Search Results

Search found 21942 results on 878 pages for 'named query'.

Page 9/878 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • ImportError: No module named gtk

    - by Rick_2047
    after the debacle a few hours back I managed to get a working desktop after using an ethernet cable and sudo apt-get install ubuntu-desktop But now when I try to run ubuntu software center from CLI this is what I get rick@Abigail:~$ sudo software-center Traceback (most recent call last): File "/usr/bin/software-center", line 34, in <module> import gtk ImportError: No module named gtk Any guesses how to fix this. The search box on synaptic is also missing. It has something to do with module named axi. I think the both are related.

    Read the article

  • Named arguments (parameters) as a readability aid

    - by Damian Mehers
    A long time ago I programmed a lot in ADA, and it was normal to name arguments when invoking a function - SomeObject.DoSomething(SomeParameterName = someValue); Now that C# supports named arguments, I'm thinking about reverting to this habit in situations where it might not be obvious what an argument means. You might argue that it should always be obvious what an argument means, but if you have a boolean argument, and callers are passing in "true" or "false" then qualifying the value with the name makes the call site more readable. contentFetcher.DownloadNote(note, manual : true); I guess I could create Enums instead of using true or false (Manual, Automatic in this case). What do you think about occasionally using named arguments to make code easier to read?

    Read the article

  • httpd high cpu usage slowing down server response

    - by max
    my client has a image sharing website with about 100.000 visitor per day it has been slowed down considerably since this morning when i checked processes i've notice high cpu usage from http .... some has suggested ddos attack ... i'm not a webmaster and i've no idea whts going on top top - 20:13:30 up 5:04, 4 users, load average: 4.56, 4.69, 4.59 Tasks: 284 total, 3 running, 281 sleeping, 0 stopped, 0 zombie Cpu(s): 12.1%us, 0.9%sy, 1.7%ni, 69.0%id, 16.4%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 16037152k total, 15875096k used, 162056k free, 360468k buffers Swap: 4194288k total, 888k used, 4193400k free, 14050008k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4151 apache 20 0 277m 84m 3784 R 50.2 0.5 0:01.98 httpd 4115 apache 20 0 210m 16m 4480 S 18.3 0.1 0:00.60 httpd 12885 root 39 19 4296 692 308 S 13.0 0.0 11:09.53 gzip 4177 apache 20 0 214m 20m 3700 R 12.3 0.1 0:00.37 httpd 2219 mysql 20 0 4257m 198m 5668 S 11.0 1.3 42:49.70 mysqld 3691 apache 20 0 206m 14m 6416 S 1.7 0.1 0:03.38 httpd 3934 apache 20 0 211m 17m 4836 S 1.0 0.1 0:03.61 httpd 4098 apache 20 0 209m 17m 3912 S 1.0 0.1 0:04.17 httpd 4116 apache 20 0 211m 17m 4476 S 1.0 0.1 0:00.43 httpd 3867 apache 20 0 217m 23m 4672 S 0.7 0.1 1:03.87 httpd 4146 apache 20 0 209m 15m 3628 S 0.7 0.1 0:00.02 httpd 4149 apache 20 0 209m 15m 3616 S 0.7 0.1 0:00.02 httpd 12884 root 39 19 22336 2356 944 D 0.7 0.0 0:19.21 tar 4054 apache 20 0 206m 12m 4576 S 0.3 0.1 0:00.32 httpd another top top - 15:46:45 up 5:08, 4 users, load average: 5.02, 4.81, 4.64 Tasks: 288 total, 6 running, 281 sleeping, 0 stopped, 1 zombie Cpu(s): 18.4%us, 0.9%sy, 2.3%ni, 56.5%id, 21.8%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 16037152k total, 15792196k used, 244956k free, 360924k buffers Swap: 4194288k total, 888k used, 4193400k free, 13983368k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4622 apache 20 0 209m 16m 3868 S 54.2 0.1 0:03.99 httpd 4514 apache 20 0 213m 20m 3924 R 50.8 0.1 0:04.93 httpd 4627 apache 20 0 221m 27m 4560 R 18.9 0.2 0:01.20 httpd 12885 root 39 19 4296 692 308 S 18.9 0.0 11:51.79 gzip 2219 mysql 20 0 4257m 199m 5668 S 18.3 1.3 43:19.04 mysqld 4512 apache 20 0 227m 33m 4736 R 5.6 0.2 0:01.93 httpd 4520 apache 20 0 213m 19m 4640 S 1.3 0.1 0:01.48 httpd 4590 apache 20 0 212m 19m 3932 S 1.3 0.1 0:00.06 httpd 4573 apache 20 0 210m 16m 3556 R 1.0 0.1 0:00.03 httpd 4562 root 20 0 15164 1388 952 R 0.7 0.0 0:00.08 top 98 root 20 0 0 0 0 S 0.3 0.0 0:04.89 kswapd0 100 root 39 19 0 0 0 S 0.3 0.0 0:02.85 khugepaged 4579 apache 20 0 209m 16m 3900 S 0.3 0.1 0:00.83 httpd 4637 apache 20 0 209m 15m 3668 S 0.3 0.1 0:00.03 httpd ps aux [root@server ~]# ps aux | grep httpd root 2236 0.0 0.0 207524 10124 ? Ss 15:09 0:03 /usr/sbin/http d -k start -DSSL apache 3087 2.7 0.1 226968 28232 ? S 20:04 0:06 /usr/sbin/http d -k start -DSSL apache 3170 2.6 0.1 221296 22292 ? R 20:05 0:05 /usr/sbin/http d -k start -DSSL apache 3171 9.0 0.1 225044 26768 ? R 20:05 0:17 /usr/sbin/http d -k start -DSSL apache 3188 1.5 0.1 223644 24724 ? S 20:05 0:03 /usr/sbin/http d -k start -DSSL apache 3197 2.3 0.1 215908 17520 ? S 20:05 0:04 /usr/sbin/http d -k start -DSSL apache 3198 1.1 0.0 211700 13000 ? S 20:05 0:02 /usr/sbin/http d -k start -DSSL apache 3272 2.4 0.1 219960 21540 ? S 20:06 0:03 /usr/sbin/http d -k start -DSSL apache 3273 2.0 0.0 211600 12804 ? S 20:06 0:03 /usr/sbin/http d -k start -DSSL apache 3279 3.7 0.1 229024 29900 ? S 20:06 0:05 /usr/sbin/http d -k start -DSSL apache 3280 1.2 0.0 0 0 ? Z 20:06 0:01 [httpd] <defun ct> apache 3285 2.9 0.1 218532 21604 ? S 20:06 0:04 /usr/sbin/http d -k start -DSSL apache 3287 30.5 0.4 265084 65948 ? R 20:06 0:43 /usr/sbin/http d -k start -DSSL apache 3297 1.9 0.1 216068 17332 ? S 20:06 0:02 /usr/sbin/http d -k start -DSSL apache 3342 2.7 0.1 216716 17828 ? S 20:06 0:03 /usr/sbin/http d -k start -DSSL apache 3356 1.6 0.1 217244 18296 ? S 20:07 0:01 /usr/sbin/http d -k start -DSSL apache 3365 6.4 0.1 226044 27428 ? S 20:07 0:06 /usr/sbin/http d -k start -DSSL apache 3396 0.0 0.1 213844 16120 ? S 20:07 0:00 /usr/sbin/http d -k start -DSSL apache 3399 5.8 0.1 215664 16772 ? S 20:07 0:05 /usr/sbin/http d -k start -DSSL apache 3422 0.7 0.1 214860 17380 ? S 20:07 0:00 /usr/sbin/http d -k start -DSSL apache 3435 3.3 0.1 216220 17460 ? S 20:07 0:02 /usr/sbin/http d -k start -DSSL apache 3463 0.1 0.0 212732 15076 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3492 0.0 0.0 207660 7552 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3493 1.4 0.1 218092 19188 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3500 1.9 0.1 224204 26100 ? R 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3501 1.7 0.1 216916 17916 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3502 0.0 0.0 207796 7732 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3505 0.0 0.0 207660 7548 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3529 0.0 0.0 207660 7524 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3531 4.0 0.1 216180 17280 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3532 0.0 0.0 207656 7464 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3543 1.4 0.1 217088 18648 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3544 0.0 0.0 207656 7548 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3545 0.0 0.0 207656 7560 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3546 0.0 0.0 207660 7540 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3547 0.0 0.0 207660 7544 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3548 2.3 0.1 216904 17888 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3550 0.0 0.0 207660 7540 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3551 0.0 0.0 207660 7536 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3552 0.2 0.0 214104 15972 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3553 6.5 0.1 216740 17712 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3554 6.3 0.1 216156 17260 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3555 0.0 0.0 207796 7716 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3556 1.8 0.0 211588 12580 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3557 0.0 0.0 207660 7544 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3565 0.0 0.0 207660 7520 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3570 0.0 0.0 207660 7516 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3571 0.0 0.0 207660 7504 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL root 3577 0.0 0.0 103316 860 pts/2 S+ 20:08 0:00 grep httpd httpd error log [Mon Jul 01 18:53:38 2013] [error] [client 2.178.12.67] request failed: error reading the headers, referer: http://akstube.com/image/show/27023/%D9%86%DB%8C%D9%88%D8%B4%D8%A7-%D8%B6%DB%8C%D8%BA%D9%85%DB%8C-%D9%88-%D8%AE%D9%88%D8%A7%D9%87%D8%B1-%D9%88-%D9%87%D9%85%D8%B3%D8%B1%D8%B4 [Mon Jul 01 18:55:33 2013] [error] [client 91.229.215.240] request failed: error reading the headers, referer: http://akstube.com/image/show/44924 [Mon Jul 01 18:57:02 2013] [error] [client 2.178.12.67] Invalid method in request [Mon Jul 01 18:57:02 2013] [error] [client 2.178.12.67] File does not exist: /var/www/html/501.shtml [Mon Jul 01 19:21:36 2013] [error] [client 127.0.0.1] client denied by server configuration: /var/www/html/server-status [Mon Jul 01 19:21:36 2013] [error] [client 127.0.0.1] File does not exist: /var/www/html/403.shtml [Mon Jul 01 19:23:57 2013] [error] [client 151.242.14.31] request failed: error reading the headers [Mon Jul 01 19:37:16 2013] [error] [client 2.190.16.65] request failed: error reading the headers [Mon Jul 01 19:56:00 2013] [error] [client 151.242.14.31] request failed: error reading the headers Not a JPEG file: starts with 0x89 0x50 also there is lots of these in the messages log Jul 1 20:15:47 server named[2426]: client 203.88.6.9#11926: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 20:15:47 server named[2426]: client 203.88.6.9#26255: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 20:15:48 server named[2426]: client 203.88.6.9#20093: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 20:15:48 server named[2426]: client 203.88.6.9#8672: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:07 server named[2426]: client 203.88.6.9#39352: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:08 server named[2426]: client 203.88.6.9#25382: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:08 server named[2426]: client 203.88.6.9#9064: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:09 server named[2426]: client 203.88.23.9#35375: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:09 server named[2426]: client 203.88.6.9#61932: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:09 server named[2426]: client 203.88.23.9#4423: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:09 server named[2426]: client 203.88.6.9#40229: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#46128: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#62128: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#35240: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#36774: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#28361: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#14970: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#20216: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.10#31794: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#23042: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#11333: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.10#41807: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#20092: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#43526: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.9#17173: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.9#62412: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.10#63961: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.10#64345: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.10#31030: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:16 server named[2426]: client 203.88.6.9#17098: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:16 server named[2426]: client 203.88.6.9#17197: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:16 server named[2426]: client 203.88.6.9#18114: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:16 server named[2426]: client 203.88.6.9#59138: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:17 server named[2426]: client 203.88.6.9#28715: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:48:33 server named[2426]: client 203.88.23.9#26355: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:34 server named[2426]: client 203.88.23.9#34473: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:34 server named[2426]: client 203.88.23.9#62658: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:34 server named[2426]: client 203.88.23.9#51631: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:35 server named[2426]: client 203.88.23.9#54701: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:36 server named[2426]: client 203.88.6.10#63694: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:36 server named[2426]: client 203.88.6.10#18203: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:37 server named[2426]: client 203.88.6.10#9029: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:38 server named[2426]: client 203.88.6.10#58981: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:38 server named[2426]: client 203.88.6.10#29321: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:47 server named[2426]: client 119.160.127.42#42355: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:49 server named[2426]: client 119.160.120.42#46285: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:53 server named[2426]: client 119.160.120.42#30696: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:54 server named[2426]: client 119.160.127.42#14038: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:55 server named[2426]: client 119.160.120.42#33586: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:56 server named[2426]: client 119.160.127.42#55114: query (cache) 'xxxmaza.com/A/IN' denied

    Read the article

  • Optimizing MySQL update query

    - by Jernej Jerin
    This is currently my MySQL UPDATE query, which is called from program written in Java: String query = "UPDATE maxday SET DatePressureREL = (SELECT Date FROM ws3600 WHERE PressureREL = (SELECT MAX" + "(PressureREL) FROM ws3600 WHERE Date >= '" + Date + "') AND Date >= '" + Date + "' ORDER BY Date DESC LIMIT 1), " + "PressureREL = (SELECT PressureREL FROM ws3600 WHERE PressureREL = (SELECT MAX(PressureREL) FROM ws3600 " + "WHERE Date >= '" + Date + "') AND Date >= '" + Date + "' ORDER BY Date DESC LIMIT 1), ..."; try { s.execute(query); } catch (SQLException e) { System.out.println("SQL error"); } catch(Exception e) { e.printStackTrace(); } Let me explain first, what does it do. I have two tables, first is ws3600, which holds columns (Date, PressureREL, TemperatureOUT, Dewpoint, ...). Then I have second table, called maxday, which holds columns like DatePressureREL, PressureREL, DateTemperatureOUT, TemperatureOUT,... Now as you can see from an example, I update each column, the question is, is there a faster way? I am asking this, because I am calling MAX twice, first to find the Date for that value and secondly to find the actual value. Now I know that I could write like that: SELECT Date, PressureREL FROM ws3600 WHERE PressureREL = (SELECT MAX(PressureREL) FROM ws3600 WHERE Date >= '" + Date + "') AND Date >= '" + Date + "' ORDER BY Date DESC LIMIT 1 That way I get the Date of the max and the max value at the same time and then update with those values the data in maxday table. But the problem of this solution is, that I have to execute many queries, which as I understand takes alot more time compared to executing one long mysql query because of overhead in sending each query to the server. If there is no better way, which solution beetwen this two should I choose. The first, which only takes one query but is very unoptimized or the second which is beter in terms of optimization, but needs alot more queries which probably means that the preformance gain is lost because of overhead in sending each query to the server?

    Read the article

  • Mysql - What's wrong with the query...?

    - by SpikETidE
    Hi everybody.... I am trying to query a database to find the following If a customer searches for a hotel in a city between dates A and B, find and return the hotels in which rooms are free between the two dates. There will be more than one room in each room type(i.e. 5 Rooms in type A, 10 rooms in Type B etc) and we have to query the db to find only those hotels in which there is atleast one room free in atleast one type. This is my table structure.... **Structure for table 'reservations'** reservation_id hotel_id room_id customer_id payment_id no_of_rooms check_in_date check_out_date reservation_date **Structure for table 'hotels'** hotel_id hotel_name hotel_description hotel_address hotel_location hotel_country hotel_city hotel_type hotel_stars hotel_image hotel_deleted **Structure for table 'rooms'** room_id hotel_id room_name max_persons total_rooms room_price room_image agent_commision room_facilities service_tax vat city_tax room_description room_deleted And this is my query $city_search = '15'; $check_in_date = '29-03-2010'; $check_out_date = '31-03-2010'; $dateFormat_check_in = "DATE_FORMAT('$reservations.check_in_date','%d-%m-%Y')"; $dateFormat_check_out = "DATE_FORMAT('$reservations.check_out_date','%d-%m-%Y')"; $dateCheck = "$dateFormat_check_in >= '$check_in_date' AND $dateFormat_check_out <= '$check_out_date'"; $query = "SELECT $rooms.room_id, $rooms.room_name, $rooms.max_persons, $rooms.room_price, $hotels.hotel_id, $hotels.hotel_name, $hotels.hotel_stars, $hotels.hotel_type FROM $hotels,$rooms,$reservations WHERE $hotels.hotel_city = '$city_search' AND $hotels.hotel_id = $rooms.hotel_id AND $hotels.hotel_deleted = '0' AND $rooms.room_deleted = '0' AND $rooms.total_rooms - (SELECT SUM($reservations.no_of_rooms) as tot FROM $reservations WHERE $dateCheck GROUP BY $reservations.room_id) > '0'"; The number of rooms already reserved in each room type in each hotel will be stored in the reservations table... The thing is the query doesn't return any result at all...even though it should if i calculate it myself manually... I tried running the sub-query alone and i don't get any result... And i have lost quite some amount of hair trying to de-bug this query from yesterday... What's wrong with this...? Or is there a better way to do what i mentioned above...? Thanks for your time... Edit : Code edited to remove an bud... thanks to

    Read the article

  • Change date in a SQL query to reference a cell in Excel

    - by Adil
    I have the following code that returns the needed data into excel and manually changing the date will change the returned data; however, I'd like to reference a cell with a formula that will make the query a bit more user friendly. I've tried using my limited knowledge of referencing a cell but none have worked. This information is in cell A1 and the query is placed in cell A2 with the following equation: =wwQuery("STKAP03", $A$1) SET QUOTED_IDENTIFIER OFF SELECT * FROM OPENQUERY(INSQL, "SELECT DateTime, [40_MOTORS.MI436423.CIN], [40_MOTORS.MI436425.CIN] FROM WideHistory WHERE [40_MOTORS.MI436423.CIN] IS NOT NULL AND wwRetrievalMode = 'Delta' AND wwVersion = 'Latest' AND DateTime >='20120409 07:00:00' These two dates/times I'd like to reference cells on a different sheet AND DateTime <= '20120416 07:00:00'")

    Read the article

  • Output problem in mysql query in MFC program

    - by D.Gaughan
    Im currently working on a small MFC program that outputs data from a mysql database. I can get output when im using an sql statement that does not contain any variable eg. select album from Artists; but when i try to use a variable the program compiles but i get no output eg. mysql_perform_query(conn,select album from Artists where artists = '"+m_search_edit"'") Here is the function for mysql_perform_query: MYSQL_RES* mysql_perform_query(MYSQL *conn, const char* query) { // send the query to the database if (mysql_query(conn, query)) { // printf("MySQL query error : %s\n", mysql_error(conn)); // exit(1); } return mysql_use_result(conn); } And here is the code block for outputting the data: struct connection_details mysqlD; mysqlD.server = "www.freesqldatabase.com"; // where the mysql database is mysqlD.user = "**********"; // the root user of mysql mysqlD.password = "***********"; // the password of the root user in mysql mysqlD.database = "***************"; // the databse to pick // connect to the mysql database conn = mysql_connection_setup(mysqlD); CStringA query; query.Format("select album from Artists where artist = '%s'", CT2CA(m_search_edit)); res = mysql_perform_query(conn, query); //res = mysql_perform_query (conn, "select distinct artist from Artists"); while((row = mysql_fetch_row(res)) != NULL){ CString str; UpdateData(); str = ("%s\n", row[0]); UpdateData(FALSE); m_list_control.AddString(str); } The m_search_edit variable is the variable for an edit box. I am using Visual Studio 2008 with one copy of this program unicode and one nonunicode, I also have a version built with VC++ 6. Any tips on how I can get output from the databse using the m_search_edit variable??

    Read the article

  • C# 4 Named Parameters for Overload Resolution

    - by Steve Michelotti
    C# 4 is getting a new feature called named parameters. Although this is a stand-alone feature, it is often used in conjunction with optional parameters. Last week when I was giving a presentation on C# 4, I got a question on a scenario regarding overload resolution that I had not considered before which yielded interesting results. Before I describe the scenario, a little background first. Named parameters is a well documented feature that works like this: suppose you have a method defined like this: 1: void DoWork(int num, string message = "Hello") 2: { 3: Console.WriteLine("Inside DoWork() - num: {0}, message: {1}", num, message); 4: } This enables you to call the method with any of these: 1: DoWork(21); 2: DoWork(num: 21); 3: DoWork(21, "abc"); 4: DoWork(num: 21, message: "abc"); and the corresponding results will be: Inside DoWork() - num: 21, message: Hello Inside DoWork() - num: 21, message: Hello Inside DoWork() - num: 21, message: abc Inside DoWork() - num: 21, message: abc This is all pretty straight forward and well-documented. What is slightly more interesting is how resolution is handled with method overloads. Suppose we had a second overload for DoWork() that looked like this: 1: void DoWork(object num) 2: { 3: Console.WriteLine("Inside second overload: " + num); 4: } The first rule applied for method overload resolution in this case is that it looks for the most strongly-type match first.  Hence, since the second overload has System.Object as the parameter rather than Int32, this second overload will never be called for any of the 4 method calls above.  But suppose the method overload looked like this: 1: void DoWork(int num) 2: { 3: Console.WriteLine("Inside second overload: " + num); 4: } In this case, both overloads have the first parameter as Int32 so they both fulfill the first rule equally.  In this case the overload with the optional parameters will be ignored if the parameters are not specified. Therefore, the same 4 method calls from above would result in: Inside second overload: 21 Inside second overload: 21 Inside DoWork() - num: 21, message: abc Inside DoWork() - num: 21, message: abc Even all this is pretty well documented. However, we can now consider the very interesting scenario I was presented with. The question was what happens if you change the parameter name in one of the overloads.  For example, what happens if you change the parameter *name* for the second overload like this: 1: void DoWork(int num2) 2: { 3: Console.WriteLine("Inside second overload: " + num2); 4: } In this case, the first 2 method calls will yield *different* results: 1: DoWork(21); 2: DoWork(num: 21); results in: Inside second overload: 21 Inside DoWork() - num: 21, message: Hello We know the first method call will go to the second overload because of normal method overload resolution rules which ignore the optional parameters.  But for the second call, even though all the same rules apply, the compiler will allow you to specify a named parameter which, in effect, overrides the typical rules and directs the call to the first overload. Keep in mind this would only work if the method overloads had different parameter names for the same types (which in itself is weird). But it is a situation I had not considered before and it is one in which you should be aware of the rules that the C# 4 compiler applies.

    Read the article

  • Dynamically select field names in a query with Spring JDBCTemplate

    - by Francesco
    Hi, I have a problem with parameters replacing by Spring JdbcTemplate. I have this query : <bean id="fixQuery" class="java.lang.String"> <constructor-arg type="java.lang.String" value="select fa.id, fi.? from fix_ambulation fa left join fix_i18n fi on fa.translation_id = fi.id order by name" /> And this method : public List<FixAmbulation> readFixAmbulation(String locale) throws Exception { List<FixAmbulation> ambulations = this.getJdbcTemplate().query( fixQuery, new Object[] {locale.toLowerCase()}, ParameterizedBeanPropertyRowMapper .newInstance(FixAmbulation.class)); return ambulations; } And I'd like to have the ? filled with the string representing the locale the user is using. So if the user is brasilian I'd send him the column pt_br from the table fix_i18n, otherwise if he's american I'd send him the column en_us. What I get from this method is a PostgreSQL exception org.postgresql.util.PSQLException: ERROR: syntax error at or near "$1" If I replace fi.? with just ? (the column name of the locale is unique, so if I run this query in the database it works just fine) what I get is that every object returned from method has the string locale into the field name. I.e. in name field I have "en_us". The only way to have it working I found was to change the method into : public List<FixAmbulation> readFixAmbulation(String locale) throws Exception { String query = "select fa.id, fi." + locale.toLowerCase() + " as name " + fixQuery; this.log.info("QUERY : " + query); List<FixAmbulation> ambulations = this.getJdbcTemplate().query( query, ParameterizedBeanPropertyRowMapper .newInstance(FixAmbulation.class)); return ambulations; } and setting fixQuery to : <bean id="fixQuery" class="java.lang.String"> <constructor-arg type="java.lang.String" value=" from telemedicina.fix_ambulation fa left join telemedicina.fix_i18n fi on fa.translation_id = fi.id order by name" /> </bean> My DAO extends Spring JdbcDaoSupport and works just fine for all other queries. What am I doing wrong?

    Read the article

  • Linq to LLBLGen query problem

    - by Jeroen Breuer
    Hello, I've got a Stored Procedure and i'm trying to convert it to a Linq to LLBLGen query. The query in Linq to LLBGen works, but when I trace the query which is send to sql server it is far from perfect. This is the Stored Procedure: ALTER PROCEDURE [dbo].[spDIGI_GetAllUmbracoProducts] -- Add the parameters for the stored procedure. @searchText nvarchar(255), @startRowIndex int, @maximumRows int, @sortExpression nvarchar(255) AS BEGIN SET @startRowIndex = @startRowIndex + 1 SET @searchText = '%' + @searchText + '%' -- SET NOCOUNT ON added to prevent extra result sets from -- interfering with SELECT statements. SET NOCOUNT ON; -- This is the query which will fetch all the UmbracoProducts. -- This query also supports paging and sorting. WITH UmbracoOverview As ( SELECT ROW_NUMBER() OVER( ORDER BY CASE WHEN @sortExpression = 'productName' THEN umbracoProduct.productName WHEN @sortExpression = 'productCode' THEN umbracoProduct.productCode END ASC, CASE WHEN @sortExpression = 'productName DESC' THEN umbracoProduct.productName WHEN @sortExpression = 'productCode DESC' THEN umbracoProduct.productCode END DESC ) AS row_num, umbracoProduct.umbracoProductId, umbracoProduct.productName, umbracoProduct.productCode FROM umbracoProduct INNER JOIN product ON umbracoProduct.umbracoProductId = product.umbracoProductId WHERE (umbracoProduct.productName LIKE @searchText OR umbracoProduct.productCode LIKE @searchText OR product.code LIKE @searchText OR product.description LIKE @searchText OR product.descriptionLong LIKE @searchText OR product.unitCode LIKE @searchText) ) SELECT UmbracoOverview.UmbracoProductId, UmbracoOverview.productName, UmbracoOverview.productCode FROM UmbracoOverview WHERE (row_num >= @startRowIndex AND row_num < (@startRowIndex + @maximumRows)) -- This query will count all the UmbracoProducts. -- This query is used for paging inside ASP.NET. SELECT COUNT (umbracoProduct.umbracoProductId) AS CountNumber FROM umbracoProduct INNER JOIN product ON umbracoProduct.umbracoProductId = product.umbracoProductId WHERE (umbracoProduct.productName LIKE @searchText OR umbracoProduct.productCode LIKE @searchText OR product.code LIKE @searchText OR product.description LIKE @searchText OR product.descriptionLong LIKE @searchText OR product.unitCode LIKE @searchText) END This is my Linq to LLBLGen query: using System.Linq.Dynamic; var q = ( from up in MetaData.UmbracoProduct join p in MetaData.Product on up.UmbracoProductId equals p.UmbracoProductId where up.ProductCode.Contains(searchText) || up.ProductName.Contains(searchText) || p.Code.Contains(searchText) || p.Description.Contains(searchText) || p.DescriptionLong.Contains(searchText) || p.UnitCode.Contains(searchText) select new UmbracoProductOverview { UmbracoProductId = up.UmbracoProductId, ProductName = up.ProductName, ProductCode = up.ProductCode } ).OrderBy(sortExpression); //Save the count in HttpContext.Current.Items. This value will only be saved during 1 single HTTP request. HttpContext.Current.Items["AllProductsCount"] = q.Count(); //Returns the results paged. return q.Skip(startRowIndex).Take(maximumRows).ToList<UmbracoProductOverview>(); This is my Initial expression to process: value(SD.LLBLGen.Pro.LinqSupportClasses.DataSource`1[Eurofysica.DB.EntityClasses.UmbracoProductEntity]).Join(value(SD.LLBLGen.Pro.LinqSupportClasses.DataSource`1[Eurofysica.DB.EntityClasses.ProductEntity]), up => up.UmbracoProductId, p => p.UmbracoProductId, (up, p) => new <>f__AnonymousType0`2(up = up, p = p)).Where(<>h__TransparentIdentifier0 => (((((<>h__TransparentIdentifier0.up.ProductCode.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText) || <>h__TransparentIdentifier0.up.ProductName.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText)) || <>h__TransparentIdentifier0.p.Code.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText)) || <>h__TransparentIdentifier0.p.Description.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText)) || <>h__TransparentIdentifier0.p.DescriptionLong.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText)) || <>h__TransparentIdentifier0.p.UnitCode.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText))).Select(<>h__TransparentIdentifier0 => new UmbracoProductOverview() {UmbracoProductId = <>h__TransparentIdentifier0.up.UmbracoProductId, ProductName = <>h__TransparentIdentifier0.up.ProductName, ProductCode = <>h__TransparentIdentifier0.up.ProductCode}).OrderBy( => .ProductName).Count() Now this is how the queries look like that are send to sql server: Select query: Query: SELECT [LPA_L2].[umbracoProductId] AS [UmbracoProductId], [LPA_L2].[productName] AS [ProductName], [LPA_L2].[productCode] AS [ProductCode] FROM ( [eurofysica].[dbo].[umbracoProduct] [LPA_L2] INNER JOIN [eurofysica].[dbo].[product] [LPA_L3] ON [LPA_L2].[umbracoProductId] = [LPA_L3].[umbracoProductId]) WHERE ( ( ( ( ( ( ( ( [LPA_L2].[productCode] LIKE @ProductCode1) OR ( [LPA_L2].[productName] LIKE @ProductName2)) OR ( [LPA_L3].[code] LIKE @Code3)) OR ( [LPA_L3].[description] LIKE @Description4)) OR ( [LPA_L3].[descriptionLong] LIKE @DescriptionLong5)) OR ( [LPA_L3].[unitCode] LIKE @UnitCode6)))) Parameter: @ProductCode1 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @ProductName2 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @Code3 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @Description4 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @DescriptionLong5 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @UnitCode6 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Count query: Query: SELECT TOP 1 COUNT(*) AS [LPAV_] FROM (SELECT [LPA_L2].[umbracoProductId] AS [UmbracoProductId], [LPA_L2].[productName] AS [ProductName], [LPA_L2].[productCode] AS [ProductCode] FROM ( [eurofysica].[dbo].[umbracoProduct] [LPA_L2] INNER JOIN [eurofysica].[dbo].[product] [LPA_L3] ON [LPA_L2].[umbracoProductId] = [LPA_L3].[umbracoProductId]) WHERE ( ( ( ( ( ( ( ( [LPA_L2].[productCode] LIKE @ProductCode1) OR ( [LPA_L2].[productName] LIKE @ProductName2)) OR ( [LPA_L3].[code] LIKE @Code3)) OR ( [LPA_L3].[description] LIKE @Description4)) OR ( [LPA_L3].[descriptionLong] LIKE @DescriptionLong5)) OR ( [LPA_L3].[unitCode] LIKE @UnitCode6))))) [LPA_L1] Parameter: @ProductCode1 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @ProductName2 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @Code3 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @Description4 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @DescriptionLong5 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @UnitCode6 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". As you can see no sorting or paging is done (like in my Stored Procedure). This is probably done inside the code after all the results are fetched. This costs a lot of performance! Does anybody know how I can convert my Stored Procedure to Linq to LLBLGen the proper way?

    Read the article

  • Date problem in MYSQL Query

    - by davykiash
    Am looking for a query to sum values in a particular time duration say an year or a particular month in an year using MYSQL syntax.Note that my transaction_date column stores daily amount transacted. Am example of a query that returns total sales in an year query would look something like this SELECT SUM(transaction_amount) WHERE transaction_date = (YEAR) Am example of a query that returns total sales in an particular month and year would look something like this SELECT SUM(transaction_amount) WHERE transaction_date = (YEAR)(MONTH) How achievable is this?

    Read the article

  • File system query

    - by Balaji
    Is there an easy way to query data in file system? We are storing data in File system (instead of database) Is there a way to query the content of the file system? The data in the file system is stored in xml format. since the data is growing day by day we are finding it difficult to query the content of the files in the file system. Can anyone suggest what could be the tool/method to query the data in the existing file system?

    Read the article

  • converting linq query to icollection

    - by bergin
    Hi there. I need to take the results of a query: var query = from m in db.SoilSamplingSubJobs where m.order_id == id select m; and prepare as an ICollection so that I can have something like ICollection<SoilSamplingSubJob> subjobs at the moment I create a list, which isnt appropriate to my needs: query.ToList(); what do I do - is it query.ToIcollection() ?

    Read the article

  • Drawbacks of Dynamic Query in Sqlserver 2005 ?

    - by KuldipMCA
    I have using the many dynamic Query in my database for the procedures because my filter is not fix so i have taken @filter as parameter and pass in the procedure. Declare @query as varchar(8000) Declare @Filter as varchar(1000) set @query = 'Select * from Person.Address where 1=1 and ' + @Filter exec(@query) Like that my filter contain any Field from the table for comparison. It will affect my performance or not ? is there any alternate way to achieve this type of things

    Read the article

  • WordPress SQL Query on Category/Terms

    - by mroggle
    Hi, i am modifying a plugin slightly to meet my needs, and need to change this query to return post ID's of just one category. I know it has something to do with INNER JOIN, but cant get the query right. Here is the original query $query = "SELECT ID as PID FROM $wpdb->posts"; $results = $wpdb->get_results($querydetails,ARRAY_A);

    Read the article

  • Improve long mysql query

    - by John Adawan
    I have a php mysql query like this $query = "SELECT * FROM articles FORCE INDEX (articleindex) WHERE category='$thiscat' and did>'$thisdid' and mid!='$thismid' and status='1' and group='$thisgroup' and pid>'$thispid' LIMIT 10"; As optimization, I've indexed all the parameters in articleindex and I use force index to force mysql to use the index, supposedly for faster processing. But it seems that this query is still quite slow and it's causing a jam and maxing out the max mysql connection limit. Let's discuss how we can improve on such long query.

    Read the article

  • Improve long mysql query

    - by John Adawan
    I have a php mysql query like this $query = "SELECT * FROM articles FORCE INDEX (articleindex) WHERE category='$thiscat' and did>'$thisdid' and mid!='$thismid' and status='1' and group='$thisgroup' and pid>'$thispid' LIMIT 10"; As optimization, I've indexed all the parameters in articleindex and I use force index to force mysql to use the index, supposedly for faster processing. But it seems that this query is still quite slow and it's causing a jam and maxing out the max mysql connection limit. Let's discuss how we can improve on such long query.

    Read the article

  • running same query in different databases

    - by user316833
    I wrote a query that I want to run in several access databases. I have 1000+ access databases with the same tables (same names, same fields). So far, I have been manually copying this query from a txt file to the sql view in the access query design screen for each database and then run it. I did not need to change the query language - everything is the same for the 1000 databases. Is there a way to automate this?

    Read the article

  • Grails query not using GORM

    - by Tihom
    What is the best way to query for something without using GORM in grails? I have query that doesn't seem to fit in the GORM model, the query has a subquery and a computed field. I posted on stackoverflow already with no response so I decided to take a different approach. I want to query for something not using GORM within a grails application. Is there an easy way to get the connection and go through the result set?

    Read the article

  • A Query to remove relationships that do not belong [closed]

    - by Segfault
    In a SQL Server 2008 R2 database, given this schema: AgentsAccounts _______________ AgentID int UNIQUE AccountID FinalAgents ___________ AgentID I need to create a query that does this: For each AgentID 'final' in FinalAgents remove all of the OTHER AgentID's from AgentsAccounts that have the same AccountID as 'final'. So if the tables have these rows before the query: AgentsAccounts AgentID AccountID 1 A 2 A 3 B 4 B FinalAgents 1 3 then after the query the AgentsAccounts table will look like this: AgentsAccounts AgentID AccountID 1 A 3 B What T-SQL query will delete the correct rows without using a curosr?

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • EJB-QL query never returning unless another query is run

    - by KevMo
    I have a strange strange problem. When executing the following EJB-QL query, my ENTIRE application will stop responding to requests, as the query never finishes executing. Query q = em.createQuery("SELECT o from RoomReservation as o WHERE o.deleted = FALSE AND o.room.id IN (Select r.id from Room as r where r.deleted = FALSE AND r.type.name = 'CLASSROOM')"); However, if I execute this query before I execute the other query, it runs without issue. Query dumbQuery = em.createQuery("SELECT o from Room as o WHERE o.deleted = FALSE"); Any idea what in the world is going on?

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >