Search Results

Search found 3284 results on 132 pages for 'parser generator'.

Page 9/132 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • Best XML Parser for RSS Feeds in Objective C ?

    - by Ansari
    Hi all, I am going to develop an application which will parse the RSS feeds and display the items in my custom cell.(Cell containing the image, label, description, etc). The most popular way of parsing is using the NSXMLParser. But this is bit of a lengthy way. So is there any other way to do this. Or my question will be, which is the best xml parser for objective-c ?

    Read the article

  • How to efficently build an interpreter (lexer+parser) in C?

    - by Rizo
    I'm trying to make a meta-language for writing markup code (such as xml and html) wich can be directly embedded into C/C++ code. Here is a simple sample written in this language, I call it WDI (Web Development Interface): /* * Simple wdi/html sample source code */ #include <mySite> string name = "myName"; string toCapital(string str); html { head { title { mySiteTitle; } link(rel="stylesheet", href="style.css"); } body(id="default") { // Page content wrapper div(id="wrapper", class="some_class") { h1 { "Hello, " + toCapital(name) + "!"; } // Lists post ul(id="post_list") { for(post in posts) { li { a(href=post.getID()) { post.tilte; } } } } } } } Basically it is a C source with a user-friendly interface for html. As you can see the traditional tag-based style is substituted by C-like, with blocks delimited by curly braces. I need to build an interpreter to translate this code to html and posteriorly insert it into C, so that it can be compiled. The C part stays intact. Inside the wdi source it is not necessary to use prints, every return statement will be used for output (in printf function). The program's output will be clean html code. So, for example a heading 1 tag would be transformed like this: h1 { "Hello, " + toCapital(name) + "!"; } // would become: printf("<h1>Hello, %s!</h1>", toCapital(name)); My main goal is to create an interpreter to translate wdi source to html like this: tag(attributes) {content} = <tag attributes>content</tag> Secondly, html code returned by the interpreter has to be inserted into C code with printfs. Variables and functions that occur inside wdi should also be sorted in order to use them as printf parameters (the case of toCapital(name) in sample source). I am searching for efficient (I want to create a fast parser) way to create a lexer and parser for wdi. Already tried flex and bison, but as I am not sure if they are the best tools. Are there any good alternatives? What is the best way to create such an interpreter? Can you advise some brief literature on this issue?

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • Edit JSON-Parser to parse geoJSON?

    - by rdesign
    Hey, I want to use geoJSON-formatted Data in my iPhone app. THere is a JSON parser but no geoJason parser. Anyone can please help me? How do I have to edit the JSON parser to get geoJSON parsing successful? Is there any geoJson parser for Objective-C out there? Thanks a lot.

    Read the article

  • C++/boost generator module, feedback/critic please

    - by aaa
    hello. I wrote this generator, and I think to submit to boost people. Can you give me some feedback about it it basically allows to collapse multidimensional loops to flat multi-index queue. Loop can be boost lambda expressions. Main reason for doing this is to make parallel loops easier and separate algorithm from controlling structure (my fieldwork is computational chemistry where deep loops are common) 1 #ifndef _GENERATOR_HPP_ 2 #define _GENERATOR_HPP_ 3 4 #include <boost/array.hpp> 5 #include <boost/lambda/lambda.hpp> 6 #include <boost/noncopyable.hpp> 7 8 #include <boost/mpl/bool.hpp> 9 #include <boost/mpl/int.hpp> 10 #include <boost/mpl/for_each.hpp> 11 #include <boost/mpl/range_c.hpp> 12 #include <boost/mpl/vector.hpp> 13 #include <boost/mpl/transform.hpp> 14 #include <boost/mpl/erase.hpp> 15 16 #include <boost/fusion/include/vector.hpp> 17 #include <boost/fusion/include/for_each.hpp> 18 #include <boost/fusion/include/at_c.hpp> 19 #include <boost/fusion/mpl.hpp> 20 #include <boost/fusion/include/as_vector.hpp> 21 22 #include <memory> 23 24 /** 25 for loop generator which can use lambda expressions. 26 27 For example: 28 @code 29 using namespace generator; 30 using namespace boost::lambda; 31 make_for(N, N, range(bind(std::max<int>, _1, _2), N), range(_2, _3+1)); 32 // equivalent to pseudocode 33 // for l=0,N: for k=0,N: for j=max(l,k),N: for i=k,j 34 @endcode 35 36 If range is given as upper bound only, 37 lower bound is assumed to be default constructed 38 Lambda placeholders may only reference first three indices. 39 */ 40 41 namespace generator { 42 namespace detail { 43 44 using boost::lambda::constant_type; 45 using boost::lambda::constant; 46 47 /// lambda expression identity 48 template<class E, class enable = void> 49 struct lambda { 50 typedef E type; 51 }; 52 53 /// transform/construct constant lambda expression from non-lambda 54 template<class E> 55 struct lambda<E, typename boost::disable_if< 56 boost::lambda::is_lambda_functor<E> >::type> 57 { 58 struct constant : boost::lambda::constant_type<E>::type { 59 typedef typename boost::lambda::constant_type<E>::type base_type; 60 constant() : base_type(boost::lambda::constant(E())) {} 61 constant(const E &e) : base_type(boost::lambda::constant(e)) {} 62 }; 63 typedef constant type; 64 }; 65 66 /// range functor 67 template<class L, class U> 68 struct range_ { 69 typedef boost::array<int,4> index_type; 70 range_(U upper) : bounds_(typename lambda<L>::type(), upper) {} 71 range_(L lower, U upper) : bounds_(lower, upper) {} 72 73 template< typename T, size_t N> 74 T lower(const boost::array<T,N> &index) { 75 return bound<0>(index); 76 } 77 78 template< typename T, size_t N> 79 T upper(const boost::array<T,N> &index) { 80 return bound<1>(index); 81 } 82 83 private: 84 template<bool b, typename T> 85 T bound(const boost::array<T,1> &index) { 86 return (boost::fusion::at_c<b>(bounds_))(index[0]); 87 } 88 89 template<bool b, typename T> 90 T bound(const boost::array<T,2> &index) { 91 return (boost::fusion::at_c<b>(bounds_))(index[0], index[1]); 92 } 93 94 template<bool b, typename T, size_t N> 95 T bound(const boost::array<T,N> &index) { 96 using boost::fusion::at_c; 97 return (at_c<b>(bounds_))(index[0], index[1], index[2]); 98 } 99 100 boost::fusion::vector<typename lambda<L>::type, 101 typename lambda<U>::type> bounds_; 102 }; 103 104 template<typename T, size_t N> 105 struct for_base { 106 typedef boost::array<T,N> value_type; 107 virtual ~for_base() {} 108 virtual value_type next() = 0; 109 }; 110 111 /// N-index generator 112 template<typename T, size_t N, class R, class I> 113 struct for_ : for_base<T,N> { 114 typedef typename for_base<T,N>::value_type value_type; 115 typedef R range_tuple; 116 for_(const range_tuple &r) : r_(r), state_(true) { 117 boost::fusion::for_each(r_, initialize(index)); 118 } 119 /// @return new generator 120 for_* new_() { return new for_(r_); } 121 /// @return next index value and increment 122 value_type next() { 123 value_type next; 124 using namespace boost::lambda; 125 typename value_type::iterator n = next.begin(); 126 typename value_type::iterator i = index.begin(); 127 boost::mpl::for_each<I>(*(var(n))++ = var(i)[_1]); 128 129 state_ = advance<N>(r_, index); 130 return next; 131 } 132 /// @return false if out of bounds, true otherwise 133 operator bool() { return state_; } 134 135 private: 136 /// initialize indices 137 struct initialize { 138 value_type &index_; 139 mutable size_t i_; 140 initialize(value_type &index) : index_(index), i_(0) {} 141 template<class R_> void operator()(R_& r) const { 142 index_[i_++] = r.lower(index_); 143 } 144 }; 145 146 /// advance index[0:M) 147 template<size_t M> 148 struct advance { 149 /// stop recursion 150 struct stop { 151 stop(R r, value_type &index) {} 152 }; 153 /// advance index 154 /// @param r range tuple 155 /// @param index index array 156 advance(R &r, value_type &index) : index_(index), i_(0) { 157 namespace fusion = boost::fusion; 158 index[M-1] += 1; // increment index 159 fusion::for_each(r, *this); // update indices 160 state_ = index[M-1] >= fusion::at_c<M-1>(r).upper(index); 161 if (state_) { // out of bounds 162 typename boost::mpl::if_c<(M > 1), 163 advance<M-1>, stop>::type(r, index); 164 } 165 } 166 /// apply lower bound of range to index 167 template<typename R_> void operator()(R_& r) const { 168 if (i_ >= M) index_[i_] = r.lower(index_); 169 ++i_; 170 } 171 /// @return false if out of bounds, true otherwise 172 operator bool() { return state_; } 173 private: 174 value_type &index_; ///< index array reference 175 mutable size_t i_; ///< running index 176 bool state_; ///< out of bounds state 177 }; 178 179 value_type index; 180 range_tuple r_; 181 bool state_; 182 }; 183 184 185 /// polymorphic generator template base 186 template<typename T,size_t N> 187 struct For : boost::noncopyable { 188 typedef boost::array<T,N> value_type; 189 /// @return next index value and increment 190 value_type next() { return for_->next(); } 191 /// @return false if out of bounds, true otherwise 192 operator bool() const { return for_; } 193 protected: 194 /// reset smart pointer 195 void reset(for_base<T,N> *f) { for_.reset(f); } 196 std::auto_ptr<for_base<T,N> > for_; 197 }; 198 199 /// range [T,R) type 200 template<typename T, typename R> 201 struct range_type { 202 typedef range_<T,R> type; 203 }; 204 205 /// range identity specialization 206 template<typename T, class L, class U> 207 struct range_type<T, range_<L,U> > { 208 typedef range_<L,U> type; 209 }; 210 211 namespace fusion = boost::fusion; 212 namespace mpl = boost::mpl; 213 214 template<typename T, size_t N, class R1, class R2, class R3, class R4> 215 struct range_tuple { 216 // full range vector 217 typedef typename mpl::vector<R1,R2,R3,R4> v; 218 typedef typename mpl::end<v>::type end; 219 typedef typename mpl::advance_c<typename mpl::begin<v>::type, N>::type pos; 220 // [0:N) range vector 221 typedef typename mpl::erase<v, pos, end>::type t; 222 // transform into proper range fusion::vector 223 typedef typename fusion::result_of::as_vector< 224 typename mpl::transform<t,range_type<T, mpl::_1> >::type 225 >::type type; 226 }; 227 228 229 template<typename T, size_t N, 230 class R1, class R2, class R3, class R4, 231 class O> 232 struct for_type { 233 typedef typename range_tuple<T,N,R1,R2,R3,R4>::type range_tuple; 234 typedef for_<T, N, range_tuple, O> type; 235 }; 236 237 } // namespace detail 238 239 240 /// default index order, [0:N) 241 template<size_t N> 242 struct order { 243 typedef boost::mpl::range_c<size_t,0, N> type; 244 }; 245 246 /// N-loop generator, 0 < N <= 5 247 /// @tparam T index type 248 /// @tparam N number of indices/loops 249 /// @tparam R1,... range types 250 /// @tparam O index order 251 template<typename T, size_t N, 252 class R1, class R2 = void, class R3 = void, class R4 = void, 253 class O = typename order<N>::type> 254 struct for_ : detail::for_type<T, N, R1, R2, R3, R4, O>::type { 255 typedef typename detail::for_type<T, N, R1, R2, R3, R4, O>::type base_type; 256 typedef typename base_type::range_tuple range_tuple; 257 for_(const range_tuple &range) : base_type(range) {} 258 }; 259 260 /// loop range [L:U) 261 /// @tparam L lower bound type 262 /// @tparam U upper bound type 263 /// @return range 264 template<class L, class U> 265 detail::range_<L,U> range(L lower, U upper) { 266 return detail::range_<L,U>(lower, upper); 267 } 268 269 /// make 4-loop generator with specified index ordering 270 template<typename T, class R1, class R2, class R3, class R4, class O> 271 for_<T, 4, R1, R2, R3, R4, O> 272 make_for(R1 r1, R2 r2, R3 r3, R4 r4, const O&) { 273 typedef for_<T, 4, R1, R2, R3, R4, O> F; 274 return F(F::range_tuple(r1, r2, r3, r4)); 275 } 276 277 /// polymorphic generator template forward declaration 278 template<typename T,size_t N> 279 struct For; 280 281 /// polymorphic 4-loop generator 282 template<typename T> 283 struct For<T,4> : detail::For<T,4> { 284 /// generator with default index ordering 285 template<class R1, class R2, class R3, class R4> 286 For(R1 r1, R2 r2, R3 r3, R4 r4) { 287 this->reset(make_for<T>(r1, r2, r3, r4).new_()); 288 } 289 /// generator with specified index ordering 290 template<class R1, class R2, class R3, class R4, class O> 291 For(R1 r1, R2 r2, R3 r3, R4 r4, O o) { 292 this->reset(make_for<T>(r1, r2, r3, r4, o).new_()); 293 } 294 }; 295 296 } 297 298 299 #endif /* _GENERATOR_HPP_ */

    Read the article

  • How to build a sentence parser using only the c++ standared library?

    - by CiM
    Hello everyone, I am designing a text based game similar to Zork, and I would like it to able to parse a sentance and draw out keywords such TAKE, DROP ect. The thing is, I would like to do this all through the standard c++ library... I have heard of external libraries (such as flex/bison) that effectively accomplish this; however I don't want to mess with those just yet. What I am thinking of implementing is a token based system that has a list of words that the parser can recognize even if they are in a sentence such as "take sword and kill monster" and know that according to the parsers grammar rules, TAKE, SWORD, KILL and MONSTER are all recognized as tokens and would produce the output "Monster killed" or something to that effect. I have heard there is a function in the c++ standard library called strtok that does this, however I have also heard it's "unsafe". So if anyone here could lend a helping hand, I would greatly appreciate it.

    Read the article

  • What was Tim Sweeney thinking? (How does this C++ parser work?)

    - by Frank Krueger
    Tim Sweeney of Epic MegaGames is the lead developer for Unreal and a programming language geek. Many years ago posted the following screen shot to VoodooExtreme: As a C++ programmer and Sweeney fan, I was captivated by this. It shows generic C++ code that implements some kind of scripting language where that language itself seems to be generic in the sense that it can define its own grammar. Mr. Sweeney never explained himself. :-) It's rare to see this level of template programming, but you do see it from time to time when people want to push the compiler to generate great code or because they want to create generic code (for example, Modern C++ Design). Tim seems to be using it to create a grammar in Parser.cpp - you can see what look like prioritized binary operators. If that is the case, then why does Test.ae look like it's also defining a grammar? Obviously this is a puzzle that needs to be solved. Victory goes to the answer with a working version of this code, or the most plausible explanation, or to Tim Sweeney himself if he posts an answer. :-)

    Read the article

  • Threading extra state through a parser in Scala

    - by Travis Brown
    I'll give you the tl;dr up front I'm trying to use the state monad transformer in Scalaz 7 to thread extra state through a parser, and I'm having trouble doing anything useful without writing a lot of t m a -> t m b versions of m a -> m b methods. An example parsing problem Suppose I have a string containing nested parentheses with digits inside them: val input = "((617)((0)(32)))" I also have a stream of fresh variable names (characters, in this case): val names = Stream('a' to 'z': _*) I want to pull a name off the top of the stream and assign it to each parenthetical expression as I parse it, and then map that name to a string representing the contents of the parentheses, with the nested parenthetical expressions (if any) replaced by their names. To make this more concrete, here's what I'd want the output to look like for the example input above: val target = Map( 'a' -> "617", 'b' -> "0", 'c' -> "32", 'd' -> "bc", 'e' -> "ad" ) There may be either a string of digits or arbitrarily many sub-expressions at a given level, but these two kinds of content won't be mixed in a single parenthetical expression. To keep things simple, we'll assume that the stream of names will never contain either duplicates or digits, and that it will always contain enough names for our input. Using parser combinators with a bit of mutable state The example above is a slightly simplified version of the parsing problem in this Stack Overflow question. I answered that question with a solution that looked roughly like this: import scala.util.parsing.combinator._ class ParenParser(names: Iterator[Char]) extends RegexParsers { def paren: Parser[List[(Char, String)]] = "(" ~> contents <~ ")" ^^ { case (s, m) => (names.next -> s) :: m } def contents: Parser[(String, List[(Char, String)])] = "\\d+".r ^^ (_ -> Nil) | rep1(paren) ^^ ( ps => ps.map(_.head._1).mkString -> ps.flatten ) def parse(s: String) = parseAll(paren, s).map(_.toMap) } It's not too bad, but I'd prefer to avoid the mutable state. What I want Haskell's Parsec library makes adding user state to a parser trivially easy: import Control.Applicative ((*>), (<$>), (<*)) import Data.Map (fromList) import Text.Parsec paren = do (s, m) <- char '(' *> contents <* char ')' h : t <- getState putState t return $ (h, s) : m where contents = flip (,) [] <$> many1 digit <|> (\ps -> (map (fst . head) ps, concat ps)) <$> many1 paren main = print $ runParser (fromList <$> paren) ['a'..'z'] "example" "((617)((0)(32)))" This is a fairly straightforward translation of my Scala parser above, but without mutable state. What I've tried I'm trying to get as close to the Parsec solution as I can using Scalaz's state monad transformer, so instead of Parser[A] I'm working with StateT[Parser, Stream[Char], A]. I have a "solution" that allows me to write the following: import scala.util.parsing.combinator._ import scalaz._, Scalaz._ object ParenParser extends ExtraStateParsers[Stream[Char]] with RegexParsers { protected implicit def monadInstance = parserMonad(this) def paren: ESP[List[(Char, String)]] = (lift("(" ) ~> contents <~ lift(")")).flatMap { case (s, m) => get.flatMap( names => put(names.tail).map(_ => (names.head -> s) :: m) ) } def contents: ESP[(String, List[(Char, String)])] = lift("\\d+".r ^^ (_ -> Nil)) | rep1(paren).map( ps => ps.map(_.head._1).mkString -> ps.flatten ) def parse(s: String, names: Stream[Char]) = parseAll(paren.eval(names), s).map(_.toMap) } This works, and it's not that much less concise than either the mutable state version or the Parsec version. But my ExtraStateParsers is ugly as sin—I don't want to try your patience more than I already have, so I won't include it here (although here's a link, if you really want it). I've had to write new versions of every Parser and Parsers method I use above for my ExtraStateParsers and ESP types (rep1, ~>, <~, and |, in case you're counting). If I had needed to use other combinators, I'd have had to write new state transformer-level versions of them as well. Is there a cleaner way to do this? I'd love to see an example of a Scalaz 7's state monad transformer being used to thread state through a parser, but Scala 6 or Haskell examples would also be useful.

    Read the article

  • How does a cryptographically secure random number generator work?

    - by Byron Whitlock
    I understand how standard random number generators work. But when working with crytpography, the random numbers really have to be random. I know there are instruments that read cosmic white noise to help generate secure hashes, but your standard PC doesn't have this. How does a cryptographically secure random number generator get its values with no repeatable patterns?

    Read the article

  • Custom Parser for JQuery Tablesorter

    - by Tim
    I'm using the jQuery Tablesorter and have an issue with the order in which parsers are applied against table columns. I'm adding a custom parser to handle currency of the form $-3.33. $.tablesorter.addParser({ id: "fancyCurrency", is: function(s) { return /^\$[\-]?[0-9,\.]*$/.test(s); }, format: function(s) { s = s.replace(/[$,]/g,''); return $.tablesorter.formatFloat( s ); }, type: "numeric" }); The problem seems to be that the built-in currency parser takes precedence over my custom parser. I could put the parser in the tablesorter code itself (before the currency parser) and it works properly, but this isn't very maintainable. I can't specify the sorter manually using something like: headers: { 3: { sorter: "fancyNumber" }, 11: { sorter: "fancyCurrency" } } since the table columns are generated dynamically from user inputs. I guess one option would be to specify the sorter to use as a css class and use some JQuery to explicitly specify a sorter like this question suggests, but I'd prefer to stick with dynamic detection if possible.

    Read the article

  • QR code - where can I find (free) code to embed my own generator on a web page?

    - by Robbert Huisman
    Hi, couldn't find it exactly from earlier questions, but I am probably repeating an earlier question, so apologies upfront ;-) I am looking for a simple code to embed a QR 2D code generator on a website I am building. I assume their should be some free open source code for that but I could only find paid software. Can anyone point me in the right direction? would be mostly appreciated! best regards, Robbert

    Read the article

  • antlr: Best practice to integrate generated parser into the system

    - by green
    Here is the background, I am trying to create a DSL to allow customer write simple scripts to query into our mongodb based database. I choose antlr to implement the DSL. From my understanding (and pls let me know if it's not correct) there are 2 approaches to integrate antlr generated parser into the system: Embed code into the grammar file so that the generated parser could be used directly to make query to the database and return result in a certain format (e.g. json encoded) Keep the parser purely a parser, after feed the DSL file to it, and construct the query in another class by retrieving the AST from generated parser class So antlrers, which one do you think is the way I as an antlr newbie should go? Can you list the pros and cos of each approach, or you have other way to recommend?

    Read the article

  • What are known approaches to graphing algebraic expressions?

    - by jeremynealbrown
    I am planning to build an expression parser that will be used to graph algebraic functions ( think TI-83 ) with JavaScript. Functions will take the form of f(x)= Aside from typical operators such as: + - * / ^ I'd also like to add support for inline functions such as: sin(), cos(), log() and random(). I have looked at implementing the Shunting Yard algorithm for parsing expressions, but it does not look like an efficient approach to evaluating a function with a hundreds or thousands of inputs. What other known algorithms exist for this task?

    Read the article

  • xml parser not able to read all the nodes of the xml

    - by pankaj
    Hi i am trying to get values from all the nodes of a xml returned from a web service. But my code only reads first node, it does not read it further. code: -(void)parseData{ NuanceAppDelegate *appDel = (NuanceAppDelegate *)[[UIApplication sharedApplication] delegate]; NSString *url = @"http://cmweb.bpomatrix.net/SmartPhoneService.svc/login/"; url = [[[url stringByAppendingString:UserName] stringByAppendingString:@"/"] stringByAppendingString:Password]; url = [[url stringByAppendingString:@"/"] stringByAppendingString:appDel.CPAID]; NSLog(@"log: @%",url); NSURL *loginURL = [NSURL URLWithString:url]; NSXMLParser *home_Parser = [[NSXMLParser alloc] initWithContentsOfURL:loginURL]; [home_Parser setDelegate:self]; dict = [[NSMutableDictionary alloc] init]; [home_Parser parse]; } - (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qualifiedName attributes:(NSDictionary *)attributeDict{ if([elementName isEqualToString:@"Address"]) addressFound = TRUE; if([elementName isEqualToString:@"Name"]) nameFound = TRUE; if([elementName isEqualToString:@"LoyaltyNum"]) loyaltyNumFound = TRUE; if([elementName isEqualToString:@"City"]) cityFound = TRUE; if([elementName isEqualToString:@"Province"]) proFound = TRUE; if([elementName isEqualToString:@"Zip"]) zipFound = TRUE; //NSLog(@"Response %@",responseFound); } - (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string{ if(addressFound) { [dict setObject:string forKey:@"address"]; addressFound = FALSE; } else if(nameFound) { [dict setObject:string forKey:@"name"]; nameFound = FALSE; } else if(loyaltyNumFound) { [dict setObject:string forKey:@"loyaltyNum"]; loyaltyNumFound = FALSE; } else if(cityFound) { [dict setObject:string forKey:@"city"]; cityFound = FALSE; } else if(proFound) { [dict setObject:string forKey:@"province"]; proFound = FALSE; } else if(zipFound) { [dict setObject:string forKey:@"zip"]; zipFound = FALSE; } } - (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName { if([elementName isEqualToString:@"clsUserProfile"]) { [self parsingOver]; } } -(void)parsingOver { NuanceAppDelegate *appDel = (NuanceAppDelegate *)[[UIApplication sharedApplication] delegate]; appDel.dictProfile = dict; }

    Read the article

  • SyFy Channel Original Movie Title Generator

    - by Most Valuable Yak (Rob Volk)
    Saw this linked on reddit today and couldn't resist going through all the combinations: create table #pre(name varchar(20))create table #post(name varchar(20), pre varchar(10))insert #pre select 'Dino' union all select'Alien' union all select'Shark' union all select'Raptor' union all select'Tractor' union all select'Arachno' union all select'Cyber' union all select'Robo' union all select'Choco' union all select'Chupa' union all select'Grizzly' union all select'Mega' union all select'Were' union all select'Sabre' union all select'Man' insert #post select 'dactyl','a' union all select'pus','to' union all select'conda','a' union all select'droid',null union all select'dile','o' union all select'bear',null union all select'vampire',null union all select'squito',null union all select'saurus','a' union all select'wolf',null union all select'ghost',null union all select'viper',null union all select'cabra','a' union all select'yeti',null union all select'shark',null select a.name +case when right(a.name,1) not like '[aeiouy]' and b.pre is not null then b.pre else '' end +b.namefrom #pre a cross join #post bwhere a.name<>b.name -- optional, to eliminate the "SharkShark" optionorder by 1  Which one is your favorite?  I like most of the -squito versions, especially Chupasquito and Grizzlysquito.

    Read the article

  • Sprite sheet generator

    - by Andrea Tucci
    I need to generate a sprite sheet with squared sprite for a 2D game. How can I generate a sprite sheet where each frame has x = y? The only think I have to do is to "insert" some blank space between sprites (in case y were x in the original sprite). Is there any program that I can use to trasform "irregular" sprite sheets to "squared" sprite sheets? An example of non-squared sprite sheet: http://spriters-resource.com/gameboy_advance/khcom/sheet/1138

    Read the article

  • Big label generator

    - by jamiet
    Sometimes I write blog posts mainly so that I can find stuff when I need it later. This is such a blog post. Of late I have been writing lots of deployment scripts and I am fan of putting big labels into deployment scripts (which, these days, reside in SSDT) so one can easily see what’s going on as they execute. Here’s such an example from my current project: which results in this being displayed when the script is run: In case you care….PM_EDW is the name of one of our databases. I’m almost embarrassed to admit that I spent about half an hour crafting that and a few others for my current project because a colleague has just alerted me to a website that would have done it for me, and given me lots of options for how to present it too: http://www.patorjk.com/software/taag/#p=testall&f=Banner3&t=PM__EDW Very useful indeed. Nice one! And yes, I’m sure there are a myriad of sites that do the same thing - I’m a latecomer, ok? @Jamiet

    Read the article

  • Using a parser to locate faulty code

    - by ryan.riverside
    Lately I've been working a lot in PHP and have run into an abnormally large number of parsing errors. I realize these are my own fault and a result of sloppy initial coding on my part, but it's getting to the point that I'm spending more time resolving tags than developing. In the interest of not slamming my productivity, are there any tricks to locating the problem in the code? What I'd really be looking for would be a line to put in the code which would output the entire faulty tag in the parsing error, or something similar. Purely for reference sake, my current error is Parse error: syntax error, unexpected '}' in /home/content/80/9480880/html/cache/tpl_prosilver_viewtopic_body.html.php on line 50 (which refers to this): </dd><dd><?php if ($_poll_option_val['POLL_OPTION_RESULT'] == 0) { echo ((isset($this->_rootref['L_NO_VOTES'])) ? $this->_rootref['L_NO_VOTES'] : ((isset($user->lang['NO_VOTES'])) ? $user->lang['NO_VOTES'] : '{ NO_VOTES }')); } else { echo $_poll_option_val['POLL_OPTION_PERCENT']; } ?></dd> </dl> <?php }} if ($this->_rootref['S_DISPLAY_RESULTS']) { ?> <dl> <dt>&nbsp;</dt> <dd class="resultbar"><?php echo ((isset($this->_rootref['L_TOTAL_VOTES'])) ? $this->_rootref['L_TOTAL_VOTES'] : ((isset($user->lang['TOTAL_VOTES'])) ? $user->lang['TOTAL_VOTES'] : '{ TOTAL_VOTES }')); ?> : <?php echo (isset($this->_rootref['TOTAL_VOTES'])) ? $this->_rootref['TOTAL_VOTES'] : ''; ?></dd> </dl> <?php } if ($this->_rootref['S_CAN_VOTE']) { ?> <dl style="border-top: none;"> <dt>&nbsp;</dt> <dd class="resultbar"><input type="submit" name="update" value="<?php echo ((isset($this->_rootref['L_SUBMIT_VOTE'])) ? $this->_rootref['L_SUBMIT_VOTE'] : ((isset($user->lang['SUBMIT_VOTE'])) ? $user->lang['SUBMIT_VOTE'] : '{ SUBMIT_VOTE }')); ?>" class="button1" /></dd> </dl> <?php } if (! $this->_rootref['S_DISPLAY_RESULTS']) { ?> <dl style="border-top: none;"> <dt>&nbsp;</dt> <dd class="resultbar"><a href="<?php echo (isset($this->_rootref['U_VIEW_RESULTS'])) ? $this->_rootref['U_VIEW_RESULTS'] : ''; ?>"><?php echo ((isset($this->_rootref['L_VIEW_RESULTS'])) ? $this->_rootref['L_VIEW_RESULTS'] : ((isset($user->lang['VIEW_RESULTS'])) ? $user->lang['VIEW_RESULTS'] : '{ VIEW_RESULTS }')); ?></a></dd> </dl> <?php } ?> </fieldset></div>

    Read the article

  • Thoughts on my new template language/HTML generator?

    - by Ralph
    I guess I should have pre-faced this with: Yes, I know there is no need for a new templating language, but I want to make a new one anyway, because I'm a fool. That aside, how can I improve my language: Let's start with an example: using "html5" using "extratags" html { head { title "Ordering Notice" jsinclude "jquery.js" } body { h1 "Ordering Notice" p "Dear @name," p "Thanks for placing your order with @company. It's scheduled to ship on {@ship_date|dateformat}." p "Here are the items you've ordered:" table { tr { th "name" th "price" } for(@item in @item_list) { tr { td @item.name td @item.price } } } if(@ordered_warranty) p "Your warranty information will be included in the packaging." p(class="footer") { "Sincerely," br @company } } } The "using" keyword indicates which tags to use. "html5" might include all the html5 standard tags, but your tags names wouldn't have to be based on their HTML counter-parts at all if you didn't want to. The "extratags" library for example might add an extra tag, called "jsinclude" which gets replaced with something like <script type="text/javascript" src="@content"></script> Tags can be optionally be followed by an opening brace. They will automatically be closed at the closing brace. If no brace is used, they will be closed after taking one element. Variables are prefixed with the @ symbol. They may be used inside double-quoted strings. I think I'll use single-quotes to indicate "no variable substitution" like PHP does. Filter functions can be applied to variables like @variable|filter. Arguments can be passed to the filter @variable|filter:@arg1,arg2="y" Attributes can be passed to tags by including them in (), like p(class="classname"). You will also be able to include partial templates like: for(@item in @item_list) include("item_partial", item=@item) Something like that I'm thinking. The first argument will be the name of the template file, and subsequent ones will be named arguments where @item gets the variable name "item" inside that template. I also want to have a collection version like RoR has, so you don't even have to write the loop. Thoughts on this and exact syntax would be helpful :) Some questions: Which symbol should I use to prefix variables? @ (like Razor), $ (like PHP), or something else? Should the @ symbol be necessary in "for" and "if" statements? It's kind of implied that those are variables. Tags and controls (like if,for) presently have the exact same syntax. Should I do something to differentiate the two? If so, what? This would make it more clear that the "tag" isn't behaving like just a normal tag that will get replaced with content, but controls the flow. Also, it would allow name-reuse. Do you like the attribute syntax? (round brackets) How should I do template inheritance/layouts? In Django, the first line of the file has to include the layout file, and then you delimit blocks of code which get stuffed into that layout. In CakePHP, it's kind of backwards, you specify the layout in the controller.view function, the layout gets a special $content_for_layout variable, and then the entire template gets stuffed into that, and you don't need to delimit any blocks of code. I guess Django's is a little more powerful because you can have multiple code blocks, but it makes your templates more verbose... trying to decide what approach to take Filtered variables inside quotes: "xxx {@var|filter} yyy" "xxx @{var|filter} yyy" "xxx @var|filter yyy" i.e, @ inside, @ outside, or no braces at all. I think no-braces might cause problems, especially when you try adding arguments, like @var|filter:arg="x", then the quotes would get confused. But perhaps a braceless version could work for when there are no quotes...? Still, which option for braces, first or second? I think the first one might be better because then we're consistent... the @ is always nudged up against the variable. I'll add more questions in a few minutes, once I get some feedback.

    Read the article

  • A Hover Ad Generator Guide

    While popup ads have been the subject of controversy among many webmasters and Internet users, the fact remains that they can be extremely lucrative. Because many webmasters have been afraid to use popups due to the controversy that surrounds them, the few webmasters who endorse them have been able to make enormous profits. However, these profits haven't come without problems and limitations.

    Read the article

  • Super-quick MIDI generator with nonrestrictive license?

    - by Ricket
    I'm working on my Ludum Dare entry and trying to figure out how in the world I'm ever going to get background music. I found WolframTones, but the license is too restrictive: Unless otherwise specified, this Site and content presented on this Site are for your personal and noncommercial use. You may not modify, copy, distribute, transmit, display, perform, reproduce, publish, license, create derivative works from, transfer, or sell any information or content obtained from this Site. For commercial and other uses, contact us. But I really like the interface! It's a lot like sfxr - click a genre and download a song. That's so cool. Is there another program that does this same sort of thing but without a restrictive license, so that I can generate a bgm and use it in my game?

    Read the article

  • Simple dependency tree diagram generator

    - by foampile
    I have a need to produce a simple dependency tree diagram. The input data would be in the following simple format: ITEM_NAME DEPENDENCY ---------------------------- ITEM_101 ITEM_75 ITEM_102 ITEM_77 ITEM_102 ITEM_61 ITEM_102 ITEM_11 This means that ITEM_101 depends on ITEM_75 and ITEM_102 depends on items ITEM_77, ITEM_61 and ITEM_11. So the diagram would have items ITEM_77, ITEM_61 and ITEM_11 in one vertical level and ITEM_102 would be below it with a line connecting each of the three dependencies to ITEM_102. The same would be for ITEM_101, ITEM_75 would be somewhere above it and there would be a line connecting it. In the real world this tree represents a hierarchy of scheduling jobs. We have a very extensive workload automation hierarchy in Autosys and I have heard that its front end utility has something like this tree visual representation, however, for some reason, that utility has been disabled by admins. My business users want to see this hierarchy in an easy-to-consume format. I was hoping that I won't have to program something like this from scratch because it seems like quite a common reporting requirement and the input data is simply formatted. My question is: is there a FOSS tool that takes standardized data input and produces such a hierarchical tree? Thanks

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >