Search Results

Search found 35121 results on 1405 pages for 'object cache'.

Page 9/1405 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • What's So Smart About Oracle Exadata Smart Flash Cache?

    - by kimberly.billings
    Want to know what's so "smart" about Oracle Exadata Smart Flash Cache? This three minute video explains how Oracle Exadata Smart Flash Cache helps solve the random I/O bottleneck challenge and delivers extreme performance for consolidated database applications. Exadata Smart Flash Cache is a feature of the Sun Oracle Database Machine. With it, you get ten times faster I/O response time and use ten times fewer disks for business applications from Oracle and third-party providers. Read the whitepaper for more information. var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-13185312-1"); pageTracker._trackPageview(); } catch(err) {}

    Read the article

  • Can I copy large files faster without using the file cache?

    - by Veazer
    After adding the preload package, my applications seem to speed up but if I copy a large file, the file cache grows by more than double the size of the file. By transferring a single 3-4 GB virtualbox image or video file to an external drive, this huge cache seems to remove all the preloaded applications from memory, leading to increased load times and general performance drops. Is there a way to copy large, multi-gigabyte files without caching them (i.e. bypassing the file cache)? Or a way to whitelist or blacklist specific folders from being cached?

    Read the article

  • Use decorator and factory together to extend objects?

    - by TheClue
    I'm new to OOP and design pattern. I've a simple app that handles the generation of Tables, Columns (that belong to Table), Rows (that belong to Column) and Values (that belong to Rows). Each of these object can have a collection of Property, which is in turn defined as an enum. They are all interfaces: I used factories to get concrete instances of these products, depending on circumnstances. Now I'm facing the problem of extending these classes. Let's say I need another product called "SpecialTable" which in turn has some special properties or new methods like 'getSomethingSpecial' or an extended set of Property. The only way is to extend/specialize all my elements (ie. build a SpecialTableFactory, a SpecialTable interface and a SpecialTableImpl concrete)? What to do if, let's say, I plan to use standard methods like addRow(Column column, String name) that doesn't need to be specialized? I don't like the idea to inherit factories and interfaces, but since SpecialTable has more methods than Table i guess it cannot share the same factory. Am I wrong? Another question: if I need to define product properties at run time (a Table that is upgraded to SpecialTable at runtime), i guess i should use a decorator. Is it possible (and how) to combine both factory and decorator design? Is it better to use a State or Strategy pattern, instead?

    Read the article

  • From HttpRuntime.Cache to Windows Azure Caching (Preview)

    - by Jeff
    I don’t know about you, but the announcement of Windows Azure Caching (Preview) (yes, the parentheses are apparently part of the interim name) made me a lot more excited about using Azure. Why? Because one of the great performance tricks of any Web app is to cache frequently used data in memory, so it doesn’t have to hit the database, a service, or whatever. When you run your Web app on one box, HttpRuntime.Cache is a sweet and stupid-simple solution. Somewhere in the data fetching pieces of your app, you can see if an object is available in cache, and return that instead of hitting the data store. I did this quite a bit in POP Forums, and it dramatically cuts down on the database chatter. The problem is that it falls apart if you run the app on many servers, in a Web farm, where one server may initiate a change to that data, and the others will have no knowledge of the change, making it stale. Of course, if you have the infrastructure to do so, you can use something like memcached or AppFabric to do a distributed cache, and achieve the caching flavor you desire. You could do the same thing in Azure before, but it would cost more because you’d need to pay for another role or VM or something to host the cache. Now, you can use a portion of the memory from each instance of a Web role to act as that cache, with no additional cost. That’s huge. So if you’re using a percentage of memory that comes out to 100 MB, and you have three instances running, that’s 300 MB available for caching. For the uninitiated, a Web role in Azure is essentially a VM that runs a Web app (worker roles are the same idea, only without the IIS part). You can spin up many instances of the role, and traffic is load balanced to the various instances. It’s like adding or removing servers to a Web farm all willy-nilly and at your discretion, and it’s what the cloud is all about. I’d say it’s my favorite thing about Windows Azure. The slightly annoying thing about developing for a Web role in Azure is that the local emulator that’s launched by Visual Studio is a little on the slow side. If you’re used to using the built-in Web server, you’re used to building and then alt-tabbing to your browser and refreshing a page. If you’re just changing an MVC view, you’re not even doing the building part. Spinning up the simulated Azure environment is too slow for this, but ideally you want to code your app to use this fantastic distributed cache mechanism. So first off, here’s the link to the page showing how to code using the caching feature. If you’re used to using HttpRuntime.Cache, this should be pretty familiar to you. Let’s say that you want to use the Azure cache preview when you’re running in Azure, but HttpRuntime.Cache if you’re running local, or in a regular IIS server environment. Through the magic of dependency injection, we can get there pretty quickly. First, design an interface to handle the cache insertion, fetching and removal. Mine looks like this: public interface ICacheProvider {     void Add(string key, object item, int duration);     T Get<T>(string key) where T : class;     void Remove(string key); } Now we’ll create two implementations of this interface… one for Azure cache, one for HttpRuntime: public class AzureCacheProvider : ICacheProvider {     public AzureCacheProvider()     {         _cache = new DataCache("default"); // in Microsoft.ApplicationServer.Caching, see how-to      }         private readonly DataCache _cache;     public void Add(string key, object item, int duration)     {         _cache.Add(key, item, new TimeSpan(0, 0, 0, 0, duration));     }     public T Get<T>(string key) where T : class     {         return _cache.Get(key) as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } public class LocalCacheProvider : ICacheProvider {     public LocalCacheProvider()     {         _cache = HttpRuntime.Cache;     }     private readonly System.Web.Caching.Cache _cache;     public void Add(string key, object item, int duration)     {         _cache.Insert(key, item, null, DateTime.UtcNow.AddMilliseconds(duration), System.Web.Caching.Cache.NoSlidingExpiration);     }     public T Get<T>(string key) where T : class     {         return _cache[key] as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } Feel free to expand these to use whatever cache features you want. I’m not going to go over dependency injection here, but I assume that if you’re using ASP.NET MVC, you’re using it. Somewhere in your app, you set up the DI container that resolves interfaces to concrete implementations (Ninject call is a “kernel” instead of a container). For this example, I’ll show you how StructureMap does it. It uses a convention based scheme, where if you need to get an instance of IFoo, it looks for a class named Foo. You can also do this mapping explicitly. The initialization of the container looks something like this: ObjectFactory.Initialize(x =>             {                 x.Scan(scan =>                         {                             scan.AssembliesFromApplicationBaseDirectory();                             scan.WithDefaultConventions();                         });                 if (Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.IsAvailable)                     x.For<ICacheProvider>().Use<AzureCacheProvider>();                 else                     x.For<ICacheProvider>().Use<LocalCacheProvider>();             }); If you use Ninject or Windsor or something else, that’s OK. Conceptually they’re all about the same. The important part is the conditional statement that checks to see if the app is running in Azure. If it is, it maps ICacheProvider to AzureCacheProvider, otherwise it maps to LocalCacheProvider. Now when a request comes into your MVC app, and the chain of dependency resolution occurs, you can see to it that the right caching code is called. A typical design may have a call stack that goes: Controller –> BusinessLogicClass –> Repository. Let’s say your repository class looks like this: public class MyRepo : IMyRepo {     public MyRepo(ICacheProvider cacheProvider)     {         _context = new MyDataContext();         _cache = cacheProvider;     }     private readonly MyDataContext _context;     private readonly ICacheProvider _cache;     public SomeType Get(int someTypeID)     {         var key = "somename-" + someTypeID;         var cachedObject = _cache.Get<SomeType>(key);         if (cachedObject != null)         {             _context.SomeTypes.Attach(cachedObject);             return cachedObject;         }         var someType = _context.SomeTypes.SingleOrDefault(p => p.SomeTypeID == someTypeID);         _cache.Add(key, someType, 60000);         return someType;     } ... // more stuff to update, delete or whatever, being sure to remove // from cache when you do so  When the DI container gets an instance of the repo, it passes an instance of ICacheProvider to the constructor, which in this case will be whatever implementation was specified when the container was initialized. The Get method first tries to hit the cache, and of course doesn’t care what the underlying implementation is, Azure, HttpRuntime, or otherwise. If it finds the object, it returns it right then. If not, it hits the database (this example is using Entity Framework), and inserts the object into the cache before returning it. The important thing not pictured here is that other methods in the repo class will construct the key for the cached object, in this case “somename-“ plus the ID of the object, and then remove it from cache, in any method that alters or deletes the object. That way, no matter what instance of the role is processing the request, it won’t find the object if it has been made stale, that is, updated or outright deleted, forcing it to attempt to hit the database. So is this good technique? Well, sort of. It depends on how you use it, and what your testing looks like around it. Because of differences in behavior and execution of the two caching providers, for example, you could see some strange errors. For example, I immediately got an error indicating there was no parameterless constructor for an MVC controller, because the DI resolver failed to create instances for the dependencies it had. In reality, the NuGet packaged DI resolver for StructureMap was eating an exception thrown by the Azure components that said my configuration, outlined in that how-to article, was wrong. That error wouldn’t occur when using the HttpRuntime. That’s something a lot of people debate about using different components like that, and how you configure them. I kinda hate XML config files, and like the idea of the code-based approach above, but you should be darn sure that your unit and integration testing can account for the differences.

    Read the article

  • Cached ObjectDataSource not firing Select Event even Cache Dependecy Removed

    - by John Polvora
    I have the following scenario. A Page with a DetailsView binded to an ObjectDatasource with cache-enabled. The SelectMethod is assigned at Page_Load event, depending on my User Level Logic. After assigned the selectMethod and Parameters for the ODS, if Cache not exists, then ODS will be cached the first time. The next time, the cache will be applied to the ODS and the select event don't need to be fired since the dataresult is cached. The problem is, the ODS Cache works fine, but I have a Refresh button to clear the cache and rebind the DetailsView. Am I doing correctly ? Below is my code. <asp:DetailsView ID="DetailsView1" runat="server" DataSourceID="ObjectDataSource_Summary" EnableModelValidation="True" EnableViewState="False" ForeColor="#333333" GridLines="None"> </asp:DetailsView> <asp:ObjectDataSource ID="ObjectDataSource_Summary" runat="server" SelectMethod="" TypeName="BL.BusinessLogic" EnableCaching="true"> <SelectParameters> <asp:Parameter Name="idCompany" Type="String" /> <SelectParameters> </asp:ObjectDataSource> <asp:ImageButton ID="ImageButton_Refresh" runat="server" OnClick="RefreshClick" ImageUrl="~/img/refresh.png" /> And here is the code behind public partial class Index : Page { protected void Page_Load(object sender, EventArgs e) { ObjectDataSource_Summary.SelectMethod = ""; ObjectDataSource_Summary.SelectParameters[0].DefaultValue = ""; switch (this._loginData.UserLevel) //this is a struct I use for control permissions e pages behaviour { case OperNivel.SysAdmin: case OperNivel.SysOperator: { ObjectDataSource_Summary.SelectMethod = "SystemSummary"; ObjectDataSource_Summary.SelectParameters[0].DefaultValue = "0"; break; } case OperNivel.CompanyAdmin: case OperNivel.CompanyOperator: { ObjectDataSource_Summary.SelectMethod = "CompanySummary"; ObjectDataSource_Summary.SelectParameters[0].DefaultValue = this._loginData.UserLevel.ToString(); break; } default: break; } } protected void Page_LoadComplete(object sender, EventArgs e) { if (Cache[ObjectDataSource_Summary.CacheKeyDependency] == null) { this._loginData.LoginDatetime = DateTime.Now; Session["loginData"] = _loginData; Cache[ObjectDataSource_Summary.CacheKeyDependency] = _loginData; DetailsView1.DataBind(); } } protected void RefreshClick(object sender, ImageClickEventArgs e) { Cache.Remove(ObjectDataSource_Summary.CacheKeyDependency); } } Can anyone help me? The Select() Event of the ObjectDasource is not firing even I Remove the CacheKey Dependency

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Java game object pool management

    - by Kenneth Bray
    Currently I am using arrays to handle all of my game objects in the game I am making, and I know how terrible this is for performance. My question is what is the best way to handle game objects and not hurt performance? Here is how I am creating an array and then looping through it to update the objects in the array: public static ArrayList<VboCube> game_objects = new ArrayList<VboCube>(); /* add objects to the game */ while (!Display.isCloseRequested() && !Keyboard.isKeyDown(Keyboard.KEY_ESCAPE)) { for (int i = 0; i < game_objects.size(); i++){ // draw the object game_objects.get(i).Draw(); game_objects.get(i).Update(); //world.updatePhysics(); } } I am not looking for someone to write me code for asset or object management, just point me into a better direction to get better performance. I appreciate the help you guys have provided me in the past, and I dont think I would be as far along with my project without the support on stack exchange!

    Read the article

  • RAID 0 Volatile Volume Cache Mode configuration

    - by SnippetSpace
    I discovered that in IRST there is an option to set a cache mode for my 3 ssd raid 0 array. I've read the documentation by Intel and have some questions: Are there any overall benefits/risks from enabling cache mode? As I'm on a laptop, would write back be recommended? I read it increases chance of data loss on power interruption. What is the difference between how windows handles data integrity and the intel driver? Read only mode seems to have the benefit of faster reads, does it have any downsides? Thanks for your help guys!

    Read the article

  • tweak windows 7 virtual memory and cache / caching settings

    - by bortao
    im on windows 7 64 bit, with 4gb of memory whenever i copy or deal with a big ammount of data, windows swaps out everything from memory to the virtual memory swapfile, to make room to data cache. the problem is: i dont really need caching of this data im copying, its being copied only once, cacheing this data won't help me. on the other hand, swapping out the programs will give me a big lag time whenever i want to use those open programs again. what i want: restrict data cache to a certain ammount, lets say 1gb, or reserve a certain ammount of memory, lets say 2gb, exclusively for running programs memory. my swap file is on a separate partition, but i still have problems with swapping time.

    Read the article

  • tweak windows 7 virtual memory and cache / caching settings

    - by bortao
    im on windows 7 64 bit, with 4gb of memory whenever i copy or deal with a big ammount of data, windows swaps out everything from memory to the virtual memory swapfile, to make room to data cache. the problem is: i dont really need caching of this data im copying, its being copied only once, cacheing this data won't help me. on the other hand, swapping out the programs will give me a big lag time whenever i want to use those open programs again. what i want: restrict data cache to a certain ammount, lets say 1gb, or reserve a certain ammount of memory, lets say 2gb, exclusively for running programs memory. my swap file is on a separate partition, but i still have problems with swapping time.

    Read the article

  • How to place SuperFetch cache on an SSD?

    - by Ian Boyd
    I'm thinking of adding a solid state drive (SSD) to my existing Windows 7 installation. I know I can (and should) move my paging file to the SSD: Should the pagefile be placed on SSDs? Yes. Most pagefile operations are small random reads or larger sequential writes, both of which are types of operations that SSDs handle well. In looking at telemetry data from thousands of traces and focusing on pagefile reads and writes, we find that Pagefile.sys reads outnumber pagefile.sys writes by about 40 to 1, Pagefile.sys read sizes are typically quite small, with 67% less than or equal to 4 KB, and 88% less than 16 KB. Pagefile.sys writes are relatively large, with 62% greater than or equal to 128 KB and 45% being exactly 1 MB in size. In fact, given typical pagefile reference patterns and the favorable performance characteristics SSDs have on those patterns, there are few files better than the pagefile to place on an SSD. What I don't know is if I even can put a SuperFetch cache (i.e. ReadyBoost cache) on the solid state drive. I want to get the benefit of Windows being able to cache gigabytes of frequently accessed data on a relativly small (e.g. 30GB) solid state drive. This is exactly what SuperFetch+ReadyBoost (or SuperFetch+ReadyDrive) was designed for. Will Windows offer (or let) me place a ReadyBoost cache on a solid state flash drive connected via SATA? A problem with the ReadyBoost cache over the ReadyDrive cache is that the ReadyBoost cache does not survive between reboots. The cache is encrypted with a per-session key, making its existing contents unusable during boot and SuperFetch pre-fetching during login. Update One I know that Windows Vista limited you to only one ReadyBoost.sfcache file (I do not know if Windows 7 removed that limitation): Q: Can use use multiple devices for EMDs? A: Nope. We've limited Vista to one ReadyBoost per machine Q: Why just one device? A: Time and quality. Since this is the first revision of the feature, we decided to focus on making the single device exceptional, without the difficulties of managing multiple caches. We like the idea, though, and it's under consideration for future versions. I also know that the 4GB limit on the cache file was a limitation of the FAT filesystem used on most USB sticks - an SSD drive would be formatted with NTFS: Q: What's the largest amount of flash that I can use for ReadyBoost? A: You can use up to 4GB of flash for ReadyBoost (which turns out to be 8GB of cache w/ the compression) Q: Why can't I use more than 4GB of flash? A: The FAT32 filesystem limits our ReadyBoost.sfcache file to 4GB Can a ReadyBoost cache on an NTFS volume be larger than 4GB? Update Two The ReadyBoost cache is encrypted with a per-boot session key. This means that the cache has to be re-built after each boot, and cannot be used to help speed boot times, or latency from login to usable. Windows ReadyDrive technology takes advantage of non-volatile (NV) memory (i.e. flash) that is incorporated with some hybrid hard drives. This flash cache can be used to help Windows boot, or resume from hibernate faster. Will Windows 7 use an internal SSD drive as a ReadyBoost/*ReadyDrive*/SuperFetch cache? Is it possible to make Windows store a SuperFetch cache (i.e. ReadyBoost) on a non-removable SSD? Is it possible to not encrypt the ReadyBoost cache, and if so will Windows 7 use the cache at boot time? See also SuperUser.com: ReadyBoost + SSD = ? Windows 7 - ReadyBoost & SSD drives? Support and Q&A for Solid-State Drives Using SDD as a cache for HDD, is there a solution? Performance increase using SSD for paging/fetch/cache or ReadyBoost? (Win7) Windows 7 To Boost SSD Performance How to Disable Nonvolatile Caching

    Read the article

  • Strange Unclearable Cache Issue with Gmail and Google Apps

    - by Brian
    I am having a strange issue with Gmail and Google Apps... have a look at this screenshot: http://cld.ly/f51ume notice the missing images for the rounded corners? Well this is not such a problem but something similar to a cache issue is causing this as well as no background image, but MOST IMPORTANTLY chat and other "clickable" features aren't working. I've already cleared my cache multiple times and quit and re-started Firefox with no change. Everything is OK in other browsers. Any other debug suggestions?

    Read the article

  • 503 error Varnish cache when eAccelerator is started

    - by Netismine
    I have a Magento installation running on x-large Amazon server. I have Varnish, memcached and eAccelerator installed on the server. At first everything was working fine, but then at some point it stopped working, throwing 503 error with Varnish cache stamp below it. When I disable eaccelerator, error is gone and site is working. This is my eaccelerator config: extension="eaccelerator.so" eaccelerator.shm_size = "512" eaccelerator.cache_dir = "/var/cache/php-eaccelerator" eaccelerator.enable = "1" eaccelerator.optimizer = "1" eaccelerator.debug = 0 eaccelerator.log_file = "/var/log/httpd/eaccelerator_log" eaccelerator.name_space = "" eaccelerator.check_mtime = "1" eaccelerator.filter = "" eaccelerator.shm_ttl = "0" eaccelerator.shm_prune_period = "0" eaccelerator.shm_only = "0" eaccelerator.allowed_admin_path = "" any hints?

    Read the article

  • Force Windows to cache executables without running them?

    - by Josh Einstein
    Is there a way to force Windows to pre-load certain EXE/DLL binaries into its prefetch/superfetch cache as if they had been executed? I have a particular application that loads pretty slowly on first run but if it's "warm" (recently executed) it starts pretty quickly. I'd like to prime the cache early in the background before the application is needed. But since it shows a UI, I'm looking for a way to do this silently. So simply launching the application it isn't ideal. Thanks you in advance. Prompted by David's suggestion in the comments, I wrote a PowerShell script to memory map the files, seek to the end, and close them. I haven't done any controlled tests yet and it could just be my imagination, but Sublime Text (the application in question) appeared to load much more quickly this time around and I haven't used it for several hours.

    Read the article

  • using one disk as cache for others

    - by HugoRune
    Hi Given a PC with several hard drives: Is it possible to use one fast disk as a giant file cache? I.e. automatically copying frequently accessed data to that one disk, and transparently redirecting reads and writes to that disk, so that other drives would only have be accessed occassionally. (writes would have to be forwarded to the other disks after a while of course) Advantages: the other drives could be powered down most of the time; reducing power, heat, noise speed of the other drives would not matter much. cache disk could be solid state. How can I set such a system up? What OS supports these options? Is this possible at all using Windows or Linux?

    Read the article

  • Google Chrome not using local cache

    - by Steve
    Hi. I've been using Google Chrome as a substitute for Firefox not being able to handle having lots of tabs open at the same time. Unfortunately, it looks like Chrome is having the same problem. Freakin useless. I had to end Chrome as my whole system had slowed to a crawl. When I restarted it, I opted to restore the tabs that were last open. At this stage, every one of the 20+ tabs srated downloading the pages they had previously had open. My question is: why can't they open a locally stored/saved copy of the web page from cache? Does Google Chrome store pages in a cache? Also: after most of the pages had completed their downloading, I clicked on each tab to view the page. Half of them only display a white page, and I have to reload the page manually. What is causing this? Thanks for your help.

    Read the article

  • JS closures - Passing a function to a child, how should the shared object be accessed

    - by slicedtoad
    I have a design and am wondering what the appropriate way to access variables is. I'll demonstrate with this example since I can't seem to describe it better than the title. Term is an object representing a bunch of time data (a repeating duration of time defined by a bunch of attributes) Term has some print functionality but does not implement the print functions itself, rather they are passed in as anonymous functions by the parent. This would be similar to how shaders can be passed to a renderer rather than defined by the renderer. A container (let's call it Box) has a Schedule object that can understand and use Term objects. Box creates Term objects and passes them to Schedule as required. Box also defines the print functions stored in Term. A print function usually takes an argument and uses it to return a string based on that argument and Term's internal data. Sometime the print function could also use data stored in Schedule, though. I'm calling this data shared. So, the question is, what is the best way to access this shared data. I have a lot of options since JS has closures and I'm not familiar enough to know if I should be using them or avoiding them in this case. Options: Create a local "reference" (term used lightly) to the shared data (data is not a primitive) when defining the print function by accessing the shared data through Schedule from Box. Example: var schedule = function(){ var sched = Schedule(); var t1 = Term( function(x){ // Term.print() return (x + sched.data).format(); }); }; Bind it to Term explicitly. (Pass it in Term's constructor or something). Or bind it in Sched after Box passes it. And then access it as an attribute of Term. Pass it in at the same time x is passed to the print function, (from sched). This is the most familiar way for my but it doesn't feel right given JS's closure ability. Do something weird like bind some context and arguments to print. I'm hoping the correct answer isn't purely subjective. If it is, then I guess the answer is just "do whatever works". But I feel like there are some significant differences between the approaches that could have a large impact when stretched beyond my small example.

    Read the article

  • HTTP Cache Control max-age, must-revalidate

    - by nyb
    I have a couple of queries related to Cache-Control. If I specify Cache-Control "max-age=3600, must-revalidate" for a static html/js/images/css file, with Last Modified Header defined in HTTP header, a. Does browser/proxy cache(liek Squid/Akamai) go all the way to orgin server to validate before max-age expires? Or will it serve content from cache till max-age expires? b. After max-age expiry(that is expiry from cache), is there a IMS check or is content re-downloaded from origin server w/o IMS check?

    Read the article

  • MySQL query cache and PHP variables

    - by Saif Bechan
    I have seen the following statement made about the query cache: // query cache does NOT work $r = mysql_query("SELECT username FROM user WHERE signup_date >= CURDATE()"); // query cache works! $today = date("Y-m-d"); $r = mysql_query("SELECT username FROM user WHERE signup_date >= '$today'"); So the query cache only works on the second query. I was wondering if the query cache will also work on this: define('__TODAY',date("Y-m-d")); $r = mysql_query("SELECT username FROM user WHERE signup_date >= '".__TODAY."'");

    Read the article

  • How do I take advantage of Android's "Clear Cache" button

    - by Jay Askren
    In Android's settings, in the "Manage Applications" activity when clicking on an app, the data is broken down into Application, Data, and cache. There is also a button to clear the cache. My app caches audio files and I would like the user to be able to clear the cache using this button. How do I store them so they get lumped in with the cache and the user can clear them? I've tried storing files using both of the following techniques: newFile = File.createTempFile("mcb", ".mp3", context.getCacheDir()); newFile = new File(context.getCacheDir(), "mcb.mp3"); newFile.createNewFile(); In both cases, these files are listed as Data and not Cache.

    Read the article

  • how to disable web page cache throughout the servlets

    - by Kurt
    To no-cache web page, in the java controller servlet, I did somthing like this in a method: public ModelAndView home(HttpServletRequest request, HttpServletResponse response) throws Exception { ModelAndView mav = new ModelAndView(ViewConstants.MV_MAIN_HOME); mav.addObject("testing", "Test this string"); mav.addObject(request); response.setHeader("Cache-Control", "no-cache, no-store"); response.setHeader("Pragma", "no-cache"); response.setDateHeader("Expires", 0); return mav; } But this only works for a particular response object. I have many similar methods in a servlet. And I have many servlets too. If I want to disable cache throughout the application, what should I do? (I do not want to add above code for every single response object) Thanks in advance.

    Read the article

  • SQL Server Manageability Series: how to change the default path of .cache files of a data collector? #sql #mdw #dba

    - by ssqa.net
    How to change the default path of .cache files of a data collector after the Management Data Warehouse (MDW has been setup? This was the question asked by one of the DBAs in a client's place, instantly I enquired that were there any folder specified while setting up the MDW and obvious answer was no as there were left default. This means all the .CACHE files are stored under %C\TEMP directory which may post out of disk space problem on the server where the MDW is setup to collect. Going back...(read more)

    Read the article

  • Would there be any negative side-effects of sharing /var/cache/apt/ between two systems?

    - by ændrük
    In the interest of conserving bandwidth, I'm considering mounting a VirtualBox host's /var/cache/apt as /var/cache/apt in the guest. Both host and guest are Ubuntu 10.10 32-bit. Would there be any negative consequences to doing this? I'm aware of the more robust solutions like apt-proxy, but I'd prefer this simpler solution if it's possible in order to spare the host the overhead of running extra services.

    Read the article

  • Javascript Reference Outer Object From Inner Object

    - by Akidi
    Okay, I see a few references given for Java, but not javascript ( which hopefully you know is completely different ). So here's the code specific : function Sandbox() { var args = Array.prototype.slice.call(arguments) , callback = args.pop() , modules = (args[0] && typeof args[0] === 'string' ? args : args[0]) , i; if (!(this instanceof Sandbox)) { return new Sandbox(modules, callback); } if (!modules || modules[0] === '*') { modules = []; for (i in Sandbox.modules) { if (Sandbox.modules.hasOwnProperty(i)) { modules.push(i); } } } for (i = 0; i < modules.length; i++) { Sandbox.modules[modules[i]](this); } this.core = { 'exp': { 'classParser': function (name) { return (new RegExp("(^| )" + name + "( |$)")); }, 'getParser': /^(#|\.)?([\w\-]+)$/ }, 'typeOf': typeOf, 'hasOwnProperty': function (obj, prop) { return obj.hasOwnProperty(prop); }, 'forEach': function (arr, fn, scope) { scope = scope || config.win; for (var i = 0, j = arr.length; i < j; i++) { fn.call(scope, arr[i], i, arr); } } }; this.config = { 'win' : win, 'doc' : doc }; callback(this); } How do I access this.config.win from within this.core.forEach? Or is this not possible?

    Read the article

  • jboss cache as hibernate 2nd level - cluster node doesn't persist replicated data

    - by Sergey Grashchenko
    I'm trying to build an architecture basically described in user guide http://www.jboss.org/file-access/default/members/jbosscache/freezone/docs/3.2.1.GA/userguide_en/html/cache_loaders.html#d0e3090 (Replicated caches with each cache having its own store.) but having jboss cache configured as hibernate second level cache. I've read manual for several days and played with the settings but could not achieve the result - the data in memory (jboss cache) gets replicated across the hosts, but it's not persisted in the datasource/database of the target (not original) cluster host. I had a hope that a node might become persistent at eviction, so I've got a cache listener and attached it to @NoveEvicted event. I found that though I could adjust eviction policy to fully control it, no any persistence takes place. Then I had a though that I could try to modify CacheLoader to set "passivate" to true, but I found that in my case (hibernate 2nd level cache) I don't have a way to access a loader. I wonder if replicated data persistence is possible at all by configuration tuning ? If not, will it work for me to create some manual peristence in CacheListener (I could check whether the eviction event is local, and if not - persist it to hibernate datasource somehow) ? I've used mvcc-entity configuration with the modification of cacheMode - set to REPL_ASYNC. I've also played with the eviction policy configuration. Last thing to mention is that I've tested entty persistence and replication in project that has been generated with Seam. I guess it's not important though.

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >