Search Results

Search found 8191 results on 328 pages for 'dynamic compilation'.

Page 9/328 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • How do you navigate and refactor code written in a dynamic language?

    - by Philippe Beaudoin
    I love that writing Python, Ruby or Javascript requires so little boilerplate. I love simple functional constructs. I love the clean and simple syntax. However, there are three things I'm really bad at when developing a large software in a dynamic language: Navigating the code Identifying the interfaces of the objects I'm using Refactoring efficiently I have been trying simple editors (i.e. Vim) as well as IDE (Eclipse + PyDev) but in both cases I feel like I have to commit a lot more to memory and/or to constantly "grep" and read through the code to identify the interfaces. As for refactoring, for example changing method names, it becomes hugely dependent on the quality of my unit tests. And if I try to isolate my unit tests by "cutting them off" the rest of the application, then there is no guarantee that my stub's interface stays up to date with the object I'm stubbing. I'm sure there are workarounds for these problems. How do you work efficiently in Python, Ruby or Javascript?

    Read the article

  • Does having over 80% dynamic and rapidly changing content affect SEO?

    - by webmasters
    I have a website that pulls promotions of products from other website. My index page has a structure similar to this: My Brand - Best Promotions Looking for great deals? Check out our top promotions A menu - listing the promotions categories 20 of the latest promotions (the best ones): I list an image; Promotion description (200 chars); Link to the promotion page. Question: More then 80% of my index page (maybe even 90%) is composed of the 20 promotions I list; these promotions change on a daily bases - which dramatically changes the content of my index page. Does the dynamic changing of the index page affect SEO? Should I try to add more static text where I can? (which won't change) Ty

    Read the article

  • How do I get the value of a DynamicControl?

    - by Telos
    I'm using ASP.NET Dynamic Data functionality to do something a little weird. Namely, create a dynamic list of fields as children of the main object. So basically I have Ticket.Fields. The main page lists all the fields for Ticket, and the Fields property has a DynamicControl that generates a list of controls to collect more data. The tricky part is that this list ALSO uses Dynamic Data to generate the controls, so each field can be any of the defined FieldTemplates... meaning I don't necessarily know what the actual data control will be when I try to get the value. So, how do I get the value of a DynamicControl? Do I need to create a new subclass of FieldTemplate that provides a means to get at the value?

    Read the article

  • Why calling ISet<dynamic>.Contains() compiles, but throws an exception at runtime?

    - by Andrey Breslav
    Please, help me to explain the following behavior: dynamic d = 1; ISet<dynamic> s = new HashSet<dynamic>(); s.Contains(d); The code compiles with no errors/warnings, but at the last line I get the following exception: Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException: 'System.Collections.Generic.ISet<object>' does not contain a definition for 'Contains' at CallSite.Target(Closure , CallSite , ISet`1 , Object ) at System.Dynamic.UpdateDelegates.UpdateAndExecuteVoid2[T0,T1](CallSite site, T0 arg0, T1 arg1) at FormulaToSimulation.Program.Main(String[] args) in As far as I can tell, this is related to dynamic overload resolution, but the strange things are (1) If the type of s is HashSet<dynamic>, no exception occurs. (2) If I use a non-generic interface with a method accepting a dynamic argument, no exception occurs. Thus, it looks like this problem is related particularly with generic interfaces, but I could not find out what exactly causes the problem. Is it a bug in the compiler/typesystem, or legitimate behavior?

    Read the article

  • Are Dynamic Prepared Statements Bad? (with php + mysqli)

    - by John
    I like the flexibility of Dynamic SQL and I like the security + improved performance of Prepared Statements. So what I really want is Dynamic Prepared Statements, which is troublesome to make because bind_param and bind_result accept "fixed" number of arguments. So I made use of an eval() statement to get around this problem. But I get the feeling this is a bad idea. Here's example code of what I mean // array of WHERE conditions $param = array('customer_id'=>1, 'qty'=>'2'); $stmt = $mysqli->stmt_init(); $types = ''; $bindParam = array(); $where = ''; $count = 0; // build the dynamic sql and param bind conditions foreach($param as $key=>$val) { $types .= 'i'; $bindParam[] = '$p'.$count.'=$param["'.$key.'"]'; $where .= "$key = ? AND "; $count++; } // prepare the query -- SELECT * FROM t1 WHERE customer_id = ? AND qty = ? $sql = "SELECT * FROM t1 WHERE ".substr($where, 0, strlen($where)-4); $stmt->prepare($sql); // assemble the bind_param command $command = '$stmt->bind_param($types, '.implode(', ', $bindParam).');'; // evaluate the command -- $stmt->bind_param($types,$p0=$param["customer_id"],$p1=$param["qty"]); eval($command); Is that last eval() statement a bad idea? I tried to avoid code injection by encapsulating values behind the variable name $param. Does anyone have an opinion or other suggestions? Are there issues I need to be aware of?

    Read the article

  • Aligning music notes using String matching algorithms or Dynamic Programming

    - by Dolphin
    Hi I need to compare 2 sets of musical pieces (i.e. a playing-taken in MIDI format-note details extracted and saved in a database table, against sheet music-taken into XML format). When evaluating playing against sheet music (i.e.note details-pitch, duration, rhythm), note alignment needs to be done - to identify missed/extra/incorrect/swapped notes that from the reference (sheet music) notes. I have like 1800-2500 notes in one piece approx (can even be more-with polyphonic, right now I'm doing for monophonic). So will I have to have all these into an array? Will it be memory overloading or stack overflow? There are string matching algorithms like KMP, Boyce-Moore. But note alignment can also be done through Dynamic Programming. How can I use Dynamic Programming to approach this? What are the available algorithms? Is it about approximate string matching? Which approach is much productive? String matching algos like Boyce-Moore, or dynamic programming? How can I assess which is more effective? Greatly appreciate any insight or suggestions Thanks in advance

    Read the article

  • Development Quirk From ASP.NET Dynamic Compilation

    - by jkauffman
    The Problem I got a compilation error in my ASP.NET MVC3 project that tested my sanity today. (As always, names are changed to protect the innocent) The type or namespace name 'FishViewModel' does not exist in the namespace 'Company.Product.Application.Models' (are you missing an assembly reference?) Sure looks easy! There must be something in the project referring to a FishViewModel. The Confusing Part The first thing I noticed was the that error was occuring in a folder clearly not in my project and in files that I definitely had not created: %SystemRoot%\Microsoft.NET\Framework\(versionNumber)\Temporary ASP.NET Files\ App_Web_mezpfjae.1.cs I also ascertained these facts, each of which made me more confused than the last: Rebuild and Clean had no effect. No controllers in the project ever returned a ViewResult using FishViewModel. No views in the project defined that they use FishViewModel. Searching across all files included in the project for “FishViewModel” provided no results. The build server did not report a problem. The Solution The problem stemmed from a file that was not included in the project but still present on the file system: (By the way, if you don’t know this trick already, there is a toolbar button in the Solution Explorer window to “Show All Files” which allows you to see files all files in the file system) In my situation, I was working on the mission-critical Fish view before abandoning the feature. Instead of deleting the file, I excluded it from the project. However, this was a bad move. It caused the build failure, and in order to fix the error, this file must be deleted. By the way, this file was not in source control, so the build server did not have it. This explains why my build server did not report a problem for me. The Explanation So, what’s going on? This file isn’t even a part of the project, so why is it failing the build? This is a behavior of the ASP.NET Dynamic Compilation. This is the same process that occurs when deploying a webpage; ASP.NET compiles the web application’s code. When this occurs on a production server, it has to do so without the .csproj file (which isn’t usually deployed, if you’ve taken your time to do a deployment cleanly). This process has merely the file system available to identify what to compile. So, back in the world of developing the webpage in visual studio on my developer box, I run into the situation because the same process is occuring there. This is true even though I have more files on my machine than will actually get deployed. I can’t help but think that this error could be attributed back to the real culprit file (Fish.cshtml, rather than the temporary files) with some work, but at least the error had enough information in it to narrow it down. The Conclusion I had previously been accustomed to the idea that for c# projects, the .csproj file always “defines” the build behavior. This investigation has taught me that I’ll need to shift my thinking a bit to remember that the file system has the final say when it comes to web applications, even on the developer’s machine!

    Read the article

  • Dynamic form in PHP not processing correctly

    - by user1497265
    My last question regarding this suggested I incorporate AJAX with PHP. However, I really wanted to try PHP exclusively for this project, and I seem to have made it about 95% there. I just need help on this one issue. Here's a quick background. My project requires a dynamic form to be populated with a max limit of 10 questions. Each form contains one question, one question number, and a text field. Students would go on and answer the questions. This is all driven by a database table (obviously), and when a question gets answered correctly, it will close and the next question in line will appear. There will always be 10 questions on the page. Here's how the coding looks, and it works perfectly. <? $rt = mysql_query("SELECT * FROM The_Questions WHERE Status='Open' ORDER BY 'Number' LIMIT 10"); while ($row = mysql_fetch_array($rt)) { $number=$row[0]; $category = $row[1]; $question=$row[2]; $points=$row[4]; $_SESSION['number'] = $number; ?> <form action="processor.php" method="post" class="qForm"> <div class="questionCell"> <div class="question"><? echo $number; echo $question ?></div> <div class="answer">Answer: <input class="inputField" name="q1" type="text" size="40" maxlength="40" /> <input name="HHQuestion" value="Submit" type="submit" /></div> </div> </form> <? } ?> The questions appear as they should, in the correct order, and the correct limit. Everything seems to be looking fine until a question gets answered and gets processed through the processor.php action. First here's the code to the processor.php file: <?php session_start(); if(isset($_POST["HHQuestion"])){ $dbhost = 'localhost'; $dbname = 'localhost'; $dbuser = 'localhost'; $dbpass = 'localhost'; $conn = mysql_connect($dbhost, $dbuser, $dbpass); mysql_select_db($dbname, $conn); { $number1 = $_SESSION['number']; $answer=$_POST['q1']; $sql="SELECT * FROM The_Questions WHERE Number='$number1'"; $result=mysql_query($sql); $row=mysql_fetch_array($result); $question = $row[2]; echo $question .'<br>'; echo $number1.'<br>'; echo $answer; } } ?> This is NOT live yet, and for testing purposes I'm echoing the question, question number, and answer (as you can see). What's happening is that the $question and $number1 displays the last question in the array (the $answer displays correctly, meaning it displays whatever was written in the dynamic form). Can anyone tell me why that is? If I change the LIMIT number to 20, the processor.php action will display the 20th question and number, even if I was answering question 8, for example, in the dynamic form. Again, the dynamic forms are being displayed correctly, and are numbered correctly. For some unknown reason to me, the action - processor.php - is grabbing the last question in the array. Any ideas on what I'm doing wrong? I'm hoping it's a simple code change that I'm overlooking. Thanks in advance guys!

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Returning to last viewed List page after insert/edit with ASP.NET Dynamic Data

    - by Pat James
    With a pretty standard Dynamic Data site, when the user edits or inserts a new item and saves, the page does a Response.Redirect(table.ListActionPath), which takes the user back to page 1 of the table. If they were editing an item on page 10 (or whatever) and want to edit the next item on that page, they have to remember the page number and navigate back to it. What's the best way to return the user to the list page they last viewed? I can conceive of some solutions using cookies, session state, or query string values to retain this state and making my own Page Template to incorporate it, but I can't help thinking this must be something that was considered when Dynamic Data was created, and there must be something simpler or built-in to the framework that I'm missing here.

    Read the article

  • Hybrid static/dynamic Google Map

    - by jonathanconway
    Ever noticed that when you go to maps.google.com and do a search (say, car wash), it renders a lot of results (represented by small circles) and a few prominent ones (seen as regular-size pins)? Notice how quickly it does this? From what I can tell from analyzing this in Firebug, much of this is generated on the server and sent to the client as a static image. However, it's still dynamic. You can still zoom in and out, or click on a result and see a dynamic InfoWindow rendered. Google have made the map quick and smooth using static images, while still making it flexible. Is there a way to do this kind of 'pre-loading' with my own Google Map (implemented with the Google Maps API)?

    Read the article

  • ASP.Net RADs: Dynamic Data alternatives

    - by SDReyes
    Hi Guys! We have a set of tables and views that merely store some config data for embedded devices. this schema is change-prone and do not really required lots of logic, beyond some validation rules. so we considered using a RAD tool for maintaining these CRUDS. In first stage: Dynamic Data But the community size, books absence and the last modification dates of the MSDN articles (~July 2008) makes me want to hear your experiences. (actually DynamicData comes as a part of the ASP.Net MVC2 project) What has been your experience with Dynamic Data? And... What is your favorite ASP.Net RAD alternative? Why? Thank you in advance guys! PD: Entity framework friendliness is a bonus : )

    Read the article

  • Get control instance in asp.net dynamic data

    - by Ashwani K
    Hello All: I am creating a web application using Asp.net dynamic data. I am using GridView to show data from the database. In the grid view I am having following code for columns <Columns> <asp:DynamicField DataField="UserId" UIHint="Label" /> <asp:DynamicField DataField="Address" UIHint="Address"/> <asp:DynamicField DataField="CreatedDate" UIHint="Label" /> </Columns> But, before displaying I want to do some processing in C# code for each row. In normal ASP.net grid view we can handle OnRowDataBound method, and using FindControl("controlid") we can get the control instance, but in case of dynamic data, I am not getting any id attribute for columns, so I am not able to get the control instance to show updated data in that control depending on some conditions. Thanks, Ashwani

    Read the article

  • linq to sql dynamic data modify object before insert and update

    - by Dan Tanner
    I'm using Dynamic Data and LINQ to SQL for some admin pages on a .NET 3.5 web app. All my admin tables a CreatedBy, CreatedDate, UpdatedBy, and UpdatedDate. I'm looking for a way to inject the setting of these properties before the objects are inserted and updated. I've seen an object_inserting hook if you have a linq to sql datasource in the web form, but I'm using dynamic data...is there an easy way to generically set that? And I've also looked at modifying each of the partial classes for my admin objects, but the closest hook I see is to implement the OnValidate method with the Insert action. Any suggestions? TIA.

    Read the article

  • Static Website - Converting to Dynamic, need to import information from database on different host

    - by gvernold
    This seems really complicated to ask about so I hope someone can help: We have a long time running static website held with a hosting company that provide PHP, Ruby-on-Rails and Drupal/Joomla support. A little limited I know but we got reasonably decent search engine rankings and didn't want them to drop. We have two much more recently created sites on another host written in Python/Django. The original site is now too big to handle statically and we want to create a more dynamic site in its place without changing servers/webhosts. The data we want to provide the 'new' dynamic site is from the same database providing the Django sites. What is the best solution to build the new site with? Is it better to create PHP pages that connect to the database on the other host? Ruby-on-rails seems like a very fast development environment not too dissimilar to Django, would we be able to fetch data from the existing databases into a rails site and use similar urls to our old static pages?

    Read the article

  • C++ - dynamic pointer of array

    - by Eagle
    Hi to all, first i would like to say i am Newbie in C++. As part of my master thesis i am writing a program in C++ which also get as parameters the variables m and d (both integers). Were d is the power of 2 (this means 2^d elements). Parameter m define the number of possible interactions between one element and the total group (2^d elements). The number of possible interactions is computed as following: \kappa = \sum_{i=0}^m\binom{d}{i} (at present i generate vector of vectors for 2^d x \kappa, but my Prof. would like me to create different statistics to different m's. My first though was to to generate a dynamic array of m arrays of different sizes... Then i though of defining a 3-dim array with the biggest needed 2d array, but also program speed is important (e.g d = 20). i would like to ask for your advice how to define such kind of dynamic array that will also be fast. Regards

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >