField("WWW-Authenticate") giving improper value in J2ME

    - by kehers
    I'm building a client for an api that uses http digest access authentication for authentication. I have studied the rfc to know the setup the required response headers and this works well on my emulator. Problem however is when I test on my phone (nokia E5), I found out that getting the www-authenticate header from the returned headers doesnt get the full value [code] // c = (HttpConnection) Connector.open(url) and other declarations String digest = c.getHeaderField("WWW-Authenticate"); System.out.println(digest); // gives only: Digest //no realm, qop and others [/code] I'm I doing something wrong or it is from the phone? What are my other options?

    Read the article

  • Optimizing Solaris 11 SHA-1 on Intel Processors

    - by danx
    SHA-1 is a "hash" or "digest" operation that produces a 160 bit (20 byte) checksum value on arbitrary data, such as a file. It is intended to uniquely identify text and to verify it hasn't been modified. Max Locktyukhin and others at Intel have improved the performance of the SHA-1 digest algorithm using multiple techniques. This code has been incorporated into Solaris 11 and is available in the Solaris Crypto Framework via the libmd(3LIB), the industry-standard libpkcs11(3LIB) library, and Solaris kernel module sha1. The optimized code is used automatically on systems with a x86 CPU supporting SSSE3 (Intel Supplemental SSSE3). Intel microprocessor architectures that support SSSE3 include Nehalem, Westmere, Sandy Bridge microprocessor families. Further optimizations are available for microprocessors that support AVX (such as Sandy Bridge). Although SHA-1 is considered obsolete because of weaknesses found in the SHA-1 algorithm—NIST recommends using at least SHA-256, SHA-1 is still widely used and will be with us for awhile more. Collisions (the same SHA-1 result for two different inputs) can be found with moderate effort. SHA-1 is used heavily though in SSL/TLS, for example. And SHA-1 is stronger than the older MD5 digest algorithm, another digest option defined in SSL/TLS. Optimizations Review SHA-1 operates by reading an arbitrary amount of data. The data is read in 512 bit (64 byte) blocks (the last block is padded in a specific way to ensure it's a full 64 bytes). Each 64 byte block has 80 "rounds" of calculations (consisting of a mixture of "ROTATE-LEFT", "AND", and "XOR") applied to the block. Each round produces a 32-bit intermediate result, called W[i]. Here's what each round operates: The first 16 rounds, rounds 0 to 15, read the 512 bit block 32 bits at-a-time. These 32 bits is used as input to the round. The remaining rounds, rounds 16 to 79, use the results from the previous rounds as input. Specifically for round i it XORs the results of rounds i-3, i-8, i-14, and i-16 and rotates the result left 1 bit. The remaining calculations for the round is a series of AND, XOR, and ROTATE-LEFT operators on the 32-bit input and some constants. The 32-bit result is saved as W[i] for round i. The 32-bit result of the final round, W[79], is the SHA-1 checksum. Optimization: Vectorization The first 16 rounds can be vectorized (computed in parallel) because they don't depend on the output of a previous round. As for the remaining rounds, because of step 2 above, computing round i depends on the results of round i-3, W[i-3], one can vectorize 3 rounds at-a-time. Max Locktyukhin found through simple factoring, explained in detail in his article referenced below, that the dependencies of round i on the results of rounds i-3, i-8, i-14, and i-16 can be replaced instead with dependencies on the results of rounds i-6, i-16, i-28, and i-32. That is, instead of initializing intermediate result W[i] with: W[i] = (W[i-3] XOR W[i-8] XOR W[i-14] XOR W[i-16]) ROTATE-LEFT 1 Initialize W[i] as follows: W[i] = (W[i-6] XOR W[i-16] XOR W[i-28] XOR W[i-32]) ROTATE-LEFT 2 That means that 6 rounds could be vectorized at once, with no additional calculations, instead of just 3! This optimization is independent of Intel or any other microprocessor architecture, although the microprocessor has to support vectorization to use it, and exploits one of the weaknesses of SHA-1. Optimization: SSSE3 Intel SSSE3 makes use of 16 %xmm registers, each 128 bits wide. The 4 32-bit inputs to a round, W[i-6], W[i-16], W[i-28], W[i-32], all fit in one %xmm register. The following code snippet, from Max Locktyukhin's article, converted to ATT assembly syntax, computes 4 rounds in parallel with just a dozen or so SSSE3 instructions: movdqa W_minus_04, W_TMP pxor W_minus_28, W // W equals W[i-32:i-29] before XOR // W = W[i-32:i-29] ^ W[i-28:i-25] palignr $8, W_minus_08, W_TMP // W_TMP = W[i-6:i-3], combined from // W[i-4:i-1] and W[i-8:i-5] vectors pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) movdqa W, W_TMP // 4 dwords in W are rotated left by 2 psrld $30, W // rotate left by 2 W = (W >> 30) | (W << 2) pslld $2, W_TMP por W, W_TMP movdqa W_TMP, W // four new W values W[i:i+3] are now calculated paddd (K_XMM), W_TMP // adding 4 current round's values of K movdqa W_TMP, (WK(i)) // storing for downstream GPR instructions to read A window of the 32 previous results, W[i-1] to W[i-32] is saved in memory on the stack. This is best illustrated with a chart. Without vectorization, computing the rounds is like this (each "R" represents 1 round of SHA-1 computation): RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR With vectorization, 4 rounds can be computed in parallel: RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR Optimization: AVX The new "Sandy Bridge" microprocessor architecture, which supports AVX, allows another interesting optimization. SSSE3 instructions have two operands, a input and an output. AVX allows three operands, two inputs and an output. In many cases two SSSE3 instructions can be combined into one AVX instruction. The difference is best illustrated with an example. Consider these two instructions from the snippet above: pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) With AVX they can be combined in one instruction: vpxor W_minus_16, W, W_TMP // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) This optimization is also in Solaris, although Sandy Bridge-based systems aren't widely available yet. As an exercise for the reader, AVX also has 256-bit media registers, %ymm0 - %ymm15 (a superset of 128-bit %xmm0 - %xmm15). Can %ymm registers be used to parallelize the code even more? Optimization: Solaris-specific In addition to using the Intel code described above, I performed other minor optimizations to the Solaris SHA-1 code: Increased the digest(1) and mac(1) command's buffer size from 4K to 64K, as previously done for decrypt(1) and encrypt(1). This size is well suited for ZFS file systems, but helps for other file systems as well. Optimized encode functions, which byte swap the input and output data, to copy/byte-swap 4 or 8 bytes at-a-time instead of 1 byte-at-a-time. Enhanced the Solaris mdb(1) and kmdb(1) debuggers to display all 16 %xmm and %ymm registers (mdb "$x" command). Previously they only displayed the first 8 that are available in 32-bit mode. Can't optimize if you can't debug :-). Changed the SHA-1 code to allow processing in "chunks" greater than 2 Gigabytes (64-bits) Performance I measured performance on a Sun Ultra 27 (which has a Nehalem-class Xeon 5500 Intel W3570 microprocessor @3.2GHz). Turbo mode is disabled for consistent performance measurement. Graphs are better than words and numbers, so here they are: The first graph shows the Solaris digest(1) command before and after the optimizations discussed here, contained in libmd(3LIB). I ran the digest command on a half GByte file in swapfs (/tmp) and execution time decreased from 1.35 seconds to 0.98 seconds. The second graph shows the the results of an internal microbenchmark that uses the Solaris libpkcs11(3LIB) library. The operations are on a 128 byte buffer with 10,000 iterations. The results show operations increased from 320,000 to 416,000 operations per second. Finally the third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. The results show for 1 kernel thread, operations increased from 410 to 600 MBytes/second. For 8 kernel threads, operations increase from 1540 to 1940 MBytes/second. Availability This code is in Solaris 11 FCS. It is available in the 64-bit libmd(3LIB) library for 64-bit programs and is in the Solaris kernel. You must be running hardware that supports Intel's SSSE3 instructions (for example, Intel Nehalem, Westmere, or Sandy Bridge microprocessor architectures). The easiest way to determine if SSSE3 is available is with the isainfo(1) command. For example, nehalem $ isainfo -v $ isainfo -v 64-bit amd64 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu If the output also shows "avx", the Solaris executes the even-more optimized 3-operand AVX instructions for SHA-1 mentioned above: sandybridge $ isainfo -v 64-bit amd64 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this code. Solaris libraries and kernel automatically determine if it's running on SSSE3 or AVX-capable machines and execute the correctly-tuned code for that microprocessor. Summary The Solaris 11 Crypto Framework, via the sha1 kernel module and libmd(3LIB) and libpkcs11(3LIB) libraries, incorporated a useful SHA-1 optimization from Intel for SSSE3-capable microprocessors. As with other Solaris optimizations, they come automatically "under the hood" with the current Solaris release. References "Improving the Performance of the Secure Hash Algorithm (SHA-1)" by Max Locktyukhin (Intel, March 2010). The source for these SHA-1 optimizations used in Solaris "SHA-1", Wikipedia Good overview of SHA-1 FIPS 180-1 SHA-1 standard (FIPS, 1995) NIST Comments on Cryptanalytic Attacks on SHA-1 (2005, revised 2006)

    Read the article

  • New Big Data Appliance Security Features

    - by mgubar
    The Oracle Big Data Appliance (BDA) is an engineered system for big data processing.  It greatly simplifies the deployment of an optimized Hadoop Cluster – whether that cluster is used for batch or real-time processing.  The vast majority of BDA customers are integrating the appliance with their Oracle Databases and they have certain expectations – especially around security.  Oracle Database customers have benefited from a rich set of security features:  encryption, redaction, data masking, database firewall, label based access control – and much, much more.  They want similar capabilities with their Hadoop cluster.    Unfortunately, Hadoop wasn’t developed with security in mind.  By default, a Hadoop cluster is insecure – the antithesis of an Oracle Database.  Some critical security features have been implemented – but even those capabilities are arduous to setup and configure.  Oracle believes that a key element of an optimized appliance is that its data should be secure.  Therefore, by default the BDA delivers the “AAA of security”: authentication, authorization and auditing. Security Starts at Authentication A successful security strategy is predicated on strong authentication – for both users and software services.  Consider the default configuration for a newly installed Oracle Database; it’s been a long time since you had a legitimate chance at accessing the database using the credentials “system/manager” or “scott/tiger”.  The default Oracle Database policy is to lock accounts thereby restricting access; administrators must consciously grant access to users. Default Authentication in Hadoop By default, a Hadoop cluster fails the authentication test. For example, it is easy for a malicious user to masquerade as any other user on the system.  Consider the following scenario that illustrates how a user can access any data on a Hadoop cluster by masquerading as a more privileged user.  In our scenario, the Hadoop cluster contains sensitive salary information in the file /user/hrdata/salaries.txt.  When logged in as the hr user, you can see the following files.  Notice, we’re using the Hadoop command line utilities for accessing the data: $ hadoop fs -ls /user/hrdataFound 1 items-rw-r--r--   1 oracle supergroup         70 2013-10-31 10:38 /user/hrdata/salaries.txt$ hadoop fs -cat /user/hrdata/salaries.txtTom Brady,11000000Tom Hanks,5000000Bob Smith,250000Oprah,300000000 User DrEvil has access to the cluster – and can see that there is an interesting folder called “hrdata”.  $ hadoop fs -ls /user Found 1 items drwx------   - hr supergroup          0 2013-10-31 10:38 /user/hrdata However, DrEvil cannot view the contents of the folder due to lack of access privileges: $ hadoop fs -ls /user/hrdata ls: Permission denied: user=drevil, access=READ_EXECUTE, inode="/user/hrdata":oracle:supergroup:drwx------ Accessing this data will not be a problem for DrEvil. He knows that the hr user owns the data by looking at the folder’s ACLs. To overcome this challenge, he will simply masquerade as the hr user. On his local machine, he adds the hr user, assigns that user a password, and then accesses the data on the Hadoop cluster: $ sudo useradd hr $ sudo passwd $ su hr $ hadoop fs -cat /user/hrdata/salaries.txt Tom Brady,11000000 Tom Hanks,5000000 Bob Smith,250000 Oprah,300000000 Hadoop has not authenticated the user; it trusts that the identity that has been presented is indeed the hr user. Therefore, sensitive data has been easily compromised. Clearly, the default security policy is inappropriate and dangerous to many organizations storing critical data in HDFS. Big Data Appliance Provides Secure Authentication The BDA provides secure authentication to the Hadoop cluster by default – preventing the type of masquerading described above. It accomplishes this thru Kerberos integration. Figure 1: Kerberos Integration The Key Distribution Center (KDC) is a server that has two components: an authentication server and a ticket granting service. The authentication server validates the identity of the user and service. Once authenticated, a client must request a ticket from the ticket granting service – allowing it to access the BDA’s NameNode, JobTracker, etc. At installation, you simply point the BDA to an external KDC or automatically install a highly available KDC on the BDA itself. Kerberos will then provide strong authentication for not just the end user – but also for important Hadoop services running on the appliance. You can now guarantee that users are who they claim to be – and rogue services (like fake data nodes) are not added to the system. It is common for organizations to want to leverage existing LDAP servers for common user and group management. Kerberos integrates with LDAP servers – allowing the principals and encryption keys to be stored in the common repository. This simplifies the deployment and administration of the secure environment. Authorize Access to Sensitive Data Kerberos-based authentication ensures secure access to the system and the establishment of a trusted identity – a prerequisite for any authorization scheme. Once this identity is established, you need to authorize access to the data. HDFS will authorize access to files using ACLs with the authorization specification applied using classic Linux-style commands like chmod and chown (e.g. hadoop fs -chown oracle:oracle /user/hrdata changes the ownership of the /user/hrdata folder to oracle). Authorization is applied at the user or group level – utilizing group membership found in the Linux environment (i.e. /etc/group) or in the LDAP server. For SQL-based data stores – like Hive and Impala – finer grained access control is required. Access to databases, tables, columns, etc. must be controlled. And, you want to leverage roles to facilitate administration. Apache Sentry is a new project that delivers fine grained access control; both Cloudera and Oracle are the project’s founding members. Sentry satisfies the following three authorization requirements: Secure Authorization:  the ability to control access to data and/or privileges on data for authenticated users. Fine-Grained Authorization:  the ability to give users access to a subset of the data (e.g. column) in a database Role-Based Authorization:  the ability to create/apply template-based privileges based on functional roles. With Sentry, “all”, “select” or “insert” privileges are granted to an object. The descendants of that object automatically inherit that privilege. A collection of privileges across many objects may be aggregated into a role – and users/groups are then assigned that role. This leads to simplified administration of security across the system. Figure 2: Object Hierarchy – granting a privilege on the database object will be inherited by its tables and views. Sentry is currently used by both Hive and Impala – but it is a framework that other data sources can leverage when offering fine-grained authorization. For example, one can expect Sentry to deliver authorization capabilities to Cloudera Search in the near future. Audit Hadoop Cluster Activity Auditing is a critical component to a secure system and is oftentimes required for SOX, PCI and other regulations. The BDA integrates with Oracle Audit Vault and Database Firewall – tracking different types of activity taking place on the cluster: Figure 3: Monitored Hadoop services. At the lowest level, every operation that accesses data in HDFS is captured. The HDFS audit log identifies the user who accessed the file, the time that file was accessed, the type of access (read, write, delete, list, etc.) and whether or not that file access was successful. The other auditing features include: MapReduce:  correlate the MapReduce job that accessed the file Oozie:  describes who ran what as part of a workflow Hive:  captures changes were made to the Hive metadata The audit data is captured in the Audit Vault Server – which integrates audit activity from a variety of sources, adding databases (Oracle, DB2, SQL Server) and operating systems to activity from the BDA. Figure 4: Consolidated audit data across the enterprise.  Once the data is in the Audit Vault server, you can leverage a rich set of prebuilt and custom reports to monitor all the activity in the enterprise. In addition, alerts may be defined to trigger violations of audit policies. Conclusion Security cannot be considered an afterthought in big data deployments. Across most organizations, Hadoop is managing sensitive data that must be protected; it is not simply crunching publicly available information used for search applications. The BDA provides a strong security foundation – ensuring users are only allowed to view authorized data and that data access is audited in a consolidated framework.

    Read the article

  • Announcing the Release of Visual Studio 2013 and Great Improvements to ASP.NET and Entity Framework

    - by ScottGu
    Today we released VS 2013 and .NET 4.5.1. These releases include a ton of great improvements, and include some fantastic enhancements to ASP.NET and the Entity Framework.  You can download and start using them now. Below are details on a few of the great ASP.NET, Web Development, and Entity Framework improvements you can take advantage of with this release.  Please visit http://www.asp.net/vnext for additional release notes, documentation, and tutorials. One ASP.NET With the release of Visual Studio 2013, we have taken a step towards unifying the experience of using the different ASP.NET sub-frameworks (Web Forms, MVC, Web API, SignalR, etc), and you can now easily mix and match the different ASP.NET technologies you want to use within a single application. When you do a File-New Project with VS 2013 you’ll now see a single ASP.NET Project option: Selecting this project will bring up an additional dialog that allows you to start with a base project template, and then optionally add/remove the technologies you want to use in it.  For example, you could start with a Web Forms template and add Web API or Web Forms support for it, or create a MVC project and also enable Web Forms pages within it: This makes it easy for you to use any ASP.NET technology you want within your apps, and take advantage of any feature across the entire ASP.NET technology span. Richer Authentication Support The new “One ASP.NET” project dialog also includes a new Change Authentication button that, when pushed, enables you to easily change the authentication approach used by your applications – and makes it much easier to build secure applications that enable SSO from a variety of identity providers.  For example, when you start with the ASP.NET Web Forms or MVC templates you can easily add any of the following authentication options to the application: No Authentication Individual User Accounts (Single Sign-On support with FaceBook, Twitter, Google, and Microsoft ID – or Forms Auth with ASP.NET Membership) Organizational Accounts (Single Sign-On support with Windows Azure Active Directory ) Windows Authentication (Active Directory in an intranet application) The Windows Azure Active Directory support is particularly cool.  Last month we updated Windows Azure Active Directory so that developers can now easily create any number of Directories using it (for free and deployed within seconds).  It now takes only a few moments to enable single-sign-on support within your ASP.NET applications against these Windows Azure Active Directories.  Simply choose the “Organizational Accounts” radio button within the Change Authentication dialog and enter the name of your Windows Azure Active Directory to do this: This will automatically configure your ASP.NET application to use Windows Azure Active Directory and register the application with it.  Now when you run the app your users can easily and securely sign-in using their Active Directory credentials within it – regardless of where the application is hosted on the Internet. For more information about the new process for creating web projects, see Creating ASP.NET Web Projects in Visual Studio 2013. Responsive Project Templates with Bootstrap The new default project templates for ASP.NET Web Forms, MVC, Web API and SPA are built using Bootstrap. Bootstrap is an open source CSS framework that helps you build responsive websites which look great on different form factors such as mobile phones, tables and desktops. For example in a browser window the home page created by the MVC template looks like the following: When you resize the browser to a narrow window to see how it would like on a phone, you can notice how the contents gracefully wrap around and the horizontal top menu turns into an icon: When you click the menu-icon above it expands into a vertical menu – which enables a good navigation experience for small screen real-estate devices: We think Bootstrap will enable developers to build web applications that work even better on phones, tablets and other mobile devices – and enable you to easily build applications that can leverage the rich ecosystem of Bootstrap CSS templates already out there.  You can learn more about Bootstrap here. Visual Studio Web Tooling Improvements Visual Studio 2013 includes a new, much richer, HTML editor for Razor files and HTML files in web applications. The new HTML editor provides a single unified schema based on HTML5. It has automatic brace completion, jQuery UI and AngularJS attribute IntelliSense, attribute IntelliSense Grouping, and other great improvements. For example, typing “ng-“ on an HTML element will show the intellisense for AngularJS: This support for AngularJS, Knockout.js, Handlebars and other SPA technologies in this release of ASP.NET and VS 2013 makes it even easier to build rich client web applications: The screen shot below demonstrates how the HTML editor can also now inspect your page at design-time to determine all of the CSS classes that are available. In this case, the auto-completion list contains classes from Bootstrap’s CSS file. No more guessing at which Bootstrap element names you need to use: Visual Studio 2013 also comes with built-in support for both CoffeeScript and LESS editing support. The LESS editor comes with all the cool features from the CSS editor and has specific Intellisense for variables and mixins across all the LESS documents in the @import chain. Browser Link – SignalR channel between browser and Visual Studio The new Browser Link feature in VS 2013 lets you run your app within multiple browsers on your dev machine, connect them to Visual Studio, and simultaneously refresh all of them just by clicking a button in the toolbar. You can connect multiple browsers (including IE, FireFox, Chrome) to your development site, including mobile emulators, and click refresh to refresh all the browsers all at the same time.  This makes it much easier to easily develop/test against multiple browsers in parallel. Browser Link also exposes an API to enable developers to write Browser Link extensions.  By enabling developers to take advantage of the Browser Link API, it becomes possible to create very advanced scenarios that crosses boundaries between Visual Studio and any browser that’s connected to it. Web Essentials takes advantage of the API to create an integrated experience between Visual Studio and the browser’s developer tools, remote controlling mobile emulators and a lot more. You will see us take advantage of this support even more to enable really cool scenarios going forward. ASP.NET Scaffolding ASP.NET Scaffolding is a new code generation framework for ASP.NET Web applications. It makes it easy to add boilerplate code to your project that interacts with a data model. In previous versions of Visual Studio, scaffolding was limited to ASP.NET MVC projects. With Visual Studio 2013, you can now use scaffolding for any ASP.NET project, including Web Forms. When using scaffolding, we ensure that all required dependencies are automatically installed for you in the project. For example, if you start with an ASP.NET Web Forms project and then use scaffolding to add a Web API Controller, the required NuGet packages and references to enable Web API are added to your project automatically.  To do this, just choose the Add->New Scaffold Item context menu: Support for scaffolding async controllers uses the new async features from Entity Framework 6. ASP.NET Identity ASP.NET Identity is a new membership system for ASP.NET applications that we are introducing with this release. ASP.NET Identity makes it easy to integrate user-specific profile data with application data. ASP.NET Identity also allows you to choose the persistence model for user profiles in your application. You can store the data in a SQL Server database or another data store, including NoSQL data stores such as Windows Azure Storage Tables. ASP.NET Identity also supports Claims-based authentication, where the user’s identity is represented as a set of claims from a trusted issuer. Users can login by creating an account on the website using username and password, or they can login using social identity providers (such as Microsoft Account, Twitter, Facebook, Google) or using organizational accounts through Windows Azure Active Directory or Active Directory Federation Services (ADFS). To learn more about how to use ASP.NET Identity visit http://www.asp.net/identity.  ASP.NET Web API 2 ASP.NET Web API 2 has a bunch of great improvements including: Attribute routing ASP.NET Web API now supports attribute routing, thanks to a contribution by Tim McCall, the author of http://attributerouting.net. With attribute routing you can specify your Web API routes by annotating your actions and controllers like this: OAuth 2.0 support The Web API and Single Page Application project templates now support authorization using OAuth 2.0. OAuth 2.0 is a framework for authorizing client access to protected resources. It works for a variety of clients including browsers and mobile devices. OData Improvements ASP.NET Web API also now provides support for OData endpoints and enables support for both ATOM and JSON-light formats. With OData you get support for rich query semantics, paging, $metadata, CRUD operations, and custom actions over any data source. Below are some of the specific enhancements in ASP.NET Web API 2 OData. Support for $select, $expand, $batch, and $value Improved extensibility Type-less support Reuse an existing model OWIN Integration ASP.NET Web API now fully supports OWIN and can be run on any OWIN capable host. With OWIN integration, you can self-host Web API in your own process alongside other OWIN middleware, such as SignalR. For more information, see Use OWIN to Self-Host ASP.NET Web API. More Web API Improvements In addition to the features above there have been a host of other features in ASP.NET Web API, including CORS support Authentication Filters Filter Overrides Improved Unit Testability Portable ASP.NET Web API Client To learn more go to http://www.asp.net/web-api/ ASP.NET SignalR 2 ASP.NET SignalR is library for ASP.NET developers that dramatically simplifies the process of adding real-time web functionality to your applications. Real-time web functionality is the ability to have server-side code push content to connected clients instantly as it becomes available. SignalR 2.0 introduces a ton of great improvements. We’ve added support for Cross-Origin Resource Sharing (CORS) to SignalR 2.0. iOS and Android support for SignalR have also been added using the MonoTouch and MonoDroid components from the Xamarin library (for more information on how to use these additions, see the article Using Xamarin Components from the SignalR wiki). We’ve also added support for the Portable .NET Client in SignalR 2.0 and created a new self-hosting package. This change makes the setup process for SignalR much more consistent between web-hosted and self-hosted SignalR applications. To learn more go to http://www.asp.net/signalr. ASP.NET MVC 5 The ASP.NET MVC project templates integrate seamlessly with the new One ASP.NET experience and enable you to integrate all of the above ASP.NET Web API, SignalR and Identity improvements. You can also customize your MVC project and configure authentication using the One ASP.NET project creation wizard. The MVC templates have also been updated to use ASP.NET Identity and Bootstrap as well. An introductory tutorial to ASP.NET MVC 5 can be found at Getting Started with ASP.NET MVC 5. This release of ASP.NET MVC also supports several nice new MVC-specific features including: Authentication filters: These filters allow you to specify authentication logic per-action, per-controller or globally for all controllers. Attribute Routing: Attribute Routing allows you to define your routes on actions or controllers. To learn more go to http://www.asp.net/mvc Entity Framework 6 Improvements Visual Studio 2013 ships with Entity Framework 6, which bring a lot of great new features to the data access space: Async and Task<T> Support EF6’s new Async Query and Save support enables you to perform asynchronous data access and take advantage of the Task<T> support introduced in .NET 4.5 within data access scenarios.  This allows you to free up threads that might otherwise by blocked on data access requests, and enable them to be used to process other requests whilst you wait for the database engine to process operations. When the database server responds the thread will be re-queued within your ASP.NET application and execution will continue.  This enables you to easily write significantly more scalable server code. Here is an example ASP.NET WebAPI action that makes use of the new EF6 async query methods: Interception and Logging Interception and SQL logging allows you to view – or even change – every command that is sent to the database by Entity Framework. This includes a simple, human readable log – which is great for debugging – as well as some lower level building blocks that give you access to the command and results. Here is an example of wiring up the simple log to Debug in the constructor of an MVC controller: Custom Code-First Conventions The new Custom Code-First Conventions enable bulk configuration of a Code First model – reducing the amount of code you need to write and maintain. Conventions are great when your domain classes don’t match the Code First conventions. For example, the following convention configures all properties that are called ‘Key’ to be the primary key of the entity they belong to. This is different than the default Code First convention that expects Id or <type name>Id. Connection Resiliency The new Connection Resiliency feature in EF6 enables you to register an execution strategy to handle – and potentially retry – failed database operations. This is especially useful when deploying to cloud environments where dropped connections become more common as you traverse load balancers and distributed networks. EF6 includes a built-in execution strategy for SQL Azure that knows about retryable exception types and has some sensible – but overridable – defaults for the number of retries and time between retries when errors occur. Registering it is simple using the new Code-Based Configuration support: These are just some of the new features in EF6. You can visit the release notes section of the Entity Framework site for a complete list of new features. Microsoft OWIN Components Open Web Interface for .NET (OWIN) defines an open abstraction between .NET web servers and web applications, and the ASP.NET “Katana” project brings this abstraction to ASP.NET. OWIN decouples the web application from the server, making web applications host-agnostic. For example, you can host an OWIN-based web application in IIS or self-host it in a custom process. For more information about OWIN and Katana, see What's new in OWIN and Katana. Summary Today’s Visual Studio 2013, ASP.NET and Entity Framework release delivers some fantastic new features that streamline your web development lifecycle. These feature span from server framework to data access to tooling to client-side HTML development.  They also integrate some great open-source technology and contributions from our developer community. Download and start using them today! Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Is it possible to use Windows Authentication to logon to Axapta 4 (or 5) in a Website/webservice

    - by rdkleine
    Using this code I can not create a connection using IIS 7 with Windows Authentication. try { Axapta axapta = new Axapta(); axapta.Logon("", "", "", ""); //Or this> axapta.Logon("COMPANY", "NL-nl", "OBJECTSERVER", ""); System.Diagnostics.Debug.WriteLine("yep"); axapta.Logoff(); } catch (Exception ex) { System.Diagnostics.Debug.WriteLine(ex.ToString()); } When changing App Pool Identity to a user with rights in Axapta then I can create a connection. So it seems like the App Pool Identity is used. Is it even possible to get this do without using the LogonAs method? Is there some other way short of asking the user for they're credentials? Appreciate any help on this, Ralf

    Read the article

< Previous Page | 84 85 86 87 88 89 90 91 92 93 94 95  | Next Page >