Search Results

Search found 2221 results on 89 pages for 'inverse matrix'.

Page 9/89 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • Computing, storing, and retrieving values to and from an N-Dimensional matrix

    - by Adam S
    This question is probably quite different from what you are used to reading here - I hope it can provide a fun challenge. Essentially I have an algorithm that uses 5(or more) variables to compute a single value, called outcome. Now I have to implement this algorithm on an embedded device which has no memory limitations, but has very harsh processing constraints. Because of this, I would like to run a calculation engine which computes outcome for, say, 20 different values of each variable and stores this information in a file. You may think of this as a 5(or more)-dimensional matrix or 5(or more)-dimensional array, each dimension being 20 entries long. In any modern language, filling this array is as simple as having 5(or more) nested for loops. The tricky part is that I need to dump these values into a file that can then be placed onto the embedded device so that the device can use it as a lookup table. The questions now, are: What format(s) might be acceptable for storing the data? What programs (MATLAB, C#, etc) might be best suited to compute the data? C# must be used to import the data on the device - is this possible given your answer to #1?

    Read the article

  • The purpose of using invert and transpose

    - by user699215
    In openGl ES and the World of 3D - why use the invers matrix? The thing is that I dont have any intuition to, why it is used, therefore please correct me: As fare as I understand, it is used in shaders - and can help you to figure out the opposite direction of the normals? Invers in ordinary numbers is like; The product of a number and its multiplicative inverse is 1. Observe that 3/5 * 5/3 = 1. In a matrix this will give you the Identity Matrix, which is the base coordinate system or the orion of the World space - right. But the invers is - some other coordinate system? You can use the transpose(Row-major order to Column-major order) of a square matrix to find the inverted matrix, as calculating the invers is process heavy - and the transpose is giving you the inverted matrix as a bi product? Again, I am looking for getting some intuition of this - and therefore be able to use it as intended. Thank you for any reply that will guide me in the right direction. Regards

    Read the article

  • Drawing two orthogonal strings in 3d space in Android Canvas?

    - by hasanghaforian
    I want to draw two strings in canvas.First string must be rotated around Y axis,for example 45 degrees.Second string must be start at the end of first string and also it must be orthogonal to first string. This is my code: String text = "In the"; float textWidth = redPaint.measureText(text); Matrix m0 = new Matrix(); Matrix m1 = new Matrix(); Matrix m2 = new Matrix(); mCamera = new Camera(); canvas.setMatrix(null); canvas.save(); mCamera.rotateY(45); mCamera.getMatrix(m0); m0.preTranslate(-100, -100); m0.postTranslate(100, 100); canvas.setMatrix(m0); canvas.drawText(text, 100, 100, redPaint); mCamera = new Camera(); mCamera.rotateY(90); mCamera.getMatrix(m1); m1.preTranslate(-textWidth - 100, -100); m1.postTranslate(textWidth + 100, 100); m2.setConcat(m1, m0); canvas.setMatrix(m2); canvas.drawText(text, 100 + textWidth, 100, greenPaint); But in result,only first string(text with red font)is visible. How can I do drawing two orthogonal strings in 3d space?

    Read the article

  • Common way to store model transformations

    - by redreggae
    I ask myself what's the best way to store the transformations in a model class. What I came up with is to store the translation and scaling in a Vector3 and the rotation in a Matrix4. On each update (frame) I multiply the 3 matrices (first build a Translation and Scaling Matrix) to get the world matrix. In this way I have no accumulated error. world = translation * scaling * rotation Another way would be to store the rotation in a quaternion but then I would have a high cost to convert to a matrix every time step. If I lerp the model I convert the rotation matrix to quaternion and then back to matrix. For speed optimization I have a dirty flag for each transformation so that I only do a matrix multiplication if necessary. world = translation if (isScaled) { world *= scaling } if (isRotated) { world *= rotation } Is this a common way or is it more common to have only one Matrix4 for all transformations? And is it better to store the rotation only as quaternion? For info: Currently I'm building a CSS3D engine in Javascript but these questions are relevant for every 3D engine.

    Read the article

  • OpenGL, objects disappear at a certain z distance

    - by smoth190
    I'm writing a managed OpenGL library in C++, and I'm having a pretty annoying problem. Whenever I set an objects position to -2.0 or lower, the object disappears. And at distances 0 through -1.9, it doesn't appear to move away from them camera. I have a world matrix (which is multiplied by the objects position to move it), a view matrix (which is just the identity matrix currently) and a projection matrix, which is setup like this: FOV: 45.0f Aspect Ratio: 1 zNear: 0.1f zFar: 100.0f using GLMs glm::perspective method. The order the matrices are multiplied by in the shader is world, view, projection, then position. I can move the object along the X and Y axis perfectly fine. I have depth testing enabled, using GL_LEQUAL. I can change the actually vertices positions to anything I want, and they move away from the camera or towards it perfectly fine. It just seems to be the world matrix acting up. I'm using glm::mat4 for the world matrix, and glm::vec3 for positions. Whats going on here? I'm also using OpenGL 3.1, GLSL version 140 (1.4?).

    Read the article

  • Segmentation fault while matrix multiplication using openMp?

    - by harshit
    My matrix multiplication code is int matMul(int ld, double** matrix) { //local variables initialize omp_set_num_threads(nthreads); #pragma omp parallel private(tid,diag,ld) shared(i,j,k,matrix) { /* Obtain and print thread id */ tid = omp_get_thread_num(); for ( k=0; k<ld; k++) { if (matrix[k][k] == 0.0) { error = 1; return error; } diag = 1.0 / matrix[k][k]; #pragma omp for for ( i=k+1; i < ld; i++) { matrix[i][k] = diag * matrix[i][k]; } for ( j=k+1; j<ld; j++) { for ( i=k+1; i<ld; i++) { matrix[i][j] = matrix[i][j] - matrix[i][k] * matrix[k][j]; } } } } return error; } I assume that it is because of matrix object only but why will it be null even though it is passed as a parameter..

    Read the article

  • 5x5 matrix multiplication in C

    - by Rick
    I am stuck on this problem in my homework. I've made it this far and am sure the problem is in my three for loops. The question directly says to use 3 for loops so I know this is probably just a logic error. #include<stdio.h> void matMult(int A[][5],int B[][5],int C[][5]); int printMat_5x5(int A[5][5]); int main() { int A[5][5] = {{1,2,3,4,6}, {6,1,5,3,8}, {2,6,4,9,9}, {1,3,8,3,4}, {5,7,8,2,5}}; int B[5][5] = {{3,5,0,8,7}, {2,2,4,8,3}, {0,2,5,1,2}, {1,4,0,5,1}, {3,4,8,2,3}}; int C[5][5] = {0}; matMult(A,B,C); printMat_5x5(A); printf("\n"); printMat_5x5(B); printf("\n"); printMat_5x5(C); return 0; } void matMult(int A[][5], int B[][5], int C[][5]) { int i; int j; int k; for(i = 0; i <= 2; i++) { for(j = 0; j <= 4; j++) { for(k = 0; k <= 3; k++) { C[i][j] += A[i][k] * B[k][j]; } } } } int printMat_5x5(int A[5][5]){ int i; int j; for (i = 0;i < 5;i++) { for(j = 0;j < 5;j++) { printf("%2d",A[i][j]); } printf("\n"); } } EDIT: Here is the question, sorry for not posting it the first time. (2) Write a C function to multiply two five by five matrices. The prototype should read void matMult(int a[][5],int b[][5],int c[][5]); The resulting matrix product (a times b) is returned in the two dimensional array c (the third parameter of the function). Program your solution using three nested for loops (each generating the counter values 0, 1, 2, 3, 4) That is, DO NOT code specific formulas for the 5 by 5 case in the problem, but make your code general so it can be easily changed to compute the product of larger square matrices. Write a main program to test your function using the arrays a: 1 2 3 4 6 6 1 5 3 8 2 6 4 9 9 1 3 8 3 4 5 7 8 2 5 b: 3 5 0 8 7 2 2 4 8 3 0 2 5 1 2 1 4 0 5 1 3 4 8 2 3 Print your matrices in a neat format using a C function created for printing five by five matrices. Print all three matrices. Generate your test arrays in your main program using the C array initialization feature. enter code here

    Read the article

  • How to port animation from one skeleton to another?

    - by shawn
    While I need to do this in a Blender3D modeler script, the math should be similar for other modelers or realtime engines. Blender3D specific terminology: Armature = skeleton EditBone = rest pose bone (stores the rest pose matrix) PoseBone = can store a different pose (animation matrix) for each frame of your animation I need to share animations (Blender Actions) between Armatures which have EditBones with same names and which have the same positions, but can have different (rest pose) angles and scales. Plus the Armatures might have different bone hierarchy (bone parenting/ no bone parenting). Why I need this: I've made an importer/exporter for a 3d format for a game. The format doesn't store enough info to connect/parent the bones, which makes posing/animating character models in a 3d modeller nearly impossible (original model files for the 3d modeler don't exist, this is for modding). As there are only 2 character skeleton types in the game, I decided to optionally allow to generate the bone from a hardcoded data in the model importer and undo that in the exporter. This allows to easily pose the model for checking weights, easily create weights, makes it easier for Blender to generate automatic weights and of course makes animating possible. This worked perfectly: the importer optionally generated the Armature itself and the exporter removed those changes, so the exported model works with existing animations in the game. But now I'm writing an importer and exporter for the game's animation format and here come the problems of: Trying to make original animations work in Blender with my "custom" (modified) Armature Trying to make animations created by using the "custom" (modified) Armature work with the original models in the game (and Blender). Constraints or bone snapping inside Blender won't work as they don't care that the bones have different angles in the rest pose, they will still face the same direction. It seems I just need to get the "difference" between the EditBone matrices of all EditBones for the two Armatures somehow and apply that difference to PoseBone matrices of all PoseBones, for all frames of my animation. I need to know how to get that difference and how to apply it. BTW, PoseBone matrices are relative to rest pose, they are by default [1.000000, 0.000000, 0.000000, 0.000000](matrix [row 0]) [0.000000, 1.000000, 0.000000, 0.000000](matrix [row 1]) [0.000000, 0.000000, 1.000000, 0.000000](matrix [row 2]) [0.000000, 0.000000, 0.000000, 1.000000](matrix [row 3]) So the question is: How to get the difference between two bone (EditBone) matrices to apply that difference to the animation matrices (PoseBone matrices)? Please be easy on the matrix math.

    Read the article

  • Per-pixel collision detection - why does XNA transform matrix return NaN when adding scaling?

    - by JasperS
    I looked at the TransformCollision sample on MSDN and added the Matrix.CreateTranslation part to a property in my collision detection code but I wanted to add scaling. The code works fine when I leave scaling commented out but when I add it and then do a Matrix.Invert() on the created translation matrix the result is NaN ({NaN,NaN,NaN},{NaN,NaN,NaN},...) Can anyone tell me why this is happening please? Here's the code from the sample: // Build the block's transform Matrix blockTransform = Matrix.CreateTranslation(new Vector3(-blockOrigin, 0.0f)) * // Matrix.CreateScale(block.Scale) * would go here Matrix.CreateRotationZ(blocks[i].Rotation) * Matrix.CreateTranslation(new Vector3(blocks[i].Position, 0.0f)); public static bool IntersectPixels( Matrix transformA, int widthA, int heightA, Color[] dataA, Matrix transformB, int widthB, int heightB, Color[] dataB) { // Calculate a matrix which transforms from A's local space into // world space and then into B's local space Matrix transformAToB = transformA * Matrix.Invert(transformB); // When a point moves in A's local space, it moves in B's local space with a // fixed direction and distance proportional to the movement in A. // This algorithm steps through A one pixel at a time along A's X and Y axes // Calculate the analogous steps in B: Vector2 stepX = Vector2.TransformNormal(Vector2.UnitX, transformAToB); Vector2 stepY = Vector2.TransformNormal(Vector2.UnitY, transformAToB); // Calculate the top left corner of A in B's local space // This variable will be reused to keep track of the start of each row Vector2 yPosInB = Vector2.Transform(Vector2.Zero, transformAToB); // For each row of pixels in A for (int yA = 0; yA < heightA; yA++) { // Start at the beginning of the row Vector2 posInB = yPosInB; // For each pixel in this row for (int xA = 0; xA < widthA; xA++) { // Round to the nearest pixel int xB = (int)Math.Round(posInB.X); int yB = (int)Math.Round(posInB.Y); // If the pixel lies within the bounds of B if (0 <= xB && xB < widthB && 0 <= yB && yB < heightB) { // Get the colors of the overlapping pixels Color colorA = dataA[xA + yA * widthA]; Color colorB = dataB[xB + yB * widthB]; // If both pixels are not completely transparent, if (colorA.A != 0 && colorB.A != 0) { // then an intersection has been found return true; } } // Move to the next pixel in the row posInB += stepX; } // Move to the next row yPosInB += stepY; } // No intersection found return false; }

    Read the article

  • How to rotate a set of points on z = 0 plane in 3-D, preserving pairwise distances?

    - by cagirici
    I have a set of points double n[] on the plane z = 0. And I have another set of points double[] m on the plane ax + by + cz + d = 0. Length of n is equal to length of m. Also, euclidean distance between n[i] and n[j] is equal to euclidean distance between m[i] and m[j]. I want to rotate n[] in 3-D, such that for all i, n[i] = m[i] would be true. In other words, I want to turn a plane into another plane, preserving the pairwise distances. Here's my code in java. But it does not help so much: double[] rotate(double[] point, double[] currentEquation, double[] targetEquation) { double[] currentNormal = new double[]{currentEquation[0], currentEquation[1], currentEquation[2]}; double[] targetNormal = new double[]{targetEquation[0], targetEquation[1], targetEquation[2]}; targetNormal = normalize(targetNormal); double angle = angleBetween(currentNormal, targetNormal); double[] axis = cross(targetNormal, currentNormal); double[][] R = getRotationMatrix(axis, angle); return rotated; } double[][] getRotationMatrix(double[] axis, double angle) { axis = normalize(axis); double cA = (float)Math.cos(angle); double sA = (float)Math.sin(angle); Matrix I = Matrix.identity(3, 3); Matrix a = new Matrix(axis, 3); Matrix aT = a.transpose(); Matrix a2 = a.times(aT); double[][] B = { {0, axis[2], -1*axis[1]}, {-1*axis[2], 0, axis[0]}, {axis[1], -1*axis[0], 0} }; Matrix A = new Matrix(B); Matrix R = I.minus(a2); R = R.times(cA); R = R.plus(a2); R = R.plus(A.times(sA)); return R.getArray(); } This is what I get. The point set on the right side is actually part of a point set on the left side. But they are on another plane. Here's a 2-D representation of what I try to do: There are two lines. The line on the bottom is the line I have. The line on the top is the target line. The distances are preserved (a, b and c). Edit: I have tried both methods written in answers. They both fail (I guess). Method of Martijn Courteaux public static double[][] getRotationMatrix(double[] v0, double[] v1, double[] v2, double[] u0, double[] u1, double[] u2) { RealMatrix M1 = new Array2DRowRealMatrix(new double[][]{ {1,0,0,-1*v0[0]}, {0,1,0,-1*v0[1]}, {0,0,1,0}, {0,0,0,1} }); RealMatrix M2 = new Array2DRowRealMatrix(new double[][]{ {1,0,0,-1*u0[0]}, {0,1,0,-1*u0[1]}, {0,0,1,-1*u0[2]}, {0,0,0,1} }); Vector3D imX = new Vector3D((v0[1] - v1[1])*(u2[0] - u0[0]) - (v0[1] - v2[1])*(u1[0] - u0[0]), (v0[1] - v1[1])*(u2[1] - u0[1]) - (v0[1] - v2[1])*(u1[1] - u0[1]), (v0[1] - v1[1])*(u2[2] - u0[2]) - (v0[1] - v2[1])*(u1[2] - u0[2]) ).scalarMultiply(1/((v0[0]*v1[1])-(v0[0]*v2[1])-(v1[0]*v0[1])+(v1[0]*v2[1])+(v2[0]*v0[1])-(v2[0]*v1[1]))); Vector3D imZ = new Vector3D(findEquation(u0, u1, u2)); Vector3D imY = Vector3D.crossProduct(imZ, imX); double[] imXn = imX.normalize().toArray(); double[] imYn = imY.normalize().toArray(); double[] imZn = imZ.normalize().toArray(); RealMatrix M = new Array2DRowRealMatrix(new double[][]{ {imXn[0], imXn[1], imXn[2], 0}, {imYn[0], imYn[1], imYn[2], 0}, {imZn[0], imZn[1], imZn[2], 0}, {0, 0, 0, 1} }); RealMatrix rotationMatrix = MatrixUtils.inverse(M2).multiply(M).multiply(M1); return rotationMatrix.getData(); } Method of Sam Hocevar static double[][] makeMatrix(double[] p1, double[] p2, double[] p3) { double[] v1 = normalize(difference(p2,p1)); double[] v2 = normalize(cross(difference(p3,p1), difference(p2,p1))); double[] v3 = cross(v1, v2); double[][] M = { { v1[0], v2[0], v3[0], p1[0] }, { v1[1], v2[1], v3[1], p1[1] }, { v1[2], v2[2], v3[2], p1[2] }, { 0.0, 0.0, 0.0, 1.0 } }; return M; } static double[][] createTransform(double[] A, double[] B, double[] C, double[] P, double[] Q, double[] R) { RealMatrix c = new Array2DRowRealMatrix(makeMatrix(A,B,C)); RealMatrix t = new Array2DRowRealMatrix(makeMatrix(P,Q,R)); return MatrixUtils.inverse(c).multiply(t).getData(); } The blue points are the calculated points. The black lines indicate the offset from the real position.

    Read the article

  • The View-Matrix and Alternative Calculations

    - by P. Avery
    I'm working on a radiosity processor in DirectX 9. The process requires that the camera be placed at the center of a mesh face and a 'screenshot' be taken facing 5 different directions...forward...up...down...left...right... ...The problem is that when the mesh face is facing up( look vector: 0, 1, 0 )...a view matrix cannot be determined using standard trigonometry functions: Matrix4 LookAt( Vector3 eye, Vector3 target, Vector3 up ) { // The "look-at" vector. Vector3 zaxis = normal(target - eye); // The "right" vector. Vector3 xaxis = normal(cross(up, zaxis)); // The "up" vector. Vector3 yaxis = cross(zaxis, xaxis); // Create a 4x4 orientation matrix from the right, up, and at vectors Matrix4 orientation = { xaxis.x, yaxis.x, zaxis.x, 0, xaxis.y, yaxis.y, zaxis.y, 0, xaxis.z, yaxis.z, zaxis.z, 0, 0, 0, 0, 1 }; // Create a 4x4 translation matrix by negating the eye position. Matrix4 translation = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, -eye.x, -eye.y, -eye.z, 1 }; // Combine the orientation and translation to compute the view matrix return ( translation * orientation ); } The above function comes from http://3dgep.com/?p=1700... ...Is there a mathematical approach to this problem? Edit: A problem occurs when setting the view matrix to up or down directions, here is an example of the problem when facing down: D3DXVECTOR4 vPos( 3, 3, 3, 1 ), vEye( 1.5, 3, 3, 1 ), vLook( 0, -1, 0, 1 ), vRight( 1, 0, 0, 1 ), vUp( 0, 0, 1, 1 ); D3DXMATRIX mV, mP; D3DXMatrixPerspectiveFovLH( &mP, D3DX_PI / 2, 1, 0.5f, 2000.0f ); D3DXMatrixIdentity( &mV ); memcpy( ( void* )&mV._11, ( void* )&vRight, sizeof( D3DXVECTOR3 ) ); memcpy( ( void* )&mV._21, ( void* )&vUp, sizeof( D3DXVECTOR3 ) ); memcpy( ( void* )&mV._31, ( void* )&vLook, sizeof( D3DXVECTOR3 ) ); memcpy( ( void* )&mV._41, ( void* )&(-vEye), sizeof( D3DXVECTOR3 ) ); D3DXVec4Transform( &vPos, &vPos, &( mV * mP ) ); Results: vPos = D3DXVECTOR3( 1.5, -6, -0.5, 0 ) - this vertex is not properly processed by shader as the homogenous w value is 0 it cannot be normalized to a position within device space...

    Read the article

  • Subtotal error on calculated field in a Reporting Services Matrix

    - by peacedog
    I've got a Reporting Services report that has two row groups: Category and SubCategory. For columns it has LastYearDataA, ThisYearDataA, LastYearDataB, ThisYearDataB. I added two columns (one for A and one for B) to handle an expression calculation (to show a percentage different from LastYear to ThisYear for each). That's working. The problem comes in the SubTotal for each category. The raw numbers are totaling correctly. If SubCat1 has 10//5 for LastYear/ThisYear A, and SubCat2 has 5//1, then I get 15/5 for the totals. But I get the percentage reported in the total column as "50%", matching SubCat1. Percentages for each Subcategory are being calculated correctly (according to my backup math, anyway). But the sub total % always matches the first SubCategory in the group. Is this impossible to do in Reporting Services 2005?

    Read the article

  • Traverse 2D Array (Matrix) Diagonally

    - by jonobr1
    So I found this thread that was extremely helpful in traversing an array diagonally. I'm stuck though on mirroring it. For example: var m = 3; var n = 4; var a = new Array(); var b = 0; for(var i = 0; i < m; i++) { a[i] = new Array(n); for(var j = 0; j < n; j++) { a[i][j] = b; b++; } } for (var i = 0; i < m + n - 1; i++) { var z1 = (i < n) ? 0 : i - n + 1; var z2 = (i < m) ? 0 : i - m + 1; for (var j = i - z2; j >= z1; j--) { console.log(a[j][i - j]); } } Console reads [[0],[4,1],[8,5,2],[9,6,3],[10,7],[11]] I'd like it to read [[8],[4,9],[0,5,10],[1,6,11],[2,7],[3]] Been stumped for awhile, it's like a rubik's cube _<

    Read the article

  • I have a having a a matrix index bounds in matlab

    - by Ben Fossen
    I keep getting the error( this is in Matlab) Attempted to access r(0,0); index must be a positive integer or logical. Error in == Romberg at 15 I ran it with Romberg(1.3, 2.19,8) I think the problem is the statment is not logical because I made it positive and still got the same error. anyone got some ideas of what i could do? function Romberg(a, b, n) h = b - a; r = zeros(n,n); for i = 1:n h = h/2; sum1 = 0; for k = 1:2:2^(i) sum1 = sum1 + f(a + k*h); end r(i,0) = (1/2)*r(i-1,0) + (sum1)*h; for j = 1:i r(i,j) = r(i,j-1) + (r(i,j-1) - r(i-1,j-1))/((4^j) - 1); end end disp(r); end function f_of_x = f(x) f_of_x = sin(x)/x; end

    Read the article

  • Confusion Matrix of Bayesian Network

    - by iva123
    Hi, I'm trying to understand bayesian network. I have a data file which has 10 attributes, I want to acquire the confusion table of this data table ,I thought I need to calculate tp,fp, fn, tn of all fields. Is it true ? if it's then what i need to do for bayesian network. Really need some guidance, I'm lost.

    Read the article

  • Vectorizing sums of different diagonals in a matrix

    - by reve_etrange
    I want to vectorize the following MATLAB code. I think it must be simple but I'm finding it confusing nevertheless. r = some constant less than m or n [m,n] = size(C); S = zeros(m-r,n-r); for i=1:m-r for j=1:n-r S(i,j) = sum(diag(C(i:i+r-1,j:j+r-1))); end end The code calculates a table of scores, S, for a dynamic programming algorithm, from another score table, C. The diagonal summing is to generate scores for individual pieces of the data used to generate C, for all possible pieces (of size r). Thanks in advance for any answers! Sorry if this one should be obvious...

    Read the article

  • matrix image processing in OpenGL CE

    - by iHorse
    im trying to create an image filter in OpenGL CE. currently I am trying to create a series of 4x4 matrices and multiply them together. then use glColorMask and glColor4f to adjust the image accordingly. I've been able to integrate hue rotation, saturation, and brightness. but i am having trouble adding contrast. thus far google hasn't been to helpful. I've found a few matrices but they don't seem to work. do you guys have any ideas?

    Read the article

  • asp.net free webcontrol to display matrix reports with column and row grouping, subtotals and totals

    - by dev-cu
    Hello, I want to develop some kind of reports in Asp.net with x-axis and y-axis being dynamics, allowing grouping by row and column, for example: have products in y-axis and date in x-axis having in body number of sells of a given product in a given date, if date in x-axis are years, i want subtotals for each month for a product (row) and subtotals of sells of all products in date (column) I know there are products available to build reports, but i am using Mysql, so Reporting Service is not an option. It's not necessary for the client build additional reports, i think the simplest solution is having a control to display such information and not using crystal report (which is not free) or something more complex, i want to know if is there an available free control to reach my goal. Well, does anybody know a control or have a different idea, thanks in advance.

    Read the article

  • MATLAB setting matrix values in an array

    - by user324994
    I'm trying to write some code to calculate a cumulative distribution function in matlab. When I try to actually put my results into an array it yells at me. tempnum = ordered1(1); k=2; while(k<538) count = 1; while(ordered1(k)==tempnum) count = count + 1; k = k + 1; end if(ordered1(k)~=tempnum) output = [output;[(count/537),tempnum]]; k = k + 1; tempnum = ordered1(k); end end The errors I'm getting look like this ??? Error using ==> vertcat CAT arguments dimensions are not consistent. Error in ==> lab8 at 1164 output = [output;[(count/537),tempnum]]; The line to add to the output matrice was given to me by my TA. He didn't teach us much syntax throughout the year so I'm not really sure what I'm doing wrong. Any help is greatly appreciated.

    Read the article

  • Column header direction is SSRS Matrix

    - by jestges
    Hi is it possible to change the direction of column header values ? By default header valules displayed in horizontal direction only. But I want to show the values in vertical direction. Is it possible? I tried from the last 3 days. But no where I got any good results. Thanks in advance

    Read the article

  • Java array of arry [matrix] of an integer partition with fixed term

    - by user335209
    Hello, for my study purpose I need to build an array of array filled with the partitions of an integer with fixed term. That is given an integer, suppose 10 and given the fixed number of terms, suppose 5 I need to populate an array like this 10 0 0 0 0 9 0 0 0 1 8 0 0 0 2 7 0 0 0 3 ............ 9 0 0 1 0 8 0 0 1 1 ............. 7 0 1 1 0 6 0 1 1 1 ............ ........... 0 6 1 1 1 ............. 0 0 0 0 10 am pretty new to Java and am getting confused with all the for loops. Right now my code can do the partition of the integer but unfortunately it is not with fixed term public class Partition { private static int[] riga; private static void printPartition(int[] p, int n) { for (int i= 0; i < n; i++) System.out.print(p[i]+" "); System.out.println(); } private static void partition(int[] p, int n, int m, int i) { if (n == 0) printPartition(p, i); else for (int k= m; k > 0; k--) { p[i]= k; partition(p, n-k, n-k, i+1); } } public static void main(String[] args) { riga = new int[6]; for(int i = 0; i<riga.length; i++){ riga[i] = 0; } partition(riga, 6, 1, 0); } } the output I get it from is like this: 1 5 1 4 1 1 3 2 1 3 1 1 1 2 3 1 2 2 1 1 2 1 2 1 2 1 1 1 what i'm actually trying to understand how to proceed is to have it with a fixed terms which would be the columns of my array. So, am stuck with trying to get a way to make it less dynamic. Any help?

    Read the article

  • Is there a transformation matrix that can scale the x and/or y axis logarithmically?

    - by Dave M
    I'm using .net WPF geometry classes to graph waveforms. I've been using the matrix transformations to convert from the screen coordinate space to my coordinate space for the waveform. Everything works great and it's really simple to keep track of my window and scaling, etc. I can even use the inverse transform to calculate the mouse position in terms of the coordinate space. I use the built in Scaling and Translation classes and then a custom matrix to do the y-axis flipping (there's not a prefab matrix for flipping). I want to be able to graph these waveforms on a log scale as well (either x axis or y axis or both), but I'm not sure if this is even possible to do with a matrix transformation. Does anyone know if this is possible, and if it is, what is the matrix?

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >