Search Results

Search found 207 results on 9 pages for 'jane t'.

Page 9/9 | < Previous Page | 5 6 7 8 9 

  • How to get javascript object references or reference count?

    - by Tauren
    How to get reference count for an object Is it possible to determine if a javascript object has multiple references to it? Or if it has references besides the one I'm accessing it with? Or even just to get the reference count itself? Can I find this information from javascript itself, or will I need to keep track of my own reference counters. Obviously, there must be at least one reference to it for my code access the object. But what I want to know is if there are any other references to it, or if my code is the only place it is accessed. I'd like to be able to delete the object if nothing else is referencing it. If you know the answer, there is no need to read the rest of this question. Below is just an example to make things more clear. Use Case In my application, I have a Repository object instance called contacts that contains an array of ALL my contacts. There are also multiple Collection object instances, such as friends collection and a coworkers collection. Each collection contains an array with a different set of items from the contacts Repository. Sample Code To make this concept more concrete, consider the code below. Each instance of the Repository object contains a list of all items of a particular type. You might have a repository of Contacts and a separate repository of Events. To keep it simple, you can just get, add, and remove items, and add many via the constructor. var Repository = function(items) { this.items = items || []; } Repository.prototype.get = function(id) { for (var i=0,len=this.items.length; i<len; i++) { if (items[i].id === id) { return this.items[i]; } } } Repository.prototype.add = function(item) { if (toString.call(item) === "[object Array]") { this.items.concat(item); } else { this.items.push(item); } } Repository.prototype.remove = function(id) { for (var i=0,len=this.items.length; i<len; i++) { if (items[i].id === id) { this.removeIndex(i); } } } Repository.prototype.removeIndex = function(index) { if (items[index]) { if (/* items[i] has more than 1 reference to it */) { // Only remove item from repository if nothing else references it this.items.splice(index,1); return; } } } Note the line in remove with the comment. I only want to remove the item from my master repository of objects if no other objects have a reference to the item. Here's Collection: var Collection = function(repo,items) { this.repo = repo; this.items = items || []; } Collection.prototype.remove = function(id) { for (var i=0,len=this.items.length; i<len; i++) { if (items[i].id === id) { // Remove object from this collection this.items.splice(i,1); // Tell repo to remove it (only if no other references to it) repo.removeIndxe(i); return; } } } And then this code uses Repository and Collection: var contactRepo = new Repository([ {id: 1, name: "Joe"}, {id: 2, name: "Jane"}, {id: 3, name: "Tom"}, {id: 4, name: "Jack"}, {id: 5, name: "Sue"} ]); var friends = new Collection( contactRepo, [ contactRepo.get(2), contactRepo.get(4) ] ); var coworkers = new Collection( contactRepo, [ contactRepo.get(1), contactRepo.get(2), contactRepo.get(5) ] ); contactRepo.items; // contains item ids 1, 2, 3, 4, 5 friends.items; // contains item ids 2, 4 coworkers.items; // contains item ids 1, 2, 5 coworkers.remove(2); contactRepo.items; // contains item ids 1, 2, 3, 4, 5 friends.items; // contains item ids 2, 4 coworkers.items; // contains item ids 1, 5 friends.remove(4); contactRepo.items; // contains item ids 1, 2, 3, 5 friends.items; // contains item ids 2 coworkers.items; // contains item ids 1, 5 Notice how coworkers.remove(2) didn't remove id 2 from contactRepo? This is because it was still referenced from friends.items. However, friends.remove(4) causes id 4 to be removed from contactRepo, because no other collection is referring to it. Summary The above is what I want to do. I'm sure there are ways I can do this by keeping track of my own reference counters and such. But if there is a way to do it using javascript's built-in reference management, I'd like to hear about how to use it.

    Read the article

  • Fluent NHibernate/SQL Server 2008 insert query problem

    - by Mark
    Hi all, I'm new to Fluent NHibernate and I'm running into a problem. I have a mapping defined as follows: public PersonMapping() { Id(p => p.Id).GeneratedBy.HiLo("1000"); Map(p => p.FirstName).Not.Nullable().Length(50); Map(p => p.MiddleInitial).Nullable().Length(1); Map(p => p.LastName).Not.Nullable().Length(50); Map(p => p.Suffix).Nullable().Length(3); Map(p => p.SSN).Nullable().Length(11); Map(p => p.BirthDate).Nullable(); Map(p => p.CellPhone).Nullable().Length(12); Map(p => p.HomePhone).Nullable().Length(12); Map(p => p.WorkPhone).Nullable().Length(12); Map(p => p.OtherPhone).Nullable().Length(12); Map(p => p.EmailAddress).Nullable().Length(50); Map(p => p.DriversLicenseNumber).Nullable().Length(50); Component<Address>(p => p.CurrentAddress, m => { m.Map(p => p.Line1, "Line1").Length(50); m.Map(p => p.Line2, "Line2").Length(50); m.Map(p => p.City, "City").Length(50); m.Map(p => p.State, "State").Length(50); m.Map(p => p.Zip, "Zip").Length(2); }); Map(p => p.EyeColor).Nullable().Length(3); Map(p => p.HairColor).Nullable().Length(3); Map(p => p.Gender).Nullable().Length(1); Map(p => p.Height).Nullable(); Map(p => p.Weight).Nullable(); Map(p => p.Race).Nullable().Length(1); Map(p => p.SkinTone).Nullable().Length(3); HasMany(p => p.PriorAddresses).Cascade.All(); } public PreviousAddressMapping() { Table("PriorAddress"); Id(p => p.Id).GeneratedBy.HiLo("1000"); Map(p => p.EndEffectiveDate).Not.Nullable(); Component<Address>(p => p.Address, m => { m.Map(p => p.Line1, "Line1").Length(50); m.Map(p => p.Line2, "Line2").Length(50); m.Map(p => p.City, "City").Length(50); m.Map(p => p.State, "State").Length(50); m.Map(p => p.Zip, "Zip").Length(2); }); } My test is [Test] public void can_correctly_map_Person_with_Addresses() { var myPerson = new Person("Jane", "", "Doe"); var priorAddresses = new[] { new PreviousAddress(ObjectMother.GetAddress1(), DateTime.Parse("05/13/2010")), new PreviousAddress(ObjectMother.GetAddress2(), DateTime.Parse("05/20/2010")) }; new PersistenceSpecification<Person>(Session) .CheckProperty(c => c.FirstName, myPerson.FirstName) .CheckProperty(c => c.LastName, myPerson.LastName) .CheckProperty(c => c.MiddleInitial, myPerson.MiddleInitial) .CheckList(c => c.PriorAddresses, priorAddresses) .VerifyTheMappings(); } GetAddress1() (yeah, horrible name) has Line2 == null The tables seem to be created correctly in sql server 2008, but the test fails with a SQLException "String or binary data would be truncated." When I grab the sql statement in SQL Profiler, I get exec sp_executesql N'INSERT INTO PriorAddress (Line1, Line2, City, State, Zip, EndEffectiveDate, Id) VALUES (@p0, @p1, @p2, @p3, @p4, @p5, @p6)',N'@p0 nvarchar(18),@p1 nvarchar(4000),@p2 nvarchar(10),@p3 nvarchar(2),@p4 nvarchar(5),@p5 datetime,@p6 int',@p0=N'6789 Somewhere Rd.',@p1=NULL,@p2=N'Hot Coffee',@p3=N'MS',@p4=N'09876',@p5='2010-05-13 00:00:00',@p6=1001 Notice the @p1 parameter is being set to nvarchar(4000) and being passed a NULL value. Why is it setting the parameter to nvarchar(4000)? How can I fix it? Thanks!

    Read the article

  • Nested property binding

    - by EtherealMonkey
    Recently, I have been trying to wrap my mind around the BindingList<T> and INotifyPropertChanged. More specifically - How do I make a collection of objects (having objects as properties) which will allow me to subscribe to events throughout the tree? To that end, I have examined the code offered as examples by others. One such project that I downloaded was Nested Property Binding - CodeProject by "seesharper". Now, the article explains the implementation, but there was a question by "Someone@AnotherWorld" about "INotifyPropertyChanged in nested objects". His question was: Hi, nice stuff! But after a couple of time using your solution I realize the ObjectBindingSource ignores the PropertyChanged event of nested objects. E.g. I've got a class 'Foo' with two properties named 'Name' and 'Bar'. 'Name' is a string an 'Bar' reference an instance of class 'Bar', which has a 'Name' property of type string too and both classes implements INotifyPropertyChanged. With your binding source reading and writing with both properties ('Name' and 'Bar_Name') works fine but the PropertyChanged event works only for the 'Name' property, because the binding source listen only for events of 'Foo'. One workaround is to retrigger the PropertyChanged event in the appropriate class (here 'Foo'). What's very unclean! The other approach would be to extend ObjectBindingSource so that all owner of nested property which implements INotifyPropertyChanged get used for receive changes, but how? Thanks! I had asked about BindingList<T> yesterday and received a good answer from Aaronaught. In my question, I had a similar point as "Someone@AnotherWorld": if Keywords were to implement INotifyPropertyChanged, would changes be accessible to the BindingList through the ScannedImage object? To which Aaronaught's response was: No, they will not. BindingList only looks at the specific object in the list, it has no ability to scan all dependencies and monitor everything in the graph (nor would that always be a good idea, if it were possible). I understand Aaronaught's comment regarding this behavior not necessarily being a good idea. Additionally, his suggestion to have my bound object "relay" events on behalf of it's member objects works fine and is perfectly acceptable. For me, "re-triggering" the PropertyChanged event does not seem so unclean as "Someone@AnotherWorld" laments. I do understand why he protests - in the interest of loosely coupled objects. However, I believe that coupling between objects that are part of a composition is logical and not so undesirable as this may be in other scenarios. (I am a newb, so I could be waaayyy off base.) Anyway, in the interest of exploring an answer to the question by "Someone@AnotherWorld", I altered the MainForm.cs file of the example project from Nested Property Binding - CodeProject by "seesharper" to the following: using System; using System.Collections.Generic; using System.ComponentModel; using System.Core.ComponentModel; using System.Windows.Forms; namespace ObjectBindingSourceDemo { public partial class MainForm : Form { private readonly List<Customer> _customers = new List<Customer>(); private readonly List<Product> _products = new List<Product>(); private List<Order> orders; public MainForm() { InitializeComponent(); dataGridView1.AutoGenerateColumns = false; dataGridView2.AutoGenerateColumns = false; CreateData(); } private void CreateData() { _customers.Add( new Customer(1, "Jane Wilson", new Address("98104", "6657 Sand Pointe Lane", "Seattle", "USA"))); _customers.Add( new Customer(1, "Bill Smith", new Address("94109", "5725 Glaze Drive", "San Francisco", "USA"))); _customers.Add( new Customer(1, "Samantha Brown", null)); _products.Add(new Product(1, "Keyboard", 49.99)); _products.Add(new Product(2, "Mouse", 10.99)); _products.Add(new Product(3, "PC", 599.99)); _products.Add(new Product(4, "Monitor", 299.99)); _products.Add(new Product(5, "LapTop", 799.99)); _products.Add(new Product(6, "Harddisc", 89.99)); customerBindingSource.DataSource = _customers; productBindingSource.DataSource = _products; orders = new List<Order>(); orders.Add(new Order(1, DateTime.Now, _customers[0])); orders.Add(new Order(2, DateTime.Now, _customers[1])); orders.Add(new Order(3, DateTime.Now, _customers[2])); #region Added by me OrderLine orderLine1 = new OrderLine(_products[0], 1); OrderLine orderLine2 = new OrderLine(_products[1], 3); orderLine1.PropertyChanged += new PropertyChangedEventHandler(OrderLineChanged); orderLine2.PropertyChanged += new PropertyChangedEventHandler(OrderLineChanged); orders[0].OrderLines.Add(orderLine1); orders[0].OrderLines.Add(orderLine2); #endregion // Removed by me in lieu of region above. //orders[0].OrderLines.Add(new OrderLine(_products[0], 1)); //orders[0].OrderLines.Add(new OrderLine(_products[1], 3)); ordersBindingSource.DataSource = orders; } #region Added by me // Have to wait until the form is Shown to wire up the events // for orderDetailsBindingSource. Otherwise, they are triggered // during MainForm().InitializeComponent(). private void MainForm_Shown(object sender, EventArgs e) { orderDetailsBindingSource.AddingNew += new AddingNewEventHandler(orderDetailsBindSrc_AddingNew); orderDetailsBindingSource.CurrentItemChanged += new EventHandler(orderDetailsBindSrc_CurrentItemChanged); orderDetailsBindingSource.ListChanged += new ListChangedEventHandler(orderDetailsBindSrc_ListChanged); } private void orderDetailsBindSrc_AddingNew( object sender, AddingNewEventArgs e) { } private void orderDetailsBindSrc_CurrentItemChanged( object sender, EventArgs e) { } private void orderDetailsBindSrc_ListChanged( object sender, ListChangedEventArgs e) { ObjectBindingSource bindingSource = (ObjectBindingSource)sender; if (!(bindingSource.Current == null)) { // Unsure if GetType().ToString() is required b/c ToString() // *seems* // to return the same value. if (bindingSource.Current.GetType().ToString() == "ObjectBindingSourceDemo.OrderLine") { if (e.ListChangedType == ListChangedType.ItemAdded) { // I wish that I knew of a way to determine // if the 'PropertyChanged' delegate assignment is null. // I don't like the current test, but it seems to work. if (orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].Product == null) { orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].PropertyChanged += new PropertyChangedEventHandler( OrderLineChanged); } } if (e.ListChangedType == ListChangedType.ItemDeleted) { // Will throw exception when leaving // an OrderLine row with unitialized properties. // // I presume this is because the item // has already been 'disposed' of at this point. // *but* // Will it be actually be released from memory // if the delegate assignment for PropertyChanged // was never removed??? if (orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].Product != null) { orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].PropertyChanged -= new PropertyChangedEventHandler( OrderLineChanged); } } } } } private void OrderLineChanged(object sender, PropertyChangedEventArgs e) { MessageBox.Show(e.PropertyName, "Property Changed:"); } #endregion } } In the method private void orderDetailsBindSrc_ListChanged(object sender, ListChangedEventArgs e) I am able to hook up the PropertyChangedEventHandler to the OrderLine object as it is being created. However, I cannot seem to find a way to unhook the PropertyChangedEventHandler from the OrderLine object before it is being removed from the orders[i].OrderLines list. So, my questions are: Am I simply trying to do something that is very, very wrong here? Will the OrderLines object that I add the delegate assignments to ever be released from memory if the assignment is not removed? Is there a "sane" method of achieving this scenario? Also, note that this question is not specifically related to my prior. I have actually solved the issue which had prompted me to inquire before. However, I have reached a point with this particular topic of discovery where my curiosity has exceeded my patience - hopefully someone here can shed some light on this?

    Read the article

  • xslt cookbook example not working

    - by Liza dawson
    Hi I am working on this from xslt cookbook type my.xml <?xml version="1.0" encoding="UTF-8"?> <people> <person name="Al Zehtooney" age="33" sex="m" smoker="no"/> <person name="Brad York" age="38" sex="m" smoker="yes"/> <person name="Charles Xavier" age="32" sex="m" smoker="no"/> <person name="David Williams" age="33" sex="m" smoker="no"/> <person name="Edward Ulster" age="33" sex="m" smoker="yes"/> <person name="Frank Townsend" age="35" sex="m" smoker="no"/> <person name="Greg Sutter" age="40" sex="m" smoker="no"/> <person name="Harry Rogers" age="37" sex="m" smoker="no"/> <person name="John Quincy" age="43" sex="m" smoker="yes"/> <person name="Kent Peterson" age="31" sex="m" smoker="no"/> <person name="Larry Newell" age="23" sex="m" smoker="no"/> <person name="Max Milton" age="22" sex="m" smoker="no"/> <person name="Norman Lamagna" age="30" sex="m" smoker="no"/> <person name="Ollie Kensington" age="44" sex="m" smoker="no"/> <person name="John Frank" age="24" sex="m" smoker="no"/> <person name="Mary Williams" age="33" sex="f" smoker="no"/> <person name="Jane Frank" age="38" sex="f" smoker="yes"/> <person name="Jo Peterson" age="32" sex="f" smoker="no"/> <person name="Angie Frost" age="33" sex="f" smoker="no"/> <person name="Betty Bates" age="33" sex="f" smoker="no"/> <person name="Connie Date" age="35" sex="f" smoker="no"/> <person name="Donna Finster" age="20" sex="f" smoker="no"/> <person name="Esther Gates" age="37" sex="f" smoker="no"/> <person name="Fanny Hill" age="33" sex="f" smoker="yes"/> <person name="Geta Iota" age="27" sex="f" smoker="no"/> <person name="Hillary Johnson" age="22" sex="f" smoker="no"/> <person name="Ingrid Kent" age="21" sex="f" smoker="no"/> <person name="Jill Larson" age="20" sex="f" smoker="no"/> <person name="Kim Mulrooney" age="41" sex="f" smoker="no"/> <person name="Lisa Nevins" age="21" sex="f" smoker="no"/> </people> type generic-attr-to-csv.xslt <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:csv="http://www.ora.com/XSLTCookbook/namespaces/csv"> <xsl:param name="delimiter" select=" ',' "/> <xsl:output method="text" /> <xsl:strip-space elements="*"/> <xsl:template match="/"> <xsl:for-each select="$columns"> <xsl:value-of select="@name"/> <xsl:if test="position( ) != last( )"> <xsl:value-of select="$delimiter/> </xsl:if> </xsl:for-each> <xsl:text>&#xa;</xsl:text> <xsl:apply-templates/> </xsl:template> <xsl:template match="/*/*"> <xsl:variable name="row" select="."/> <xsl:for-each select="$columns"> <xsl:apply-templates select="$row/@*[local-name(.)=current( )/@attr]" mode="csv:map-value"/> <xsl:if test="position( ) != last( )"> <xsl:value-of select="$delimiter"/> </xsl:if> </xsl:for-each> <xsl:text>&#xa;</xsl:text> </xsl:template> <xsl:template match="@*" mode="map-value"> <xsl:value-of select="."/> </xsl:template> </xsl:stylesheet> type my.xsl <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:csv="http://www.ora.com/XSLTCookbook/namespaces/csv"> <xsl:import href="generic-attr-to-csv.xslt"/> <!--Defines the mapping from attributes to columns --> <xsl:variable name="columns" select="document('')/*/csv:column"/> <csv:column name="Name" attr="name"/> <csv:column name="Age" attr="age"/> <csv:column name="Gender" attr="sex"/> <csv:column name="Smoker" attr="smoker"/> <!-- Handle custom attribute mappings --> <xsl:template match="@sex" mode="csv:map-value"> <xsl:choose> <xsl:when test=".='m'">male</xsl:when> <xsl:when test=".='f'">female</xsl:when> <xsl:otherwise>error</xsl:otherwise> </xsl:choose> </xsl:template> </xsl:stylesheet> using the apache xalan parser D:\Test>java org.apache.xalan.xslt.Process -in my.xml -xsl my.xsl -out my.csv [Fatal Error] generic-attr-to-csv.xslt:15:6: The value of attribute "select" associated with an element type "xsl:v alue-of" must not contain the '<' character. file:///D:/Test/generic-attr-to-csv.xslt; Line #15; Column #6; org.xml.sax.SAXParseException: The value of attribut e "select" associated with an element type "xsl:value-of" must not contain the '<' character. java.lang.NullPointerException at org.apache.xalan.transformer.TransformerImpl.createSerializationHandler(TransformerImpl.java:1171) at org.apache.xalan.transformer.TransformerImpl.createSerializationHandler(TransformerImpl.java:1060) at org.apache.xalan.transformer.TransformerImpl.transform(TransformerImpl.java:1268) at org.apache.xalan.transformer.TransformerImpl.transform(TransformerImpl.java:1251) at org.apache.xalan.xslt.Process.main(Process.java:1048) Exception in thread "main" java.lang.RuntimeException at org.apache.xalan.xslt.Process.doExit(Process.java:1155) at org.apache.xalan.xslt.Process.main(Process.java:1128) Any ideas what am i doing wrong

    Read the article

  • Where am I going wrong in my Xml Schema?

    - by chobo2
    Hi I am trying to make a XML Schema but everytime I use it and try to validate my data I get an error. I get this error: Validation of the XML Document failed! Error message(s): Could not find schema information for the element 'Email'. Line: 1 Column:1213 http://www.xmlforasp.net/SchemaValidator.aspx My Xml file I am trying to validate. <?xml version="1.0" encoding="utf-8" ?> <School> <SchoolPrefix>BCIT</SchoolPrefix> <TeacherAccounts> <Account> <StudentNumber>A00140000</StudentNumber> <Password>123456</Password> <Email>[email protected]</Email> </Account> <Account> <StudentNumber>A00000041</StudentNumber> <Password>1234567</Password> <Email>[email protected]</Email> </Account> <Account> <StudentNumber>A0400100</StudentNumber> <Password>1234567</Password> <Email>[email protected]</Email> </Account> </TeacherAccounts> <FullTimeAccounts> <Account> <StudentNumber>A00000000</StudentNumber> <Password>1234567</Password> <Email>[email protected]</Email> </Account> <Account> <StudentNumber>A00141000</StudentNumber> <Password>1234567</Password> <Email>[email protected]</Email> </Account> </FullTimeAccounts> <PartTimeAccounts> <Account> <StudentNumber>A81020409</StudentNumber> <Password>1234567</Password> <Email>[email protected]</Email> </Account> <Account> <StudentNumber>A040014000</StudentNumber> <Password>1234567</Password> <Email>[email protected]</Email> </Account> <Account> <StudentNumber>A00024040</StudentNumber> <Password>1234567</Password> <Email>[email protected]</Email> </Account> <Account> <StudentNumber>A00004101</StudentNumber> <Password>1234567</Password> <Email>[email protected]</Email> </Account> </PartTimeAccounts> </School> XMl Schema <?xml version="1.0" encoding="utf-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.nothing.com" xmlns="http://www.nothing.com" elementFormDefault="qualified"> <xs:element name="School"> <xs:complexType> <xs:sequence> <xs:element name="SchoolPrefix" minOccurs="1" maxOccurs="1"> <xs:simpleType> <xs:restriction base="xs:string"> <xs:minLength value="2" /> <xs:maxLength value="8" /> </xs:restriction> </xs:simpleType> </xs:element> <xs:element name="TeacherAccounts" minOccurs="1" maxOccurs="1"> <xs:complexType> <xs:sequence> <xs:element name="Account" type="UserInfo" minOccurs="0" maxOccurs="unbounded" /> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="FullTimeAccounts"> <xs:complexType> <xs:sequence> <xs:element name="Account" type="UserInfo" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="PartTimeAccounts"> <xs:complexType> <xs:sequence> <xs:element name="Account" type="UserInfo" minOccurs="0" maxOccurs="unbounded" /> </xs:sequence> </xs:complexType> </xs:element> </xs:sequence> </xs:complexType> </xs:element> <xs:complexType name="UserInfo"> <xs:sequence> <xs:element name="StudentNumber"> <xs:simpleType> <xs:restriction base="xs:string"> <xs:minLength value="1"/> <xs:maxLength value="50"/> </xs:restriction> </xs:simpleType> </xs:element> <xs:element name="Password"> <xs:simpleType> <xs:restriction base="xs:string"> <xs:minLength value="6"/> <xs:maxLength value="50"/> </xs:restriction> </xs:simpleType> </xs:element> <xs:element name="Email"> <xs:simpleType> <xs:restriction base="xs:string"> <xs:pattern value="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"/> </xs:restriction> </xs:simpleType> </xs:element> </xs:sequence> </xs:complexType> </xs:schema>

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Storing unique values into an array and comparing against a loop - PHP

    - by Aphex22
    I'm writing a PHP report which is designed to be exported purely as a CSV file, using commma delimiters. There are three columns relating to product_id, these three columns are as follows: SKU Parent / Child Parent SKU 12345 parent 12345 12345_1 child 12345 12345_2 child 12345 12345_3 child 12345 12345_4 child 12345 18099 parent 18099 18099_1 child 18099 Here's a link to the full CSV file: http://i.imgur.com/XELufRd.png At the moment the code looks like this: $sql = "select * from product WHERE on_amazon = 'on' AND active = 'on'"; $result = mysql_query($sql) or die ( mysql_error() );?> <? // set headers echo " Type, SKU, Parent / Child, Parent SKU, Product name, Manufacturer name, Gender, Product_description, Product price, Discount price, Quantity, Category, Photo 1, Photo 2, Photo 3, Photo 4, Photo 5, Photo 6, Photo 7, Photo 8, Color id, Color name, Size name <br> "; // load all stock while ($line = mysql_fetch_assoc($result) ) { ?> <?php // Loop through each possible size variation to see whether any of the quantity column has stock > 0 $con_size = array (35,355,36,37,375,38,385,39,395,40,405,41,415,42,425,43,435,44,445,45,455,46,465,47,475,48,485); $arrlength=count($con_size); for($x=0;$x<$arrlength;$x++) { // check if size is available if($line['quantity_c_size_'.$con_size[$x].'_chain'] > 0 ) { ?> <? echo 'Shoes'; ?>, <?=$line['product_id']?>, , , <?=$line['title']?>, <? $brand = $line['jys_brand']; echo ucfirst($brand); ?>, <? $gender = $line['category']; if ($gender == 'Mens') { echo 'H'; } else{ echo 'F'; } ?>, <?=preg_replace('/[^\da-z]/i', ' ', $line['amazon_desc']) ?>, <?=$line['price']?>, <?=$line['price']?>, <?=$line['quantity_c_size_'.$con_size[$x].'_chain']?>, <? $category = $line['style1']; switch ($category) { case "ankle-boots": echo "10013"; break; case "knee-high-boots": echo "10011"; break; case "high-heel-boots": echo "10033"; break; case "low-heel-boots": echo "10014"; break; case "wedge-boots": echo "10014"; break; case "western-boots": echo "10032"; break; case "flat-shoes": echo "10034"; break; case "high-heel-shoes": echo "10039"; break; case "low-heel-shoes": echo "10039"; break; case "wedge-shoes": echo "10035"; break; case "ballerina-shoes": echo "10008"; break; case "boat-shoes": echo "10018"; break; case "loafer-shoes": echo "10037"; break; case "work-shoes": echo "10039"; break; case "flat-sandals": echo "10041"; break; case "low-heel-sandals": echo "10042"; break; case "high-heel-sandals": echo "10042"; break; case "wedge-sandals": echo "10042"; break; case "mule-sandals": echo "10038"; break; case "mary-jane-shoes": echo "10039"; break; case "sports-shoes": echo "10026"; break; case "court-shoes": echo "10035"; break; case "peep-toe-shoes": echo "10035"; break; case "flat-boots": echo "10609"; break; case "mid-calf-boots": echo "10014"; break; case "trainer-shoes": echo "10009"; break; case "wellington-boots": echo "10012"; break; case "lace-up-boots": echo "10609"; break; case "chelsea-and-jodphur-boots": echo "10609"; break; case "desert-and-chukka-boots": echo "10032"; break; case "lace-up-shoes": echo "10034"; break; case "slip-on-shoes": echo "10043"; break; case "gibson-and-derby-shoes": echo "10039"; break; case "oxford-shoes": echo "10039"; break; case "brogue-shoes": echo "10039"; break; case "winter-boots": echo "10021"; break; case "slipper-shoes": echo "10016"; break; case "mid-heel-shoes": echo "10039"; break; case "sandals-and-beach-shoes": echo "10044"; break; case "mid-heel-sandals": echo "10042"; break; case "mid-heel-boots": echo "10014"; break; default: echo ""; } ?>, http://www.getashoe.co.uk/full/<?=$line['product_id']?>_1.jpg, http://www.getashoe.co.uk/full/<?=$line['product_id']?>_2.jpg, http://www.getashoe.co.uk/full/<?=$line['product_id']?>_3.jpg, http://www.getashoe.co.uk/full/<?=$line['product_id']?>_4.jpg, , , , , <? $colour = preg_replace('/[^\da-z]/i', ' ', $line['colour']); if( preg_match( '/white.*/i', $colour)) { echo '1'; } elseif( preg_match( '/yellow.*/i', $colour)) { echo '4'; } elseif( preg_match( '/orange.*/i', $colour)) { echo '7'; } elseif( preg_match( '/red.*/i', $colour)) { echo '8'; } elseif( preg_match( '/pink.*/i', $colour)) { echo '13'; } elseif( preg_match( '/purple.*/i', $colour)) { echo '15'; } elseif( preg_match( '/blue.*/i', $colour)) { echo '19'; } elseif( preg_match( '/green.*/i', $colour)) { echo '25'; } elseif( preg_match( '/brown.*/i', $colour)) { echo '28'; } elseif( preg_match( '/grey.*/i', $colour)) { echo '35'; } elseif( preg_match( '/black.*/i', $colour)) { echo '38'; } elseif( preg_match( '/gold.*/i', $colour)) { echo '41'; } elseif( preg_match( '/silver.*/i', $colour)) { echo '46'; } elseif( preg_match( '/multi.*/i', $colour)) { echo '594'; } elseif( preg_match( '/beige.*/i', $colour)) { echo '6887'; } elseif( preg_match( '/nude.*/i', $colour)) { echo '6887'; } else { echo '534'; } ?>, <?=$line['colour']?>, <?=$con_size[$x]?> <br> <? // finish checking if size is available } } ?> So at the moment this is simply echoing out the product_ID into the SKU column. The code would need to enter the product_id into an array and check whether it is unique. If the product_id is unique to the array, then the product_id is echoed out unaltered, and parent is echoed out to the 'Parent/Child' column and then the product_id is repeated to the 'Parent SKU' column. However, if the array is checked and the product_id already exists in the array, then the product_id is echoed out to the 'SKU' column with a suffix i.e. _1. Then child is echoed to the 'Parent / Child' column and the original parent product_id echoed to the 'Parent SKU' column. HOWEVER - the same SKU cannot be repeated with the same suffix i.e. 12345_1, 12345_1 - so presumably there would be to be another array for the suffixed SKUs to be checked against. If anybody could help, it would be great. Thanks --- UPDATE ANSWER --- I managed to solved this myself and thought I would share my solution for future reference. /* * Array to collect product_ids and check whether unique. * If unique product_id becomes parent SKU * If not product_id becomes child of previous parent and suffixed with _1, _2 etc... */ if (!in_array($line['product_id'], $SKU)) { $SKU[] = $line['product_id']; $parent = $line['product_id']; $a = 0; ?> <? echo 'Shoes'; ?>, <? echo $parent; ?>, <? echo "Parent"; ?>, <? echo $parent; ?>, <? } else { $child = $line['product_id'] . "_" . $a; ?> <? echo 'Shoes'; ?>, <? echo $child; ?>, <? echo "Child"; ?>, <? echo $child; <? // increment suffix value for child SKU $a++; ?>

    Read the article

< Previous Page | 5 6 7 8 9