Search Results

Search found 1916 results on 77 pages for 'ref'.

Page 9/77 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • Logback: What would cause DEBUG - WARN to append to file but NOT ERROR?

    - by Zombies
    I am running a Java program from Eclipe, and I am using the logback console plugin. I can see the ERROR level statements being appended to console (as well as all of the others). But for some reason my file, which is correctly recieving new DEBUG-WARN statements, is NOT recieving the ERROR level ones. Here is my logback.xml: <consolePlugin /> <appender name="FILE" class="ch.qos.logback.core.FileAppender"> <file>logs/main.log</file> <layout class="ch.qos.logback.classic.PatternLayout"> <Pattern>%date %level [%thread] %logger{10} [%file:%line] %msg%n</Pattern> </layout> </appender> <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender"> <layout class="ch.qos.logback.classic.PatternLayout"> <Pattern>%msg%n</Pattern> </layout> </appender> <logger name="WebsiteChecker"> <appender-ref ref="FILE" /> </logger> <root> <level value="debug" /> <!--<appender-ref ref="STDOUT" />--> <appender-ref ref="FILE" /> </root> </configuration>

    Read the article

  • String Length Evaluating Incorrectly

    - by Justin R.
    My coworker and I are debugging an issue in a WCF service he's working on where a string's length isn't being evaluated correctly. He is running this method to unit test a method in his WCF service: // Unit test method public void RemoveAppGroupTest() { string addGroup = "TestGroup"; string status = string.Empty; string message = string.Empty; appActiveDirectoryServicesClient.RemoveAppGroup("AOD", addGroup, ref status, ref message); } // Inside the WCF service [OperationBehavior(Impersonation = ImpersonationOption.Required)] public void RemoveAppGroup(string AppName, string GroupName, ref string Status, ref string Message) { string accessOnDemandDomain = "MyDomain"; RemoveAppGroupFromDomain(AppName, accessOnDemandDomain, GroupName, ref Status, ref Message); } public AppActiveDirectoryDomain(string AppName, string DomainName) { if (string.IsNullOrEmpty(AppName)) { throw new ArgumentNullException("AppName", "You must specify an application name"); } } We tried to step into the .NET source code to see what value string.IsNullOrEmpty was receiving, but the IDE printed this message when we attempted to evaluate the variable: 'Cannot obtain value of local or argument 'value' as it is not available at this instruction pointer, possibly because it has been optimized away.' (None of the projects involved have optimizations enabled). So, we decided to try explicitly setting the value of the variable inside the method itself, immediately before the length check -- but that didn't help. // Lets try this again. public AppActiveDirectoryDomain(string AppName, string DomainName) { // Explicitly set the value for testing purposes. AppName = "AOD"; if (AppName == null) { throw new ArgumentNullException("AppName", "You must specify an application name"); } if (AppName.Length == 0) { // This exception gets thrown, even though it obviously isn't a zero length string. throw new ArgumentNullException("AppName", "You must specify an application name"); } } We're really pulling our hair out on this one. Has anyone else experienced behavior like this? Any tips on debugging it?

    Read the article

  • How to prevent PHP variables from being arrays?

    - by MJB
    I think that (the title) is the problem I am having. I set up a MySQL connection, I read an XML file, and then I insert those values into a table by looping through the elements. The problem is, instead of inserting only 1 record, sometimes I insert 2 or 3 or 4. It seems to depend on the previous values I have read. I think I am reinitializing the variables, but I guess I am missing something -- hopefully something simple. Here is my code. I originally had about 20 columns, but I shortened the included version to make it easier to read. $ctr = 0; $sql = "insert into csd (id,type,nickname,hostname,username,password) ". "values (?,?,?,?,?,?)"; $cur = $db->prepare($sql); for ($ctr = 0; $ctr < $expected_count; $ctr++) { list ( $lbl, $type, $nickname, $hostname, $username, $password) = ""; $bind_vars = array(); $lbl = "csd_{$ctr}"; $type = $ref->itm->csds->$lbl->type; $nickname = $ref->itm->csds->$lbl->nickname; $hostname = $ref->itm->csds->$lbl->hostname; $username = $ref->itm->csds->$lbl->username; $password = $ref->itm->csds->$lbl->password; $bind_vars = array($id,$type,$nickname,$hostname,$username,$password); $res = $db->execute($cur, $bind_vars); # this is a separate function which works, but which only # does SELECTS and cannot be the problem. I include it because I # want to count the total rows. printf ("%d CSDs on that ITEM now.\n", CountCSDs($id_to_sync)); } P.S. I also tagged this SimpleXML because that is how I am reading the file, though that code is not included above. It looks like this: $Ref = simplexml_load_file($file);

    Read the article

  • How duplicate an object in a list and update property of duplicated objects ?

    - by user359706
    Hello What would be the best way to duplicate an object placed in a list of items and change a property of duplicated objects ? I thought proceed in the following manner: - get object in the list by "ref" + "article" - Cloned the found object as many times as desired (n times) - Remove the object found - Add the clones in the list What do you think? A concrete example: Private List<Product> listProduct; listProduct= new List<Product>(); Product objProduit_1 = new Produit; objProduct_1.ref = "001"; objProduct_1.article = "G900"; objProduct_1.quantity = 30; listProducts.Add(objProduct_1); ProductobjProduit_2 = new Product; objProduct_2.ref = "002"; objProduct_2.article = "G900"; objProduct_2.quantity = 35; listProduits.Add(objProduct_2); desired method: public void updateProductsList(List<Product> paramListProducts,Produit objProductToUpdate, int32 nbrDuplication, int32 newQuantity){ ... } Calling method example: updateProductsList(listProducts,objProduct_1,2,15); Waiting result: Replace follow object : ref = "001"; article = "G900"; quantite = 30; By: ref = "001"; article = "G900"; quantite = 15; ref = "001"; article = "G900"; quantite = 15; The Algorithm is correct? Would you have an idea of the method implementation "updateProductsList" Thank you in advance for your help.

    Read the article

  • unexpected output

    - by tech-ref
    hi, i wrote a function wich works as expected but i don't understand why the output is like that. function datatype prop = Atom of string | Not of prop | And of prop*prop | Or of prop*prop; (* XOR = (A And Not B) OR (Not A Or B) *) local fun do_xor (alpha,beta) = Or( And( alpha, Not(beta) ), Or(Not(alpha), beta)) in fun xor (alpha,beta) = do_xor(alpha,beta); end; test val result = xor(Atom "a",Atom "b"); output val result = Or (And (Atom #,Not #),Or (Not #,Atom #)) : prop thanks again (specially zeuxcg)

    Read the article

  • Developing Spring Portlet for use inside Weblogic Portal / Webcenter Portal

    - by Murali Veligeti
    We need to understand the main difference between portlet workflow and servlet workflow.The main difference between portlet workflow and servlet workflow is that, the request to the portlet can have two distinct phases: 1) Action phase 2) Render phase. The Action phase is executed only once and is where any 'backend' changes or actions occur, such as making changes in a database. The Render phase then produces what is displayed to the user each time the display is refreshed. The critical point here is that for a single overall request, the action phase is executed only once, but the render phase may be executed multiple times. This provides a clean separation between the activities that modify the persistent state of your system and the activities that generate what is displayed to the user.The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For example, dynamic search results can be updated routinely on the display without the user explicitly re-running the search. Most other portlet MVC frameworks attempt to completely hide the two phases from the developer and make it look as much like traditional servlet development as possible - we think this approach removes one of the main benefits of using portlets. So, the separation of the two phases is preserved throughout the Spring Portlet MVC framework. The primary manifestation of this approach is that where the servlet version of the MVC classes will have one method that deals with the request, the portlet version of the MVC classes will have two methods that deal with the request: one for the action phase and one for the render phase. For example, where the servlet version of AbstractController has the handleRequestInternal(..) method, the portlet version of AbstractController has handleActionRequestInternal(..) and handleRenderRequestInternal(..) methods.The Spring Portlet Framework is designed around a DispatcherPortlet that dispatches requests to handlers, with configurable handler mappings and view resolution, just as the DispatcherServlet in the Spring Web Framework does.  Developing portlet.xml Let's start the sample development by creating the portlet.xml file in the /WebContent/WEB-INF/ folder as shown below: <?xml version="1.0" encoding="UTF-8"?> <portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <portlet> <portlet-name>SpringPortletName</portlet-name> <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class> <supports> <mime-type>text/html</mime-type> <portlet-mode>view</portlet-mode> </supports> <portlet-info> <title>SpringPortlet</title> </portlet-info> </portlet> </portlet-app> DispatcherPortlet is responsible for handling every client request. When it receives a request, it finds out which Controller class should be used for handling this request, and then it calls its handleActionRequest() or handleRenderRequest() method based on the request processing phase. The Controller class executes business logic and returns a View name that should be used for rendering markup to the user. The DispatcherPortlet then forwards control to that View for actual markup generation. As you can see, DispatcherPortlet is the central dispatcher for use within Spring Portlet MVC Framework. Note that your portlet application can define more than one DispatcherPortlet. If it does so, then each of these portlets operates its own namespace, loading its application context and handler mapping. The DispatcherPortlet is also responsible for loading application context (Spring configuration file) for this portlet. First, it tries to check the value of the configLocation portlet initialization parameter. If that parameter is not specified, it takes the portlet name (that is, the value of the <portlet-name> element), appends "-portlet.xml" to it, and tries to load that file from the /WEB-INF folder. In the portlet.xml file, we did not specify the configLocation initialization parameter, so let's create SpringPortletName-portlet.xml file in the next section. Developing SpringPortletName-portlet.xml Create the SpringPortletName-portlet.xml file in the /WebContent/WEB-INF folder of your application as shown below: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/jsp/"/> <property name="suffix" value=".jsp"/> </bean> <bean id="pointManager" class="com.wlp.spring.bo.internal.PointManagerImpl"> <property name="users"> <list> <ref bean="point1"/> <ref bean="point2"/> <ref bean="point3"/> <ref bean="point4"/> </list> </property> </bean> <bean id="point1" class="com.wlp.spring.bean.User"> <property name="name" value="Murali"/> <property name="points" value="6"/> </bean> <bean id="point2" class="com.wlp.spring.bean.User"> <property name="name" value="Sai"/> <property name="points" value="13"/> </bean> <bean id="point3" class="com.wlp.spring.bean.User"> <property name="name" value="Rama"/> <property name="points" value="43"/> </bean> <bean id="point4" class="com.wlp.spring.bean.User"> <property name="name" value="Krishna"/> <property name="points" value="23"/> </bean> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basename" value="messages"/> </bean> <bean name="/users.htm" id="userController" class="com.wlp.spring.controller.UserController"> <property name="pointManager" ref="pointManager"/> </bean> <bean name="/pointincrease.htm" id="pointIncreaseController" class="com.wlp.spring.controller.IncreasePointsFormController"> <property name="sessionForm" value="true"/> <property name="pointManager" ref="pointManager"/> <property name="commandName" value="pointIncrease"/> <property name="commandClass" value="com.wlp.spring.bean.PointIncrease"/> <property name="formView" value="pointincrease"/> <property name="successView" value="users"/> </bean> <bean id="parameterMappingInterceptor" class="org.springframework.web.portlet.handler.ParameterMappingInterceptor" /> <bean id="portletModeParameterHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping"> <property name="order" value="1" /> <property name="interceptors"> <list> <ref bean="parameterMappingInterceptor" /> </list> </property> <property name="portletModeParameterMap"> <map> <entry key="view"> <map> <entry key="pointincrease"> <ref bean="pointIncreaseController" /> </entry> <entry key="users"> <ref bean="userController" /> </entry> </map> </entry> </map> </property> </bean> <bean id="portletModeHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeHandlerMapping"> <property name="order" value="2" /> <property name="portletModeMap"> <map> <entry key="view"> <ref bean="userController" /> </entry> </map> </property> </bean> </beans> The SpringPortletName-portlet.xml file is an application context file for your MVC portlet. It has a couple of bean definitions: viewController. At this point, remember that the viewController bean definition points to the com.ibm.developerworks.springmvc.ViewController.java class. portletModeHandlerMapping. As we discussed in the last section, whenever DispatcherPortlet gets a client request, it tries to find a suitable Controller class for handling that request. That is where PortletModeHandlerMapping comes into the picture. The PortletModeHandlerMapping class is a simple implementation of the HandlerMapping interface and is used by DispatcherPortlet to find a suitable Controller for every request. The PortletModeHandlerMapping class uses Portlet mode for the current request to find a suitable Controller class to use for handling the request. The portletModeMap property of portletModeHandlerMapping bean is the place where we map the Portlet mode name against the Controller class. In the sample code, we show that viewController is responsible for handling View mode requests. Developing UserController.java In the preceding section, you learned that the viewController bean is responsible for handling all the View mode requests. Your next step is to create the UserController.java class as shown below: public class UserController extends AbstractController { private PointManager pointManager; public void handleActionRequest(ActionRequest request, ActionResponse response) throws Exception { } public ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response) throws ServletException, IOException { String now = (new java.util.Date()).toString(); Map<String, Object> myModel = new HashMap<String, Object>(); myModel.put("now", now); myModel.put("users", this.pointManager.getUsers()); return new ModelAndView("users", "model", myModel); } public void setPointManager(PointManager pointManager) { this.pointManager = pointManager; } } Every controller class in Spring Portlet MVC Framework must implement the org.springframework.web. portlet.mvc.Controller interface directly or indirectly. To make things easier, Spring Framework provides AbstractController class, which is the default implementation of the Controller interface. As a developer, you should always extend your controller from either AbstractController or one of its more specific subclasses. Any implementation of the Controller class should be reusable, thread-safe, and capable of handling multiple requests throughout the lifecycle of the portlet. In the sample code, we create the ViewController class by extending it from AbstractController. Because we don't want to do any action processing in the HelloSpringPortletMVC portlet, we override only the handleRenderRequest() method of AbstractController. Now, the only thing that HelloWorldPortletMVC should do is render the markup of View.jsp to the user when it receives a user request to do so. To do that, return the object of ModelAndView with a value of view equal to View. Developing web.xml According to Portlet Specification 1.0, every portlet application is also a Servlet Specification 2.3-compliant Web application, and it needs a Web application deployment descriptor (that is, web.xml). Let’s create the web.xml file in the /WEB-INF/ folder as shown in listing 4. Follow these steps: Open the existing web.xml file located at /WebContent/WEB-INF/web.xml. Replace the contents of this file with the code as shown below: <servlet> <servlet-name>ViewRendererServlet</servlet-name> <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>ViewRendererServlet</servlet-name> <url-pattern>/WEB-INF/servlet/view</url-pattern> </servlet-mapping> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> The web.xml file for the sample portlet declares two things: ViewRendererServlet. The ViewRendererServlet is the bridge servlet for portlet support. During the render phase, DispatcherPortlet wraps PortletRequest into ServletRequest and forwards control to ViewRendererServlet for actual rendering. This process allows Spring Portlet MVC Framework to use the same View infrastructure as that of its servlet version, that is, Spring Web MVC Framework. ContextLoaderListener. The ContextLoaderListener class takes care of loading Web application context at the time of the Web application startup. The Web application context is shared by all the portlets in the portlet application. In case of duplicate bean definition, the bean definition in the portlet application context takes precedence over the Web application context. The ContextLoader class tries to read the value of the contextConfigLocation Web context parameter to find out the location of the context file. If the contextConfigLocation parameter is not set, then it uses the default value, which is /WEB-INF/applicationContext.xml, to load the context file. The Portlet Controller interface requires two methods that handle the two phases of a portlet request: the action request and the render request. The action phase should be capable of handling an action request and the render phase should be capable of handling a render request and returning an appropriate model and view. While the Controller interface is quite abstract, Spring Portlet MVC offers a lot of controllers that already contain a lot of the functionality you might need – most of these are very similar to controllers from Spring Web MVC. The Controller interface just defines the most common functionality required of every controller - handling an action request, handling a render request, and returning a model and a view. How rendering works As you know, when the user tries to access a page with PointSystemPortletMVC portlet on it or when the user performs some action on any other portlet on that page or tries to refresh that page, a render request is sent to the PointSystemPortletMVC portlet. In the sample code, because DispatcherPortlet is the main portlet class, Weblogic Portal / Webcenter Portal calls its render() method and then the following sequence of events occurs: The render() method of DispatcherPortlet calls the doDispatch() method, which in turn calls the doRender() method. After the doRenderService() method gets control, first it tries to find out the locale of the request by calling the PortletRequest.getLocale() method. This locale is used while making all the locale-related decisions for choices such as which resource bundle should be loaded or which JSP should be displayed to the user based on the locale. After that, the doRenderService() method starts iterating through all the HandlerMapping classes configured for this portlet, calling their getHandler() method to identify the appropriate Controller for handling this request. In the sample code, we have configured only PortletModeHandlerMapping as a HandlerMapping class. The PortletModeHandlerMapping class reads the value of the current portlet mode, and based on that, it finds out, the Controller class that should be used to handle this request. In the sample code, ViewController is configured to handle the View mode request so that the PortletModeHandlerMapping class returns the object of ViewController. After the object of ViewController is returned, the doRenderService() method calls its handleRenderRequestInternal() method. Implementation of the handleRenderRequestInternal() method in ViewController.java is very simple. It logs a message saying that it got control, and then it creates an instance of ModelAndView with a value equal to View and returns it to DispatcherPortlet. After control returns to doRenderService(), the next task is to figure out how to render View. For that, DispatcherPortlet starts iterating through all the ViewResolvers configured in your portlet application, calling their resolveViewName() method. In the sample code we have configured only one ViewResolver, InternalResourceViewResolver. When its resolveViewName() method is called with viewName, it tries to add /WEB-INF/jsp as a prefix to the view name and to add JSP as a suffix. And it checks if /WEB-INF/jsp/View.jsp exists. If it does exist, it returns the object of JstlView wrapping View.jsp. After control is returned to the doRenderService() method, it creates the object PortletRequestDispatcher, which points to /WEB-INF/servlet/view – that is, ViewRendererServlet. Then it sets the object of JstlView in the request and dispatches the request to ViewRendererServlet. After ViewRendererServlet gets control, it reads the JstlView object from the request attribute and creates another RequestDispatcher pointing to the /WEB-INF/jsp/View.jsp URL and passes control to it for actual markup generation. The markup generated by View.jsp is returned to user. At this point, you may question the need for ViewRendererServlet. Why can't DispatcherPortlet directly forward control to View.jsp? Adding ViewRendererServlet in between allows Spring Portlet MVC Framework to reuse the existing View infrastructure. You may appreciate this more when we discuss how easy it is to integrate Apache Tiles Framework with your Spring Portlet MVC Framework. The attached project SpringPortlet.zip should be used to import the project in to your OEPE Workspace. SpringPortlet_Jars.zip contains jar files required for the application. Project is written on Spring 2.5.  The same JSR 168 portlet should work on Webcenter Portal as well.  Downloads: Download WeblogicPotal Project which consists of Spring Portlet. Download Spring Jars In-addition to above you need to download Spring.jar (Spring2.5)

    Read the article

  • Error trapping for a missing data source in a Spring MVC / Spring JDBC web app [migrated]

    - by Geeb
    I have written a web app that uses Spring MVC libraries and Spring JDBC to connect to an Oracle DB. (I don't use any ORM type libraries as I create stored procedures on Oracle that do my stuff and I'm quite happy with that.) I use a connection pool to Oracle managed by the Tomcat container The app generally works absolutely fine by the way! BUT... I noticed the other day when I tried to set up the app on another Tomcat instance that I had forgotten to configure the connection pool and obviously the app could not get hold of an org.apache.commons.dbcp.BasicDataSource object, so it crashed. I define the pool params in the tomcat "context.conf" In my "web.xml" I have: <servlet> <servlet-name>appServlet</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <init-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/Spring/appServlet/servlet-context.xml</param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>appServlet</servlet-name> <!-- Map *everything* to appServlet --> <url-pattern>/</url-pattern> </servlet-mapping> <resource-ref> <description>Oracle Datasource example</description> <res-ref-name>jdbc/ora1</res-ref-name> <res-type>org.apache.commons.dbcp.BasicDataSource</res-type> <res-auth>Container</res-auth> </resource-ref> And I have a Spring "servlet-context.xml" where JNDI is used to map the data source object provided by the connection pool to a Spring bean with the ID of "dataSource": <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/ora1" resource-ref="true" /> Here's the question: Where do I trap the case where the database cannot be accessed for whatever reason? I don't want the user to see a yard-and-a-half of Java stack trace in their browser, rather a nicer message that tells them there is a database problem etc. It seems that my app tries to configure the "dataSource" bean (in "servlet-context.xml") before any code has tested it can actually provide a dataSource object from the pool?! Maybe I'm not fully understanding exactly what is going on in these stages of the app firing up ... Thanks for any advice!

    Read the article

  • How to prevent ‘Select *’ : The elegant way

    - by Dave Ballantyne
    I’ve been doing a lot of work with the “Microsoft SQL Server 2012 Transact-SQL Language Service” recently, see my post here and article here for more details on its use and some uses. An obvious use is to interrogate sql scripts to enforce our coding standards.  In the SQL world a no-brainer is SELECT *,  all apologies must now be given to Jorge Segarra and his post “How To Prevent SELECT * The Evil Way” as this is a blatant rip-off IMO, the only true way to check for this particular evilness is to parse the SQL as if we were SQL Server itself.  The parser mentioned above is ,pretty much, the best tool for doing this.  So without further ado lets have a look at a powershell script that does exactly that : cls #Load the assembly [System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Management.SqlParser") | Out-Null $ParseOptions = New-Object Microsoft.SqlServer.Management.SqlParser.Parser.ParseOptions $ParseOptions.BatchSeparator = 'GO' #Create the object $Parser = new-object Microsoft.SqlServer.Management.SqlParser.Parser.Scanner($ParseOptions) $SqlArr = Get-Content "C:\scripts\myscript.sql" $Sql = "" foreach($Line in $SqlArr){ $Sql+=$Line $Sql+="`r`n" } $Parser.SetSource($Sql,0) $Token=[Microsoft.SqlServer.Management.SqlParser.Parser.Tokens]::TOKEN_SET $IsEndOfBatch = $false $IsMatched = $false $IsExecAutoParamHelp = $false $Batch = "" $BatchStart =0 $Start=0 $End=0 $State=0 $SelectColumns=@(); $InSelect = $false $InWith = $false; while(($Token = $Parser.GetNext([ref]$State ,[ref]$Start, [ref]$End, [ref]$IsMatched, [ref]$IsExecAutoParamHelp ))-ne [Microsoft.SqlServer.Management.SqlParser.Parser.Tokens]::EOF) { $Str = $Sql.Substring($Start,($End-$Start)+1) try{ ($TokenPrs =[Microsoft.SqlServer.Management.SqlParser.Parser.Tokens]$Token) | Out-Null #Write-Host $TokenPrs if($TokenPrs -eq [Microsoft.SqlServer.Management.SqlParser.Parser.Tokens]::TOKEN_SELECT){ $InSelect =$true $SelectColumns+="" } if($TokenPrs -eq [Microsoft.SqlServer.Management.SqlParser.Parser.Tokens]::TOKEN_FROM){ $InSelect =$false #Write-Host $SelectColumns -BackgroundColor Red foreach($Col in $SelectColumns){ if($Col.EndsWith("*")){ Write-Host "select * is not allowed" exit } } $SelectColumns =@() } }catch{ #$Error $TokenPrs = $null } if($InSelect -and $TokenPrs -ne [Microsoft.SqlServer.Management.SqlParser.Parser.Tokens]::TOKEN_SELECT){ if($Str -eq ","){ $SelectColumns+="" }else{ $SelectColumns[$SelectColumns.Length-1]+=$Str } } } OK, im not going to pretend that its the prettiest of powershell scripts,  but if our parsed script file “C:\Scripts\MyScript.SQL” contains SELECT * then “select * is not allowed” will be written to the host.  So, where can this go wrong ?  It cant ,or at least shouldn’t , go wrong, but it is lacking in functionality.  IMO, Select * should be allowed in CTEs, views and Inline table valued functions at least and as it stands they will be reported upon. Anyway, it is a start and is more reliable that other methods.

    Read the article

  • GameKit: GKSession manual

    - by mongeta
    Hello, I want to connect two devices using the GKSession, starting one as a server and the other one as a client. Using this configuration I can't use the GKPeerPickerController. I'm having problems for connecting the two devices: Using only bluetooth: impossible using WiFi: at least there are some data exchange between the devices but no successfully conection. In the interface file I have the GKSessionDelegate GKSession *session; In the implementation, I start the server using this code: session = [[GKSession alloc] initWithSessionID:@"iFood" displayName:nil sessionMode:GKSessionModeClient]; session.delegate = self; session.available = YES; The client starts using this code: session = [[GKSession alloc] initWithSessionID:@"iFood" displayName:nil sessionMode:GKSessionModeServer]; session.delegate = self; session.available = YES; How I can force the use of Bluetooth instead of the WiFi ? Also I have implemented those calls: -(void)session:(GKSession *)session didReceiveConnectionRequestFromPeer:(NSString *)peerID { NSLog(@"Someone is trying to connect"); } - (BOOL)acceptConnectionFromPeer:(NSString *)peerID error:(NSError **)error { NSLog(@"acceptConnectionFromPeer"); } When I start, I get this into the debugger: Listening on port 50775 2010-02-19 14:55:02.547 iFood[3009:5103] handleEvents started (2) And when the other device starts to find, I get this: ~ DNSServiceBrowse callback: Ref=187f70, Flags=2, IFIndex=2 (name=[en0]), ErrorType=0 name=00eGs1R1A..Only by Audi regtype=_2c3mugr67ej6j7._udp. domain=local. ~ DNSServiceQueryRecord callback: Ref=17bd40, Flags=2, IFIndex=2 (name=[en0]), ErrorType=0 fullname=00eGs1R1A\.\.Only\032by\032Audi._2c3mugr67ej6j7._udp.local. rrtype=16 rrclass=1 rdlen=18 ttl=4500 ** peer 1527211048: oldbusy=0, newbusy=0 ~ DNSServiceBrowse callback: Ref=187f70, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 name=00eGs1R1A..Only by Audi regtype=_2c3mugr67ej6j7._udp. domain=local. GKPeer[186960] 1527211048 service count old=1 new=2 ~ DNSServiceQueryRecord callback: Ref=17bd40, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 fullname=00egs1r1a\.\.only\032by\032audi._2c3mugr67ej6j7._udp.local. rrtype=16 rrclass=1 rdlen=18 ttl=7200 ** peer 1527211048: oldbusy=0, newbusy=0 ~ DNSServiceBrowse callback: Ref=187f70, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 name=00TF5kc1A..Only by Audi regtype=_2c3mugr67ej6j7._udp. domain=local. ~ DNSServiceQueryRecord callback: Ref=188320, Flags=2, IFIndex=-3 (name=[]), ErrorType=0 fullname=00tf5kc1a\.\.only\032by\032audi._2c3mugr67ej6j7._udp.local. rrtype=16 rrclass=1 rdlen=18 ttl=7200 ** peer 1723356125: oldbusy=0, newbusy=0 ~ DNSServiceQueryRecord callback: Ref=188320, Flags=2, IFIndex=2 (name=[en0]), ErrorType=0 fullname=00TF5kc1A\.\.Only\032by\032Audi._2c3mugr67ej6j7._udp.local. rrtype=16 rrclass=1 rdlen=18 ttl=4500 ** peer 1723356125: oldbusy=0, newbusy=0 What I'm missing here ? I'm sure that both devices have bluetooth enabled and connected into the same WiFi. thanks, r.

    Read the article

  • XSD sequence shows as abiguous!

    - by Tim C
    I have an XSD which was transformed from a RELAX NG schema with a few errors I am trying to fix. The big issue I have it with the following <xs:element name="list"> <xs:complexType> <xs:sequence> <xs:choice> <xs:sequence> <xs:element minOccurs="0" ref="preamble"/> <xs:element minOccurs="0" ref="title"/> </xs:sequence> <xs:sequence> <xs:element minOccurs="0" ref="title"/> <xs:element minOccurs="0" ref="preamble"/> </xs:sequence> </xs:choice> <xs:group maxOccurs="unbounded" ref="block-selectionListItem"/> </xs:sequence> <xs:attributeGroup ref="attlist-selectionList"/> </xs:complexType> </xs:element> As you can see the xs:choice block allows you to pick between two xs:sequence blocks. Seems to make sense except that Visual Studio gives the following warning on the second <xs:element minOccurs="0" ref="title/> element which is throwing everything off: Multiple definition of element 'title' causes the content model to become ambiguous. A content model must be formed such that during validation of an element information item sequence, the particle contained directly, indirectly or implicitly therein with which to attempt to validate each item in the sequence in turn can be uniquely determined without examining the content or attributes of that item, and without any information about the items in the remainder of the sequence. Because you can only choose one I do not see how this is ambiguous. Any help would be greatly appreciated! Edit: To be a bit more concise here are the possible outputs of the XML that would validate with this schema: <list> <preamble>My Preamble</preamble> <title>My Title</title> </list> or: <list> <title>My Title</title> <preamble>My Preamble</preamble> </list> As you can see it can be either one way or the other but not both. Also you could just have a title or a preamble and not both.

    Read the article

  • Calling CryptUIWizDigitalSign from .NET on x64

    - by Joe Kuemerle
    I am trying to digitally sign files using the CryptUIWizDigitalSign function from a .NET 2.0 application compiled to AnyCPU. The call works fine when running on x86 but fails on x64, it also works on an x64 OS when compiled to x86. Any idea on how to better marshall or call from x64? The Win32exception returned is "Error encountered during digital signing of the file ..." with a native error code of -2146762749. The relevant portion of the code are: [StructLayout(LayoutKind.Sequential)] public struct CRYPTUI_WIZ_DIGITAL_SIGN_INFO { public Int32 dwSize; public Int32 dwSubjectChoice; [MarshalAs(UnmanagedType.LPWStr)] public string pwszFileName; public Int32 dwSigningCertChoice; public IntPtr pSigningCertContext; [MarshalAs(UnmanagedType.LPWStr)] public string pwszTimestampURL; public Int32 dwAdditionalCertChoice; public IntPtr pSignExtInfo; } [DllImport("Cryptui.dll", CharSet=CharSet.Unicode, SetLastError=true)] public static extern bool CryptUIWizDigitalSign(int dwFlags, IntPtr hwndParent, string pwszWizardTitle, ref CRYPTUI_WIZ_DIGITAL_SIGN_INFO pDigitalSignInfo, ref IntPtr ppSignContext); CRYPTUI_WIZ_DIGITAL_SIGN_INFO digitalSignInfo = new CRYPTUI_WIZ_DIGITAL_SIGN_INFO(); digitalSignInfo = new CRYPTUI_WIZ_DIGITAL_SIGN_INFO(); digitalSignInfo.dwSize = Marshal.SizeOf(digitalSignInfo); digitalSignInfo.dwSubjectChoice = 1; digitalSignInfo.dwSigningCertChoice = 1; digitalSignInfo.pSigningCertContext = pSigningCertContext; digitalSignInfo.pwszTimestampURL = timestampUrl; digitalSignInfo.dwAdditionalCertChoice = 0; digitalSignInfo.pSignExtInfo = IntPtr.Zero; digitalSignInfo.pwszFileName = filepath; CryptUIWizDigitalSign(1, IntPtr.Zero, null, ref digitalSignInfo, ref pSignContext)); And here is how the SigningCertContext is retrieved (minus various error handling) public IntPtr GetCertContext(String pfxfilename, String pswd) IntPtr hMemStore = IntPtr.Zero; IntPtr hCertCntxt = IntPtr.Zero; IntPtr pProvInfo = IntPtr.Zero; uint provinfosize = 0; try { byte[] pfxdata = PfxUtility.GetFileBytes(pfxfilename); CRYPT_DATA_BLOB ppfx = new CRYPT_DATA_BLOB(); ppfx.cbData = pfxdata.Length; ppfx.pbData = Marshal.AllocHGlobal(pfxdata.Length); Marshal.Copy(pfxdata, 0, ppfx.pbData, pfxdata.Length); hMemStore = Win32.PFXImportCertStore(ref ppfx, pswd, CRYPT_USER_KEYSET); pswd = null; if (hMemStore != IntPtr.Zero) { Marshal.FreeHGlobal(ppfx.pbData); while ((hCertCntxt = Win32.CertEnumCertificatesInStore(hMemStore, hCertCntxt)) != IntPtr.Zero) { if (Win32.CertGetCertificateContextProperty(hCertCntxt, CERT_KEY_PROV_INFO_PROP_ID, IntPtr.Zero, ref provinfosize)) pProvInfo = Marshal.AllocHGlobal((int)provinfosize); else continue; if (Win32.CertGetCertificateContextProperty(hCertCntxt, CERT_KEY_PROV_INFO_PROP_ID, pProvInfo, ref provinfosize)) break; } } finally { if (pProvInfo != IntPtr.Zero) Marshal.FreeHGlobal(pProvInfo); if (hMemStore != IntPtr.Zero) Win32.CertCloseStore(hMemStore, 0); } return hCertCntxt; }

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Java thread dump where main thread has no call stack? (jsvc)

    - by dwhsix
    We have a java process running as a daemon (under jsvc). Every several days it just stops doing any work; output to the logfile stops (it is pretty verbose, on 5-minute intervals) and it consumes no CPU or IO. There are no exceptions logged in the logfile nor in syserr or sysout. The last log statement is just prior to a db commit being done, but there is no open connection on the db server (MySQL) and reviewing the code, there should always be additional log output after that, even if it had encountered an exception that was going to bubble up. The most curious thing I find is that in the thread dump (included below), there's no thread in our code at all, and the main thread seems to have no context whatsoever: "main" prio=10 tid=0x0000000000614000 nid=0x445d runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE As noted earlier, this is a daemon process running using jsvc, but I don't know if that has anything to do with it (I can restructure the code to also allow running it directly, to test). Any suggestions on what might be happening here? Thanks... dwh Full thread dump: Full thread dump Java HotSpot(TM) 64-Bit Server VM (14.2-b01 mixed mode): "MySQL Statement Cancellation Timer" daemon prio=10 tid=0x00002aaaf81b8800 nid=0x447b in Object.wait() [0x00002aaaf6a22000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x00002aaab5556d50> (a java.util.TaskQueue) at java.lang.Object.wait(Object.java:485) at java.util.TimerThread.mainLoop(Timer.java:483) - locked <0x00002aaab5556d50> (a java.util.TaskQueue) at java.util.TimerThread.run(Timer.java:462) "Low Memory Detector" daemon prio=10 tid=0x00000000006a4000 nid=0x4479 runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE "CompilerThread1" daemon prio=10 tid=0x00000000006a1000 nid=0x4477 waiting on condition [0x0000000000000000] java.lang.Thread.State: RUNNABLE "CompilerThread0" daemon prio=10 tid=0x000000000069d000 nid=0x4476 waiting on condition [0x0000000000000000] java.lang.Thread.State: RUNNABLE "Signal Dispatcher" daemon prio=10 tid=0x000000000069b000 nid=0x4465 waiting on condition [0x0000000000000000] java.lang.Thread.State: RUNNABLE "Finalizer" daemon prio=10 tid=0x0000000000678800 nid=0x4464 in Object.wait() [0x00002aaaf61d6000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x00002aaab54a1cb8> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118) - locked <0x00002aaab54a1cb8> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:134) at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159) "Reference Handler" daemon prio=10 tid=0x0000000000676800 nid=0x4463 in Object.wait() [0x00002aaaf60d5000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x00002aaab54a1cf0> (a java.lang.ref.Reference$Lock) at java.lang.Object.wait(Object.java:485) at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116) - locked <0x00002aaab54a1cf0> (a java.lang.ref.Reference$Lock) "main" prio=10 tid=0x0000000000614000 nid=0x445d runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE "VM Thread" prio=10 tid=0x0000000000670000 nid=0x4462 runnable "GC task thread#0 (ParallelGC)" prio=10 tid=0x000000000061e000 nid=0x445e runnable "GC task thread#1 (ParallelGC)" prio=10 tid=0x0000000000620000 nid=0x445f runnable "GC task thread#2 (ParallelGC)" prio=10 tid=0x0000000000622000 nid=0x4460 runnable "GC task thread#3 (ParallelGC)" prio=10 tid=0x0000000000623800 nid=0x4461 runnable "VM Periodic Task Thread" prio=10 tid=0x00000000006a6800 nid=0x447a waiting on condition JNI global references: 797 Heap PSYoungGen total 162944K, used 48388K [0x00002aaadff40000, 0x00002aaaf2ab0000, 0x00002aaaf5490000) eden space 102784K, 47% used [0x00002aaadff40000,0x00002aaae2e81170,0x00002aaae63a0000) from space 60160K, 0% used [0x00002aaaeb850000,0x00002aaaeb850000,0x00002aaaef310000) to space 86720K, 0% used [0x00002aaae63a0000,0x00002aaae63a0000,0x00002aaaeb850000) PSOldGen total 699072K, used 699072K [0x00002aaab5490000, 0x00002aaadff40000, 0x00002aaadff40000) object space 699072K, 100% used [0x00002aaab5490000,0x00002aaadff40000,0x00002aaadff40000) PSPermGen total 21248K, used 9252K [0x00002aaab0090000, 0x00002aaab1550000, 0x00002aaab5490000) object space 21248K, 43% used [0x00002aaab0090000,0x00002aaab09993e8,0x00002aaab1550000)

    Read the article

  • How can I get the previous logged events when a particular logger is triggered?

    - by Ben Laan
    I need to show the previous 10 events when a particular logger is triggered. The goal is to show what previous steps occurred immediately before NHibernate.SQL logging was issued. Currently, I am logging NHibernate sql to a separate file - this is working correctly. <appender name="NHibernateSqlAppender" type="log4net.Appender.RollingFileAppender"> <file value="Logs\NHibernate.log" /> <appendToFile value="true" /> <rollingStyle value="Size" /> <maxSizeRollBackups value="10" /> <maximumFileSize value="10000KB" /> <staticLogFileName value="true" /> <layout type="log4net.Layout.PatternLayout"> <conversionPattern value="%d{dd/MM/yy HH:mm:ss,fff} [%t] %-5p %c - %m%n" /> </layout> </appender> <logger name="NHibernate.SQL" additivity="false"> <level value="ALL"/> <appender-ref ref="NHibernateSqlAppender"/> </logger> <logger name="NHibernate" additivity="false"> <level value="WARN"/> <appender-ref ref="NHibernateSqlAppender"/> </logger> But this only outputs SQL, without context. I would like all previous logs within a specified namespace to also be logged, but only when the HNibernate.SQL appender is triggered. I have investigated the use of BufferingForwardingAppender as a means to collect all events, and then filter them within the NHibernateSqlAppender, but this is not working. I have read about the LoggerMatchFilter class, which seems like it is going to help, but I'm not sure where to put it. <appender name="BufferingForwardingAppender" type="log4net.Appender.BufferingForwardingAppender" > <bufferSize value="10" /> <lossy value="true" /> <evaluator type="log4net.Core.LevelEvaluator"> <threshold value="ALL"/> </evaluator> <appender-ref ref="NHibernateSqlAppender" /> </appender> <appender name="NHibernateSqlAppender" type="log4net.Appender.RollingFileAppender"> <file value="Logs\NHibernate.log" /> <appendToFile value="true" /> <rollingStyle value="Size" /> <maxSizeRollBackups value="10" /> <maximumFileSize value="10000KB" /> <staticLogFileName value="true" /> <filter type="log4net.Filter.LoggerMatchFilter"> <loggerToMatch value="NHibernate.SQL" /> <loggerToMatch value="Laan" /> </filter> <filter type="log4net.Filter.LoggerMatchFilter"> <loggerToMatch value="NHibernate" /> <acceptOnMatch value="false"/> </filter> <layout type="log4net.Layout.PatternLayout"> <conversionPattern value="%d{dd/MM/yy HH:mm:ss,fff} [%t] %-5p %c - %m%n" /> </layout> </appender> <root> <level value="ALL" /> <appender-ref ref="BufferingForwardingAppender"/> </root> The idea is that buffering appender will store all events, but then the NHibernateSqlAppender will only flush when an NHibernate.SQL event fires, plus it will flush the buffer (of 10 previous items, within the specified logger level, which in this example is Laan.*).

    Read the article

  • How to find the average color of an image.

    - by Edward Boyle
    Years ago I was the lead developer of a large Scrapbook Web Site. One of the things I implemented was to allow shoppers to find Scrapbook papers and embellishments of like colors (“more like this color”). Below is the base algorithm I wrote to extract the color from an image. It worked out pretty well. I took the returned values and stored them in an associated table for the products. Yet another algorithm was used to SELECT near matches. This algorithm has turned out to be very handy for me. I have used it for borders and subtle outlined text overlays. I am sure you will find more creative uses for it. Enjoy… private Color GetColor(Bitmap bmp) { int r = 0; int g = 0; int b = 0; Color mColor = System.Drawing.Color.White; for (int i = 1; i < bmp.Width; i++) { for (int x = 1; x < bmp.Height; x++) { mColor = bmp.GetPixel(i, x); r += mColor.R; g += mColor.G; b += mColor.B; } } r = (r / (bmp.Height * bmp.Width)); g = (g / (bmp.Height * bmp.Width)); b = (b / (bmp.Height * bmp.Width)); return System.Drawing.Color.FromArgb(r, g, b); } You could also get the RGB values by passing in the RGB by ref private Color GetColor(ref int r, ref int g, ref int b, Bitmap bmp) but that is a bit much as you can simply get it from the return value: mReturnedColor.R; mReturnedColor.G; mReturnedColor.B;

    Read the article

  • Why does Farseer 2.x store temporaries as members and not on the stack? (.NET)

    - by Andrew Russell
    UPDATE: This question refers to Farseer 2.x. The newer 3.x doesn't seem to do this. I'm using Farseer Physics Engine quite extensively at the moment, and I've noticed that it seems to store a lot of temporary value types as members of the class, and not on the stack as one might expect. Here is an example from the Body class: private Vector2 _worldPositionTemp = Vector2.Zero; private Matrix _bodyMatrixTemp = Matrix.Identity; private Matrix _rotationMatrixTemp = Matrix.Identity; private Matrix _translationMatrixTemp = Matrix.Identity; public void GetBodyMatrix(out Matrix bodyMatrix) { Matrix.CreateTranslation(position.X, position.Y, 0, out _translationMatrixTemp); Matrix.CreateRotationZ(rotation, out _rotationMatrixTemp); Matrix.Multiply(ref _rotationMatrixTemp, ref _translationMatrixTemp, out bodyMatrix); } public Vector2 GetWorldPosition(Vector2 localPosition) { GetBodyMatrix(out _bodyMatrixTemp); Vector2.Transform(ref localPosition, ref _bodyMatrixTemp, out _worldPositionTemp); return _worldPositionTemp; } It looks like its a by-hand performance optimisation. But I don't see how this could possibly help performance? (If anything I think it would hurt by making objects much larger).

    Read the article

  • Automatically create bug resolution task using the TFS 2010 API

    - by Bob Hardister
    My customer requires bug resolution to be approved and tracked.  To minimize the overhead for developers I implemented a TFS 2010 server-side plug-in to automatically create a child resolution task for the bug when the “CCB” field is set to approved. The CCB field is a custom field.  I also added the story points field to the bug WIT for sizing purposes. Redundant tasks will not be created unless the bug title is changed or the prior task is closed. The program writes an audit trail to a log file visible in the TFS Admin Console Log view. Here’s the code. BugAutoTask.cs /* SPECIFICATION * When the CCB field on the bug is set to approved, create a child task where the task: * name = Resolve bug [ID] - [Title of bug] * assigned to = same as assigned to field on the bug * same area path * same iteration path * activity = Bug Resolution * original estimate = bug points * * The source code is used to build a dll (Ows.TeamFoundation.BugAutoTaskCreation.PlugIns.dll), * which needs to be copied to * C:\Program Files\Microsoft Team Foundation Server 2010\Application Tier\Web Services\bin\Plugins * on ALL TFS application-tier servers. * * Author: Bob Hardister. */ using System; using System.Collections.Generic; using System.IO; using System.Xml; using System.Text; using System.Diagnostics; using System.Linq; using Microsoft.TeamFoundation.Common; using Microsoft.TeamFoundation.Framework.Server; using Microsoft.TeamFoundation.WorkItemTracking.Client; using Microsoft.TeamFoundation.WorkItemTracking.Server; using Microsoft.TeamFoundation.Client; using System.Collections; namespace BugAutoTaskCreation { public class BugAutoTask : ISubscriber { public EventNotificationStatus ProcessEvent(TeamFoundationRequestContext requestContext, NotificationType notificationType, object notificationEventArgs, out int statusCode, out string statusMessage, out ExceptionPropertyCollection properties) { statusCode = 0; properties = null; statusMessage = String.Empty; // Error message for for tracing last code executed and optional fields string lastStep = "No field values found or set "; try { if ((notificationType == NotificationType.Notification) && (notificationEventArgs.GetType() == typeof(WorkItemChangedEvent))) { WorkItemChangedEvent workItemChange = (WorkItemChangedEvent)notificationEventArgs; // see ConnectToTFS() method below to select which TFS instance/collection // to connect to TfsTeamProjectCollection tfs = ConnectToTFS(); WorkItemStore wiStore = tfs.GetService<WorkItemStore>(); lastStep = lastStep + ": connection to TFS successful "; // Get the work item that was just changed by the user. WorkItem witem = wiStore.GetWorkItem(workItemChange.CoreFields.IntegerFields[0].NewValue); lastStep = lastStep + ": retrieved changed work item, ID:" + witem.Id + " "; // Filter for Bug work items only if (witem.Type.Name == "Bug") { // DEBUG lastStep = lastStep + ": changed work item is a bug "; // Filter for CCB (i.e. Baseline Status) field set to approved only bool BaselineStatusChange = false; if (workItemChange.ChangedFields != null) { ProcessBugRevision(ref lastStep, workItemChange, wiStore, ref witem, ref BaselineStatusChange); } } } } catch (Exception e) { Trace.WriteLine(e.Message); Logger log = new Logger(); log.WriteLineToLog(MsgLevel.Error, "Application error: " + lastStep + " - " + e.Message + " - " + e.InnerException); } statusCode = 1; statusMessage = "Bug Auto Task Evaluation Completed"; properties = null; return EventNotificationStatus.ActionApproved; } // PRIVATE METHODS private static void ProcessBugRevision(ref string lastStep, WorkItemChangedEvent workItemChange, WorkItemStore wiStore, ref WorkItem witem, ref bool BaselineStatusChange) { foreach (StringField field in workItemChange.ChangedFields.StringFields) { // DEBUG lastStep = lastStep + ": last changed field is - " + field.Name + " "; if (field.Name == "Baseline Status") { lastStep = lastStep + ": retrieved bug baseline status field value, bug ID:" + witem.Id + " "; BaselineStatusChange = (field.NewValue != field.OldValue); if ((BaselineStatusChange) && (field.NewValue == "Approved")) { // Instanciate logger Logger log = new Logger(); // *** Create resolution task for this bug *** // ******************************************* // Get the team project and selected field values of the bug work item Project teamProject = witem.Project; int bugID = witem.Id; string bugTitle = witem.Fields["System.Title"].Value.ToString(); string bugAssignedTo = witem.Fields["System.AssignedTo"].Value.ToString(); string bugAreaPath = witem.Fields["System.AreaPath"].Value.ToString(); string bugIterationPath = witem.Fields["System.IterationPath"].Value.ToString(); string bugChangedBy = witem.Fields["System.ChangedBy"].OriginalValue.ToString(); string bugTeamProject = witem.Project.Name; lastStep = lastStep + ": all mandatory bug field values found "; // Optional fields Field bugPoints = witem.Fields["Microsoft.VSTS.Scheduling.StoryPoints"]; if (bugPoints.Value != null) { lastStep = lastStep + ": all mandatory and optional bug field values found "; } // Initialize child resolution task title string childTaskTitle = "Resolve bug " + bugID + " - " + bugTitle; // At this point I can check if a resolution task (of the same name) // for the bug already exist // If so, do not create a new resolution task bool createResolutionTask = true; WorkItem parentBug = wiStore.GetWorkItem(bugID); WorkItemLinkCollection links = parentBug.WorkItemLinks; foreach (WorkItemLink wil in links) { if (wil.LinkTypeEnd.Name == "Child") { WorkItem childTask = wiStore.GetWorkItem(wil.TargetId); if ((childTask.Title == childTaskTitle) && (childTask.State != "Closed")) { createResolutionTask = false; log.WriteLineToLog(MsgLevel.Info, "Team project " + bugTeamProject + ": " + bugChangedBy + " - set the CCB field to \"Approved\" for bug, ID: " + bugID + ". Task not created as open one of the same name already exist, ID:" + childTask.Id); } } } if (createResolutionTask) { // Define the work item type of the new work item WorkItemTypeCollection workItemTypes = wiStore.Projects[teamProject.Name].WorkItemTypes; WorkItemType wiType = workItemTypes["Task"]; // Setup the new task and assign field values witem = new WorkItem(wiType); witem.Fields["System.Title"].Value = "Resolve bug " + bugID + " - " + bugTitle; witem.Fields["System.AssignedTo"].Value = bugAssignedTo; witem.Fields["System.AreaPath"].Value = bugAreaPath; witem.Fields["System.IterationPath"].Value = bugIterationPath; witem.Fields["Microsoft.VSTS.Common.Activity"].Value = "Bug Resolution"; lastStep = lastStep + ": all mandatory task field values set "; // Optional fields if (bugPoints.Value != null) { witem.Fields["Microsoft.VSTS.Scheduling.OriginalEstimate"].Value = bugPoints.Value; lastStep = lastStep + ": all mandatory and optional task field values set "; } // Check for validation errors before saving the new task and linking it to the bug ArrayList validationErrors = witem.Validate(); if (validationErrors.Count == 0) { witem.Save(); // Link the new task (child) to the bug (parent) var linkType = wiStore.WorkItemLinkTypes[CoreLinkTypeReferenceNames.Hierarchy]; // Fetch the work items to be linked var parentWorkItem = wiStore.GetWorkItem(bugID); int taskID = witem.Id; var childWorkItem = wiStore.GetWorkItem(taskID); // Add a new link to the parent relating the child and save it parentWorkItem.Links.Add(new WorkItemLink(linkType.ForwardEnd, childWorkItem.Id)); parentWorkItem.Save(); log.WriteLineToLog(MsgLevel.Info, "Team project " + bugTeamProject + ": " + bugChangedBy + " - set the CCB field to \"Approved\" for bug, ID:" + bugID + ", which automatically created child resolution task, ID:" + taskID); } else { log.WriteLineToLog(MsgLevel.Error, "Error in creating bug resolution child task for bug ID:" + bugID); foreach (Field taskField in validationErrors) { log.WriteLineToLog(MsgLevel.Error, " - Validation Error in task field: " + taskField.ReferenceName); } } } } } } } private TfsTeamProjectCollection ConnectToTFS() { // Connect to TFS string tfsUri = string.Empty; // Production TFS instance production collection tfsUri = @"xxxx"; // Production TFS instance admin collection //tfsUri = @"xxxxx"; // Local TFS testing instance default collection //tfsUri = @"xxxxx"; TfsTeamProjectCollection tfs = new TfsTeamProjectCollection(new System.Uri(tfsUri)); tfs.EnsureAuthenticated(); return tfs; } // HELPERS public string Name { get { return "Bug Auto Task Creation Event Handler"; } } public SubscriberPriority Priority { get { return SubscriberPriority.Normal; } } public enum MsgLevel { Info, Warning, Error }; public Type[] SubscribedTypes() { return new Type[1] { typeof(WorkItemChangedEvent) }; } } } Logger.cs using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Text; using System.Windows.Forms; namespace BugAutoTaskCreation { class Logger { // fields private string _ApplicationDirectory = @"C:\ProgramData\Microsoft\Team Foundation\Server Configuration\Logs"; private string _LogFileName = @"\CFG_ACCT_AT_OWS_BugAutoTaskCreation.log"; private string _LogFile; private string _LogTimestamp = DateTime.Now.ToString("MM/dd/yyyy HH:mm:ss"); private string _MsgLevelText = string.Empty; // default constructor public Logger() { // check for a prior log file FileInfo logFile = new FileInfo(_ApplicationDirectory + _LogFileName); if (!logFile.Exists) { CreateNewLogFile(ref logFile); } } // properties public string ApplicationDirectory { get { return _ApplicationDirectory; } set { _ApplicationDirectory = value; } } public string LogFile { get { _LogFile = _ApplicationDirectory + _LogFileName; return _LogFile; } set { _LogFile = value; } } // PUBLIC METHODS public void WriteLineToLog(BugAutoTask.MsgLevel msgLevel, string logRecord) { try { // set msgLevel text if (msgLevel == BugAutoTask.MsgLevel.Info) { _MsgLevelText = "[Info @" + MsgTimeStamp() + "] "; } else if (msgLevel == BugAutoTask.MsgLevel.Warning) { _MsgLevelText = "[Warning @" + MsgTimeStamp() + "] "; } else if (msgLevel == BugAutoTask.MsgLevel.Error) { _MsgLevelText = "[Error @" + MsgTimeStamp() + "] "; } else { _MsgLevelText = "[Error: unsupported message level @" + MsgTimeStamp() + "] "; } // write a line to the log file StreamWriter logFile = new StreamWriter(_ApplicationDirectory + _LogFileName, true); logFile.WriteLine(_MsgLevelText + logRecord); logFile.Close(); } catch (Exception) { throw; } } // PRIVATE METHODS private void CreateNewLogFile(ref FileInfo logFile) { try { string logFilePath = logFile.FullName; // write the log file header _MsgLevelText = "[Info @" + MsgTimeStamp() + "] "; string cpu = string.Empty; if (Environment.Is64BitOperatingSystem) { cpu = " (x64)"; } StreamWriter newLog = new StreamWriter(logFilePath, false); newLog.Flush(); newLog.WriteLine(_MsgLevelText + "===================================================================="); newLog.WriteLine(_MsgLevelText + "Team Foundation Server Administration Log"); newLog.WriteLine(_MsgLevelText + "Version : " + "1.0.0 Author: Bob Hardister"); newLog.WriteLine(_MsgLevelText + "DateTime : " + _LogTimestamp); newLog.WriteLine(_MsgLevelText + "Type : " + "OWS Custom TFS API Plug-in"); newLog.WriteLine(_MsgLevelText + "Activity : " + "Bug Auto Task Creation for CCB Approved Bugs"); newLog.WriteLine(_MsgLevelText + "Area : " + "Build Explorer"); newLog.WriteLine(_MsgLevelText + "Assembly : " + "Ows.TeamFoundation.BugAutoTaskCreation.PlugIns.dll"); newLog.WriteLine(_MsgLevelText + "Location : " + @"C:\Program Files\Microsoft Team Foundation Server 2010\Application Tier\Web Services\bin\Plugins"); newLog.WriteLine(_MsgLevelText + "User : " + Environment.UserDomainName + @"\" + Environment.UserName); newLog.WriteLine(_MsgLevelText + "Machine : " + Environment.MachineName); newLog.WriteLine(_MsgLevelText + "System : " + Environment.OSVersion + cpu); newLog.WriteLine(_MsgLevelText + "===================================================================="); newLog.WriteLine(_MsgLevelText); newLog.Close(); } catch (Exception) { throw; } } private string MsgTimeStamp() { string msgTimestamp = string.Empty; return msgTimestamp = DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:fff"); } } }

    Read the article

  • Exception while exposing a bean in webservice using spring mvc

    - by Ajay
    Hi, I am using Spring 3.0.5.Release MVC for exposing a webservice and below is my servlet.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd"> <!-- To enable @RequestMapping process on type level and method level --> <context:component-scan base-package="com.pyramid.qls.progressReporter.service" /> <bean class="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping" /> <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"> <property name="messageConverters"> <list> <ref bean="marshallingConverter" /> <ref bean="atomConverter" /> <ref bean="jsonConverter" /> </list> </property> </bean> <bean id="marshallingConverter" class="org.springframework.http.converter.xml.MarshallingHttpMessageConverter"> <constructor-arg ref="jaxbMarshaller" /> <property name="supportedMediaTypes" value="application/xml"/> </bean> <bean id="atomConverter" class="org.springframework.http.converter.feed.AtomFeedHttpMessageConverter"> <property name="supportedMediaTypes" value="application/atom+xml" /> </bean> <bean id="jsonConverter" class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter"> <property name="supportedMediaTypes" value="application/json" /> </bean> <!-- Client --> <bean id="restTemplate" class="org.springframework.web.client.RestTemplate"> <property name="messageConverters"> <list> <ref bean="marshallingConverter" /> <ref bean="atomConverter" /> <ref bean="jsonConverter" /> </list> </property> </bean> <bean id="jaxbMarshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller"> <property name="classesToBeBound"> <list> <value>com.pyramid.qls.progressReporter.impl.BatchProgressMetricsImpl</value> <value>com.pyramid.qls.progressReporter.datatype.InstrumentStats</value> <value>com.pyramid.qls.progressReporter.datatype.InstrumentInfo</value> <value>com.pyramid.qls.progressReporter.datatype.LoadOnConsumer</value> <value>com.pyramid.qls.progressReporter.datatype.HighLevelTaskStats</value> <value>com.pyramid.qls.progressReporter.datatype.SessionStats</value> <value>com.pyramid.qls.progressReporter.datatype.TaskStats</value> <value>com.pyramid.qls.progressReporter.datatype.ComputeStats</value> <value>com.pyramid.qls.progressReporter.datatype.DetailedInstrumentStats</value> <value>com.pyramid.qls.progressReporter.datatype.ImntHistoricalStats</value> </list> </property> </bean> <bean id="QPRXmlView" class="org.springframework.web.servlet.view.xml.MarshallingView"> <constructor-arg ref="jaxbMarshaller" /> </bean> <bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"> <property name="mediaTypes"> <map> <entry key="xml" value="application/xml"/> <entry key="html" value="text/html"/> </map> </property> <property name="viewResolvers"> <list> <bean class="org.springframework.web.servlet.view.BeanNameViewResolver"/> <bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> </bean> </list> </property> </bean> <bean id="QPRController" class="com.pyramid.qls.progressReporter.service.QPRController"> <property name="jaxb2Mashaller" ref="jaxbMarshaller" /> </bean> </beans> Following is what i am doing in controller (QPRController) @RequestMapping(value = "/clientMetrics/{clientId}", method = RequestMethod.GET) public ModelAndView getBatchProgressMetrics(@PathVariable String clientId) { List<BatchProgressMetrics> batchProgressMetricsList = null; batchProgressMetricsList = batchProgressReporter.getBatchProgressMetricsForClient(clientId); ModelAndView mav = new ModelAndView("QPRXmlView", BindingResult.MODEL_KEY_PREFIX + "batchProgressMetrics", batchProgressMetricsList); return mav; } And i get the following: SEVERE: Servlet.service() for servlet rest threw exception javax.servlet.ServletException: Unable to locate object to be marshalled in model: {org.springframework.validation.BindingResult.batchProgressMetrics= Note that BatchProgressMetrics is an interface so my MAV is returning list of BatchProgressMetrics objects and i have entry for its impl in classes to be bound in servlet.xml. Can you please help me as to what i am doing wrong. And yes if i send just batchProgressMetricsList.get(0) in MAV it just works fine.

    Read the article

  • C#/.NET Little Wonders: Interlocked Read() and Exchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Last time we discussed the Interlocked class and its Add(), Increment(), and Decrement() methods which are all useful for updating a value atomically by adding (or subtracting).  However, this begs the question of how do we set and read those values atomically as well? Read() – Read a value atomically Let’s begin by examining the following code: 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value { get { return _value; } } 6:  7: public void Increment() 8: { 9: Interlocked.Increment(ref _value); 10: } 11: } 12:  It uses an interlocked increment, as we discuss in my previous post (here), so we know that the increment will be thread-safe.  But, to realize what’s potentially wrong we have to know a bit about how atomic reads are in 32 bit and 64 bit .NET environments. When you are dealing with an item smaller or equal to the system word size (such as an int on a 32 bit system or a long on a 64 bit system) then the read is generally atomic, because it can grab all of the bits needed at once.  However, when dealing with something larger than the system word size (reading a long on a 32 bit system for example), it cannot grab the whole value at once, which can lead to some problems since this read isn’t atomic. For example, this means that on a 32 bit system we may read one half of the long before another thread increments the value, and the other half of it after the increment.  To protect us from reading an invalid value in this manner, we can do an Interlocked.Read() to force the read to be atomic (of course, you’d want to make sure any writes or increments are atomic also): 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value 6: { 7: get { return Interlocked.Read(ref _value); } 8: } 9:  10: public void Increment() 11: { 12: Interlocked.Increment(ref _value); 13: } 14: } Now we are guaranteed that we will read the 64 bit value atomically on a 32 bit system, thus ensuring our thread safety (assuming all other reads, writes, increments, etc. are likewise protected).  Note that as stated before, and according to the MSDN (here), it isn’t strictly necessary to use Interlocked.Read() for reading 64 bit values on 64 bit systems, but for those still working in 32 bit environments, it comes in handy when dealing with long atomically. Exchange() – Exchanges two values atomically Exchange() lets us store a new value in the given location (the ref parameter) and return the old value as a result. So just as Read() allows us to read atomically, one use of Exchange() is to write values atomically.  For example, if we wanted to add a Reset() method to our Incrementor, we could do something like this: 1: public void Reset() 2: { 3: _value = 0; 4: } But the assignment wouldn’t be atomic on 32 bit systems, since the word size is 32 bits and the variable is a long (64 bits).  Thus our assignment could have only set half the value when a threaded read or increment happens, which would put us in a bad state. So instead, we could write Reset() like this: 1: public void Reset() 2: { 3: Interlocked.Exchange(ref _value, 0); 4: } And we’d be safe again on a 32 bit system. But this isn’t the only reason Exchange() is valuable.  The key comes in realizing that Exchange() doesn’t just set a new value, it returns the old as well in an atomic step.  Hence the name “exchange”: you are swapping the value to set with the stored value. So why would we want to do this?  Well, anytime you want to set a value and take action based on the previous value.  An example of this might be a scheme where you have several tasks, and during every so often, each of the tasks may nominate themselves to do some administrative chore.  Perhaps you don’t want to make this thread dedicated for whatever reason, but want to be robust enough to let any of the threads that isn’t currently occupied nominate itself for the job.  An easy and lightweight way to do this would be to have a long representing whether someone has acquired the “election” or not.  So a 0 would indicate no one has been elected and 1 would indicate someone has been elected. We could then base our nomination strategy as follows: every so often, a thread will attempt an Interlocked.Exchange() on the long and with a value of 1.  The first thread to do so will set it to a 1 and return back the old value of 0.  We can use this to show that they were the first to nominate and be chosen are thus “in charge”.  Anyone who nominates after that will attempt the same Exchange() but will get back a value of 1, which indicates that someone already had set it to a 1 before them, thus they are not elected. Then, the only other step we need take is to remember to release the election flag once the elected thread accomplishes its task, which we’d do by setting the value back to 0.  In this way, the next thread to nominate with Exchange() will get back the 0 letting them know they are the new elected nominee. Such code might look like this: 1: public class Nominator 2: { 3: private long _nomination = 0; 4: public bool Elect() 5: { 6: return Interlocked.Exchange(ref _nomination, 1) == 0; 7: } 8: public bool Release() 9: { 10: return Interlocked.Exchange(ref _nomination, 0) == 1; 11: } 12: } There’s many ways to do this, of course, but you get the idea.  Running 5 threads doing some “sleep” work might look like this: 1: var nominator = new Nominator(); 2: var random = new Random(); 3: Parallel.For(0, 5, i => 4: { 5:  6: for (int j = 0; j < _iterations; ++j) 7: { 8: if (nominator.Elect()) 9: { 10: // elected 11: Console.WriteLine("Elected nominee " + i); 12: Thread.Sleep(random.Next(100, 5000)); 13: nominator.Release(); 14: } 15: else 16: { 17: // not elected 18: Console.WriteLine("Did not elect nominee " + i); 19: } 20: // sleep before check again 21: Thread.Sleep(1000); 22: } 23: }); And would spit out results like: 1: Elected nominee 0 2: Did not elect nominee 2 3: Did not elect nominee 1 4: Did not elect nominee 4 5: Did not elect nominee 3 6: Did not elect nominee 3 7: Did not elect nominee 1 8: Did not elect nominee 2 9: Did not elect nominee 4 10: Elected nominee 3 11: Did not elect nominee 2 12: Did not elect nominee 1 13: Did not elect nominee 4 14: Elected nominee 0 15: Did not elect nominee 2 16: Did not elect nominee 4 17: ... Another nice thing about the Interlocked.Exchange() is it can be used to thread-safely set pretty much anything 64 bits or less in size including references, pointers (in unsafe mode), floats, doubles, etc.  Summary So, now we’ve seen two more things we can do with Interlocked: reading and exchanging a value atomically.  Read() and Exchange() are especially valuable for reading/writing 64 bit values atomically in a 32 bit system.  Exchange() has value even beyond simply atomic writes by using the Exchange() to your advantage, since it reads and set the value atomically, which allows you to do lightweight nomination systems. There’s still a few more goodies in the Interlocked class which we’ll explore next time! Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked

    Read the article

  • Connection to Weblogic Server through ServiceMix fails

    - by bertolami
    I connect from a OSGi bundle deployed on Apache ServiceMix to a Weblogic Server to call some EJBs. The lookup happens with JNDI. In my unit test everything works fine. But when a deploy the bundle on ServiceMix a CommunicationException exception is raised on JNDI ContextFactory initialisation. The class that performs the lookup during initialisation: public DummyJndiLookup(JndiTemplate jndiTemplate) { try { String securityServiceURL = "ejb/xyz/Service"; reference = jndiTemplate.lookup(securityServiceURL); log.info("Successfully connected to JNDI Server: " + reference); } catch (Throwable t) { throw new RuntimeException(t); } } The beans in the spring context: <bean id="dummy" class="xyz.DummyJndiLookup"> <constructor-arg ref="jndiTemplate"></constructor-arg> </bean> <bean id="jndiTemplate" class="org.springframework.jndi.JndiTemplate" lazy-init="true"> <property name="environment"> <props> <prop key="java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</prop> <prop key="java.naming.provider.url">t3://xyz:22225</prop> <prop key="java.naming.security.principal">weblogic</prop> <prop key="java.naming.security.credentials">weblogic</prop> </props> </property> </bean> The resulting exception stack trace: Caused by: javax.naming.CommunicationException [Root exception is java.net.ConnectException: t3://xyz7:22225: Bootstrap to: xyz/192.168.108.22:22225' over: 't3' got an error or timed out] at weblogic.jndi.internal.ExceptionTranslator.toNamingException(ExceptionTranslator.java:40) at weblogic.jndi.WLInitialContextFactoryDelegate.toNamingException(WLInitialContextFactoryDelegate.java:783) at weblogic.jndi.WLInitialContextFactoryDelegate.getInitialContext(WLInitialContextFactoryDelegate.java:365) at weblogic.jndi.Environment.getContext(Environment.java:315) at weblogic.jndi.Environment.getContext(Environment.java:285) at weblogic.jndi.WLInitialContextFactory.getInitialContext(WLInitialContextFactory.java:117) at javax.naming.spi.NamingManager.getInitialContext(NamingManager.java:667) at javax.naming.InitialContext.getDefaultInitCtx(InitialContext.java:288) at javax.naming.InitialContext.init(InitialContext.java:223) at javax.naming.InitialContext.<init>(InitialContext.java:197) at org.springframework.jndi.JndiTemplate.createInitialContext(JndiTemplate.java:137) at org.springframework.jndi.JndiTemplate.getContext(JndiTemplate.java:104) at org.springframework.jndi.JndiTemplate.execute(JndiTemplate.java:86) at org.springframework.jndi.JndiTemplate.lookup(JndiTemplate.java:153) at xyz.DummyJndiLookup.<init>(DummyJndiLookup.java:36) ... 26 more Caused by: java.net.ConnectException: t3://xyz:22225: Bootstrap to: xyz/192.168.108.22:22225' over: 't3' got an error or timed out at weblogic.rjvm.RJVMFinder.findOrCreateInternal(RJVMFinder.java:216) at weblogic.rjvm.RJVMFinder.findOrCreate(RJVMFinder.java:170) at weblogic.rjvm.ServerURL.findOrCreateRJVM(ServerURL.java:153) at weblogic.jndi.WLInitialContextFactoryDelegate$1.run(WLInitialContextFactoryDelegate.java:344) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:147) at weblogic.jndi.WLInitialContextFactoryDelegate.getInitialContext(WLInitialContextFactoryDelegate.java:339) ... 38 more Caused by: java.rmi.ConnectException: Bootstrap to: xyz/192.168.108.22:22225' over: 't3' got an error or timed out at weblogic.rjvm.ConnectionManager.bootstrap(ConnectionManager.java:359) at weblogic.rjvm.RJVMManager.findOrCreateRemoteInternal(RJVMManager.java:251) at weblogic.rjvm.RJVMManager.findOrCreate(RJVMManager.java:194) at weblogic.rjvm.RJVMFinder.findOrCreateRemoteServer(RJVMFinder.java:238) at weblogic.rjvm.RJVMFinder.findOrCreateInternal(RJVMFinder.java:200) Any ideas what could cause the exception? Escpecially why it does work in the unit test and not after having bundled and deployed on Apache ServiceMix? Additional Info: I dumped the threads stack trace of ServiceMix (after having removed all JNDI related spring stuff): 2010-03-22 16:18:23 Full thread dump Java HotSpot(TM) Server VM (11.2-b01 mixed mode): "SpringOsgiExtenderThread-14" prio=6 tid=0x054d6400 nid=0x17c4 waiting for monitor entry [0x06f3e000..0x06f3fb14] java.lang.Thread.State: BLOCKED (on object monitor) at weblogic.rjvm.RJVMFinder.findOrCreate(RJVMFinder.java:168) - waiting to lock <0x595876f8> (a weblogic.rjvm.RJVMFinder) at weblogic.rjvm.ServerURL.findOrCreateRJVM(ServerURL.java:153) at weblogic.jndi.WLInitialContextFactoryDelegate.getInitialContext(WLInitialContextFactoryDelegate.java:352) at weblogic.jndi.Environment.getContext(Environment.java:315) at weblogic.jndi.Environment.getContext(Environment.java:285) at weblogic.jndi.WLInitialContextFactory.getInitialContext(WLInitialContextFactory.java:117) at javax.naming.spi.NamingManager.getInitialContext(NamingManager.java:667) at javax.naming.InitialContext.getDefaultInitCtx(InitialContext.java:288) at javax.naming.InitialContext.init(InitialContext.java:223) at javax.naming.InitialContext.<init>(InitialContext.java:197) at xyz.DummyJndiLookup.getInitialContext(DummyJndiLookup.java:62) at xyz.DummyJndiLookup.<init>(DummyJndiLookup.java:32) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at org.springframework.beans.BeanUtils.instantiateClass(BeanUtils.java:100) at org.springframework.beans.factory.support.SimpleInstantiationStrategy.instantiate(SimpleInstantiationStrategy.java:61) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.instantiateBean(AbstractAutowireCapableBeanFactory.java:877) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBeanInstance(AbstractAutowireCapableBeanFactory.java:839) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:440) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) - locked <0x595959c0> (a java.util.concurrent.ConcurrentHashMap) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:429) - locked <0x59598370> (a java.util.concurrent.ConcurrentHashMap) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:728) at org.springframework.osgi.context.support.AbstractDelegatedExecutionApplicationContext.access$1600(AbstractDelegatedExecutionApplicationContext.java:69) at org.springframework.osgi.context.support.AbstractDelegatedExecutionApplicationContext$4.run(AbstractDelegatedExecutionApplicationContext.java:355) - locked <0x595431a8> (a java.lang.Object) at org.springframework.osgi.util.internal.PrivilegedUtils.executeWithCustomTCCL(PrivilegedUtils.java:85) at org.springframework.osgi.context.support.AbstractDelegatedExecutionApplicationContext.completeRefresh(AbstractDelegatedExecutionApplicationContext.java:320) at org.springframework.osgi.extender.internal.dependencies.startup.DependencyWaiterApplicationContextExecutor$CompleteRefreshTask.run(DependencyWaiterApplicationContextExecutor.java:136) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "SpringOsgiExtenderThread-12" prio=6 tid=0x05465400 nid=0x14cc in Object.wait() [0x06f8e000..0x06f8fc94] java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x595b3800> (a java.lang.Object) at weblogic.rjvm.ConnectionManager.bootstrap(ConnectionManager.java:320) - locked <0x595b3800> (a java.lang.Object) at weblogic.rjvm.RJVMManager.findOrCreateRemoteInternal(RJVMManager.java:251) - locked <0x595885b8> (a java.lang.Object) at weblogic.rjvm.RJVMManager.findOrCreate(RJVMManager.java:194) at weblogic.rjvm.RJVMFinder.findOrCreateRemoteServer(RJVMFinder.java:238) at weblogic.rjvm.RJVMFinder.findOrCreateInternal(RJVMFinder.java:200) at weblogic.rjvm.RJVMFinder.findOrCreate(RJVMFinder.java:170) - locked <0x595876f8> (a weblogic.rjvm.RJVMFinder) at weblogic.rjvm.ServerURL.findOrCreateRJVM(ServerURL.java:153) at weblogic.jndi.WLInitialContextFactoryDelegate.getInitialContext(WLInitialContextFactoryDelegate.java:352) at weblogic.jndi.Environment.getContext(Environment.java:315) at weblogic.jndi.Environment.getContext(Environment.java:285) at weblogic.jndi.WLInitialContextFactory.getInitialContext(WLInitialContextFactory.java:117) at javax.naming.spi.NamingManager.getInitialContext(NamingManager.java:667) at javax.naming.InitialContext.getDefaultInitCtx(InitialContext.java:288) at javax.naming.InitialContext.init(InitialContext.java:223) at javax.naming.InitialContext.<init>(InitialContext.java:197) at xyz.DummyJndiLookup.getInitialContext(DummyJndiLookup.java:62) at xyz.DummyJndiLookup.<init>(DummyJndiLookup.java:32) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at org.springframework.beans.BeanUtils.instantiateClass(BeanUtils.java:100) at org.springframework.beans.factory.support.SimpleInstantiationStrategy.instantiate(SimpleInstantiationStrategy.java:61) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.instantiateBean(AbstractAutowireCapableBeanFactory.java:877) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBeanInstance(AbstractAutowireCapableBeanFactory.java:839) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:440) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) - locked <0x595b3af0> (a java.util.concurrent.ConcurrentHashMap) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:429) - locked <0x595b3b18> (a java.util.concurrent.ConcurrentHashMap) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:728) at org.springframework.osgi.context.support.AbstractDelegatedExecutionApplicationContext.access$1600(AbstractDelegatedExecutionApplicationContext.java:69) at org.springframework.osgi.context.support.AbstractDelegatedExecutionApplicationContext$4.run(AbstractDelegatedExecutionApplicationContext.java:355) - locked <0x595b3be0> (a java.lang.Object) at org.springframework.osgi.util.internal.PrivilegedUtils.executeWithCustomTCCL(PrivilegedUtils.java:85) at org.springframework.osgi.context.support.AbstractDelegatedExecutionApplicationContext.completeRefresh(AbstractDelegatedExecutionApplicationContext.java:320) at org.springframework.osgi.extender.internal.dependencies.startup.DependencyWaiterApplicationContextExecutor$CompleteRefreshTask.run(DependencyWaiterApplicationContextExecutor.java:136) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "RMI TCP Connection(idle)" daemon prio=6 tid=0x05329400 nid=0x1100 waiting on condition [0x069af000..0x069afa14] java.lang.Thread.State: TIMED_WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x200a1380> (a java.util.concurrent.SynchronousQueue$TransferStack) at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:198) at java.util.concurrent.SynchronousQueue$TransferStack.awaitFulfill(SynchronousQueue.java:424) at java.util.concurrent.SynchronousQueue$TransferStack.transfer(SynchronousQueue.java:323) at java.util.conCurrent.SynchronousQueue.poll(SynchronousQueue.java:874) at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:945) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:907) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "Timer-4" daemon prio=6 tid=0x053aa400 nid=0xfa4 in Object.wait() [0x06eef000..0x06eefc94] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x59585388> (a java.util.TaskQueue) at java.lang.Object.wait(Object.java:485) at java.util.TimerThread.mainLoop(Timer.java:483) - locked <0x59585388> (a java.util.TaskQueue) at java.util.TimerThread.run(Timer.java:462) Locked ownable synchronizers: - None "weblogic.timers.TimerThread" daemon prio=10 tid=0x05151800 nid=0x11fc in Object.wait() [0x06e9f000..0x06e9fd14] java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x5959c3c0> (a weblogic.timers.internal.TimerThread) at weblogic.timers.internal.TimerThread$Thread.run(TimerThread.java:267) - locked <0x5959c3c0> (a weblogic.timers.internal.TimerThread) Locked ownable synchronizers: - None "ExecuteThread: '4' for queue: 'default'" daemon prio=6 tid=0x04880c00 nid=0x117c in Object.wait() [0x06e4f000..0x06e4fd94] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x595855a8> (a weblogic.kernel.ServerExecuteThread) at java.lang.Object.wait(Object.java:485) at weblogic.kernel.ExecuteThread.waitForRequest(ExecuteThread.java:91) - locked <0x595855a8> (a weblogic.kernel.ServerExecuteThread) at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:115) Locked ownable synchronizers: - None "ExecuteThread: '3' for queue: 'default'" daemon prio=6 tid=0x05242400 nid=0xd34 in Object.wait() [0x06dff000..0x06dffa14] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x59585998> (a weblogic.kernel.ServerExecuteThread) at java.lang.Object.wait(Object.java:485) at weblogic.kernel.ExecuteThread.waitForRequest(ExecuteThread.java:91) - locked <0x59585998> (a weblogic.kernel.ServerExecuteThread) at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:115) Locked ownable synchronizers: - None "ExecuteThread: '2' for queue: 'default'" daemon prio=6 tid=0x04509800 nid=0x1600 in Object.wait() [0x06daf000..0x06dafa94] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x59585c78> (a weblogic.kernel.ServerExecuteThread) at java.lang.Object.wait(Object.java:485) at weblogic.kernel.ExecuteThread.waitForRequest(ExecuteThread.java:91) - locked <0x59585c78> (a weblogic.kernel.ServerExecuteThread) at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:115) Locked ownable synchronizers: - None "ExecuteThread: '1' for queue: 'default'" daemon prio=6 tid=0x05170800 nid=0x894 in Object.wait() [0x06d5f000..0x06d5fb14] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x59585f58> (a weblogic.kernel.ServerExecuteThread) at java.lang.Object.wait(Object.java:485) at weblogic.kernel.ExecuteThread.waitForRequest(ExecuteThread.java:91) - locked <0x59585f58> (a weblogic.kernel.ServerExecuteThread) at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:115) Locked ownable synchronizers: - None "ExecuteThread: '0' for queue: 'default'" daemon prio=6 tid=0x05329800 nid=0x10a8 in Object.wait() [0x06c1f000..0x06c1fb94] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x59586238> (a weblogic.kernel.ServerExecuteThread) at java.lang.Object.wait(Object.java:485) at weblogic.kernel.ExecuteThread.waitForRequest(ExecuteThread.java:91) - locked <0x59586238> (a weblogic.kernel.ServerExecuteThread) at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:115) Locked ownable synchronizers: - None "Timer-3" daemon prio=6 tid=0x0484bc00 nid=0xebc waiting for monitor entry [0x06cbf000..0x06cbfa94] java.lang.Thread.State: BLOCKED (on object monitor) at org.springframework.osgi.extender.internal.dependencies.startup.DependencyWaiterApplicationContextExecutor.close(DependencyWaiterApplicationContextExecutor.java:355) - waiting to lock <0x595b3be0> (a java.lang.Object) - locked <0x595b3c48> (a java.lang.Object) at org.springframework.osgi.context.support.AbstractDelegatedExecutionApplicationContext.doClose(AbstractDelegatedExecutionApplicationContext.java:236) at org.springframework.context.support.AbstractApplicationContext.close(AbstractApplicationContext.java:794) - locked <0x595b4128> (a java.lang.Object) at org.springframework.osgi.extender.internal.activator.ContextLoaderListener$3.run(ContextLoaderListener.java:807) at org.springframework.osgi.extender.internal.util.concurrent.RunnableTimedExecution$MonitoredRunnable.run(RunnableTimedExecution.java:60) at org.springframework.scheduling.timer.DelegatingTimerTask.run(DelegatingTimerTask.java:66) at java.util.TimerThread.mainLoop(Timer.java:512) at java.util.TimerThread.run(Timer.java:462) Locked ownable synchronizers: - None "Timer-2" daemon prio=6 tid=0x04780400 nid=0x1388 in Object.wait() [0x06c6f000..0x06c6fb14] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x20783b60> (a java.util.TaskQueue) at java.lang.Object.wait(Object.java:485) at java.util.TimerThread.mainLoop(Timer.java:483) - locked <0x20783b60> (a java.util.TaskQueue) at java.util.TimerThread.run(Timer.java:462) Locked ownable synchronizers: - None "AWT-Windows" daemon prio=6 tid=0x04028000 nid=0x83c runnable [0x06b8f000..0x06b8fb14] java.lang.Thread.State: RUNNABLE at sun.awt.windows.WToolkit.eventLoop(Native Method) at sun.awt.windows.WToolkit.run(WToolkit.java:291) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "Java2D Disposer" daemon prio=10 tid=0x0469c400 nid=0x1164 in Object.wait() [0x0695f000..0x0695fc14] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x206f4200> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:116) - locked <0x206f4200> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:132) at sun.java2d.Disposer.run(Disposer.java:125) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "NioSocketAcceptor-1" prio=6 tid=0x055acc00 nid=0xf80 runnable [0x068bf000..0x068bfd94] java.lang.Thread.State: RUNNABLE at sun.nio.ch.WindowsSelectorImpl$SubSelector.poll0(Native Method) at sun.nio.ch.WindowsSelectorImpl$SubSelector.poll(WindowsSelectorImpl.java:274) at sun.nio.ch.WindowsSelectorImpl$SubSelector.access$400(WindowsSelectorImpl.java:256) at sun.nio.ch.WindowsSelectorImpl.doSelect(WindowsSelectorImpl.java:137) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:69) - locked <0x2069e820> (a sun.nio.ch.Util$1) - locked <0x2069e810> (a java.util.Collections$UnmodifiableSet) - locked <0x2069e3d8> (a sun.nio.ch.WindowsSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:80) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:84) at org.apache.mina.transport.socket.nio.NioSocketAcceptor.select(NioSocketAcceptor.java:288) at org.apache.mina.core.polling.AbstractPollingIoAcceptor$Acceptor.run(AbstractPollingIoAcceptor.java:402) at org.apache.mina.util.NamePreservingRunnable.run(NamePreservingRunnable.java:64) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - <0x2069e0f8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync) "RMI RenewClean-[192.168.114.60:1640]" daemon prio=6 tid=0x05312400 nid=0x1058 in Object.wait() [0x06b3f000..0x06b3fa94] java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x20669858> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:116) - locked <0x20669858> (a java.lang.ref.ReferenceQueue$Lock) at sun.rmi.transport.DGCClient$EndpointEntry$RenewCleanThread.run(DGCClient.java:516) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "RMI Scheduler(0)" daemon prio=6 tid=0x05132800 nid=0x146c waiting on condition [0x06aef000..0x06aefb14] java.lang.Thread.State: TIMED_WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x200a1508> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject) at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:198) at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:1963) at java.util.concurrent.DelayQueue.take(DelayQueue.java:164) at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:583) at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:576) at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:947) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:907) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "GC Daemon" daemon prio=2 tid=0x05678400 nid=0x166c in Object.wait() [0x06a9f000..0x06a9fc14] java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x2060d790> (a sun.misc.GC$LatencyLock) at sun.misc.GC$Daemon.run(GC.java:100) - locked <0x2060d790> (a sun.misc.GC$LatencyLock) Locked ownable synchronizers: - None "RMI Reaper" prio=6 tid=0x04fee800 nid=0x828 in Object.wait() [0x06a4f000..0x06a4fd14] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x200a79c8> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:116) - locked <0x200a79c8> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:132) at sun.rmi.transport.ObjectTable$Reaper.run(ObjectTable.java:333) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "RMI TCP Accept-0" daemon prio=6 tid=0x0488dc00 nid=0x129c runnable [0x069ff000..0x069ffc94] java.lang.Thread.State: RUNNABLE at java.net.PlainSocketImpl.socketAccept(Native Method) at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:384) - locked <0x20606780> (a java.net.SocksSocketImpl) at java.net.ServerSocket.implAccept(ServerSocket.java:453) at java.net.ServerSocket.accept(ServerSocket.java:421) at sun.rmi.transport.tcp.TCPTransport$AcceptLoop.executeAcceptLoop(TCPTransport.java:369) at sun.rmi.transport.tcp.TCPTransport$AcceptLoop.run(TCPTransport.java:341) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "RMI TCP Accept-20220" daemon prio=6 tid=0x05319800 nid=0x1634 runnable [0x0690f000..0x0690fa94] java.lang.Thread.State: RUNNABLE at java.net.PlainSocketImpl.socketAccept(Native Method) at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:384) - locked <0x205fb908> (a java.net.SocksSocketImpl) at java.net.ServerSocket.implAccept(ServerSocket.java:453) at java.net.ServerSocket.accept(ServerSocket.java:421) at sun.rmi.transport.tcp.TCPTransport$AcceptLoop.executeAcceptLoop(TCPTransport.java:369) at sun.rmi.transport.tcp.TCPTransport$AcceptLoop.run(TCPTransport.java:341) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "gogo shell pipe thread" daemon prio=6 tid=0x0511f400 nid=0x920 runnable [0x0586f000..0x0586fb94] java.lang.Thread.State: RUNNABLE at jline.WindowsTerminal.readByte(Native Method) at jline.WindowsTerminal.readCharacter(WindowsTerminal.java:237) at jline.AnsiWindowsTerminal.readDirectChar(AnsiWindowsTerminal.java:44) at org.apache.felix.karaf.shell.console.jline.Console$Pipe.run(Console.java:346) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "Karaf Shell Console Thread" prio=6 tid=0x05134400 nid=0xf54 waiting on condition [0x0581f000..0x0581fc14] java.lang.Thread.State: WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x20573970> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:158) at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1925) at java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:317) at org.apache.felix.karaf.shell.console.jline.Console$ConsoleInputStream.read(Console.java:286) at org.apache.felix.karaf.shell.console.jline.Console$ConsoleInputStream.read(Console.java:303) at jline.AnsiWindowsTerminal.readCharacter(AnsiWindowsTerminal.java:40) at jline.WindowsTerminal.readVirtualKey(WindowsTerminal.java:359) at jline.ConsoleReader.readVirtualKey(ConsoleReader.java:1504) at jline.ConsoleReader.readBinding(ConsoleReader.java:674) at jline.ConsoleReader.readLine(ConsoleReader.java:514) at jline.ConsoleReader.readLine(ConsoleReader.java:468) at org.apache.felix.karaf.shell.console.jline.Console.run(Console.java:169) at java.lang.Thread.run(Thread.java:619) Locked ownable synchronizers: - None "pool-2-thread-3" prio=6 tid=0x04522c00 nid=0xf7c waiting on condition [0x04f9f000..0x04f9fc94] java.lang.Thread.State: WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x202a6220> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject) at ja

    Read the article

  • How to write a generic service in WCF

    - by rezaxp
    In one of my recent projects I needed a generic service as a facade to handle General activities such as CRUD.Therefor I searched as Many as I could but there was no Idea on generic services so I tried to figure it out by my self.Finally,I found a way :Create a generic contract as below :[ServiceContract] public interface IEntityReadService<TEntity>         where TEntity : EntityBase, new()     {         [OperationContract(Name = "Get")]         TEntity Get(Int64 Id);         [OperationContract(Name = "GetAll")]         List<TEntity> GetAll();         [OperationContract(Name = "GetAllPaged")]         List<TEntity> GetAll(int pageSize, int currentPageIndex, ref int totalRecords);         List<TEntity> GetAll(string whereClause, string orderBy, int pageSize, int currentPageIndex, ref int totalRecords);            }then create your service class :  public class GenericService<TEntity> :IEntityReadService<TEntity> where TEntity : EntityBase, new() {#region Implementation of IEntityReadService<TEntity>         public TEntity Get(long Id)         {             return BusinessController.Get(Id);         }         public List<TEntity> GetAll()         {             try             {                 return BusinessController.GetAll().ToList();             }             catch (Exception ex)             {                                  throw;             }                      }         public List<TEntity> GetAll(int pageSize, int currentPageIndex, ref int totalRecords)         {             return                 BusinessController.GetAll(pageSize, currentPageIndex, ref totalRecords).ToList();         }         public List<TEntity> GetAll(string whereClause, string orderBy, int pageSize, int currentPageIndex, ref int totalRecords)         {             return                 BusinessController.GetAll(pageSize, currentPageIndex, ref totalRecords, whereClause, orderBy).ToList();         }         #endregion} Then, set your EndPoint configuration in this way :<endpoint address="myAddress" binding="basicHttpBinding" bindingConfiguration="myBindingConfiguration1" contract="Contracts.IEntityReadService`1[[Entities.mySampleEntity, Entities]], Service.Contracts" />

    Read the article

  • Good book for improving c# skills?

    - by JMarsch
    Hello: I was asked to recommend a good book for a mid-level experienced developer who wants to improve their coding skills (c# developer). I was thinking about: Code Complete: http://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/ref=sr_1_1?ie=UTF8&qid=1291221928&sr=8-1 The Pragmatic Programmer: http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X/ref=sr_1_3?ie=UTF8&qid=1291221928&sr=8-3 or Effective C#: http://www.amazon.com/Effective-Covers-4-0-Specific-Development/dp/0321658701/ref=sr_1_1?s=books&ie=UTF8&qid=1291222038&sr=1-1 What do you think about those? Any other suggestions?

    Read the article

  • A ToDynamic() Extension Method For Fluent Reflection

    - by Dixin
    Recently I needed to demonstrate some code with reflection, but I felt it inconvenient and tedious. To simplify the reflection coding, I created a ToDynamic() extension method. The source code can be downloaded from here. Problem One example for complex reflection is in LINQ to SQL. The DataContext class has a property Privider, and this Provider has an Execute() method, which executes the query expression and returns the result. Assume this Execute() needs to be invoked to query SQL Server database, then the following code will be expected: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // Executes the query. Here reflection is required, // because Provider, Execute(), and ReturnValue are not public members. IEnumerable<Product> results = database.Provider.Execute(query.Expression).ReturnValue; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } Of course, this code cannot compile. And, no one wants to write code like this. Again, this is just an example of complex reflection. using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider PropertyInfo providerProperty = database.GetType().GetProperty( "Provider", BindingFlags.NonPublic | BindingFlags.GetProperty | BindingFlags.Instance); object provider = providerProperty.GetValue(database, null); // database.Provider.Execute(query.Expression) // Here GetMethod() cannot be directly used, // because Execute() is a explicitly implemented interface method. Assembly assembly = Assembly.Load("System.Data.Linq"); Type providerType = assembly.GetTypes().SingleOrDefault( type => type.FullName == "System.Data.Linq.Provider.IProvider"); InterfaceMapping mapping = provider.GetType().GetInterfaceMap(providerType); MethodInfo executeMethod = mapping.InterfaceMethods.Single(method => method.Name == "Execute"); IExecuteResult executeResult = executeMethod.Invoke(provider, new object[] { query.Expression }) as IExecuteResult; // database.Provider.Execute(query.Expression).ReturnValue IEnumerable<Product> results = executeResult.ReturnValue as IEnumerable<Product>; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } This may be not straight forward enough. So here a solution will implement fluent reflection with a ToDynamic() extension method: IEnumerable<Product> results = database.ToDynamic() // Starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue; C# 4.0 dynamic In this kind of scenarios, it is easy to have dynamic in mind, which enables developer to write whatever code after a dot: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider dynamic dynamicDatabase = database; dynamic results = dynamicDatabase.Provider.Execute(query).ReturnValue; } This throws a RuntimeBinderException at runtime: 'System.Data.Linq.DataContext.Provider' is inaccessible due to its protection level. Here dynamic is able find the specified member. So the next thing is just writing some custom code to access the found member. .NET 4.0 DynamicObject, and DynamicWrapper<T> Where to put the custom code for dynamic? The answer is DynamicObject’s derived class. I first heard of DynamicObject from Anders Hejlsberg's video in PDC2008. It is very powerful, providing useful virtual methods to be overridden, like: TryGetMember() TrySetMember() TryInvokeMember() etc.  (In 2008 they are called GetMember, SetMember, etc., with different signature.) For example, if dynamicDatabase is a DynamicObject, then the following code: dynamicDatabase.Provider will invoke dynamicDatabase.TryGetMember() to do the actual work, where custom code can be put into. Now create a type to inherit DynamicObject: public class DynamicWrapper<T> : DynamicObject { private readonly bool _isValueType; private readonly Type _type; private T _value; // Not readonly, for value type scenarios. public DynamicWrapper(ref T value) // Uses ref in case of value type. { if (value == null) { throw new ArgumentNullException("value"); } this._value = value; this._type = value.GetType(); this._isValueType = this._type.IsValueType; } public override bool TryGetMember(GetMemberBinder binder, out object result) { // Searches in current type's public and non-public properties. PropertyInfo property = this._type.GetTypeProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in explicitly implemented properties for interface. MethodInfo method = this._type.GetInterfaceMethod(string.Concat("get_", binder.Name), null); if (method != null) { result = method.Invoke(this._value, null).ToDynamic(); return true; } // Searches in current type's public and non-public fields. FieldInfo field = this._type.GetTypeField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // Searches in base type's public and non-public properties. property = this._type.GetBaseProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in base type's public and non-public fields. field = this._type.GetBaseField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // The specified member is not found. result = null; return false; } // Other overridden methods are not listed. } In the above code, GetTypeProperty(), GetInterfaceMethod(), GetTypeField(), GetBaseProperty(), and GetBaseField() are extension methods for Type class. For example: internal static class TypeExtensions { internal static FieldInfo GetBaseField(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeField(name) ?? @base.GetBaseField(name); } internal static PropertyInfo GetBaseProperty(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeProperty(name) ?? @base.GetBaseProperty(name); } internal static MethodInfo GetInterfaceMethod(this Type type, string name, params object[] args) { return type.GetInterfaces().Select(type.GetInterfaceMap).SelectMany(mapping => mapping.TargetMethods) .FirstOrDefault( method => method.Name.Split('.').Last().Equals(name, StringComparison.Ordinal) && method.GetParameters().Count() == args.Length && method.GetParameters().Select( (parameter, index) => parameter.ParameterType.IsAssignableFrom(args[index].GetType())).Aggregate( true, (a, b) => a && b)); } internal static FieldInfo GetTypeField(this Type type, string name) { return type.GetFields( BindingFlags.GetField | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( field => field.Name.Equals(name, StringComparison.Ordinal)); } internal static PropertyInfo GetTypeProperty(this Type type, string name) { return type.GetProperties( BindingFlags.GetProperty | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( property => property.Name.Equals(name, StringComparison.Ordinal)); } // Other extension methods are not listed. } So now, when invoked, TryGetMember() searches the specified member and invoke it. The code can be written like this: dynamic dynamicDatabase = new DynamicWrapper<NorthwindDataContext>(ref database); dynamic dynamicReturnValue = dynamicDatabase.Provider.Execute(query.Expression).ReturnValue; This greatly simplified reflection. ToDynamic() and fluent reflection To make it even more straight forward, A ToDynamic() method is provided: public static class DynamicWrapperExtensions { public static dynamic ToDynamic<T>(this T value) { return new DynamicWrapper<T>(ref value); } } and a ToStatic() method is provided to unwrap the value: public class DynamicWrapper<T> : DynamicObject { public T ToStatic() { return this._value; } } In the above TryGetMember() method, please notice it does not output the member’s value, but output a wrapped member value (that is, memberValue.ToDynamic()). This is very important to make the reflection fluent. Now the code becomes: IEnumerable<Product> results = database.ToDynamic() // Here starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue .ToStatic(); // Unwraps to get the static value. With the help of TryConvert(): public class DynamicWrapper<T> : DynamicObject { public override bool TryConvert(ConvertBinder binder, out object result) { result = this._value; return true; } } ToStatic() can be omitted: IEnumerable<Product> results = database.ToDynamic() .Provider.Execute(query.Expression).ReturnValue; // Automatically converts to expected static value. Take a look at the reflection code at the beginning of this post again. Now it is much much simplified! Special scenarios In 90% of the scenarios ToDynamic() is enough. But there are some special scenarios. Access static members Using extension method ToDynamic() for accessing static members does not make sense. Instead, DynamicWrapper<T> has a parameterless constructor to handle these scenarios: public class DynamicWrapper<T> : DynamicObject { public DynamicWrapper() // For static. { this._type = typeof(T); this._isValueType = this._type.IsValueType; } } The reflection code should be like this: dynamic wrapper = new DynamicWrapper<StaticClass>(); int value = wrapper._value; int result = wrapper.PrivateMethod(); So accessing static member is also simple, and fluent of course. Change instances of value types Value type is much more complex. The main problem is, value type is copied when passing to a method as a parameter. This is why ref keyword is used for the constructor. That is, if a value type instance is passed to DynamicWrapper<T>, the instance itself will be stored in this._value of DynamicWrapper<T>. Without the ref keyword, when this._value is changed, the value type instance itself does not change. Consider FieldInfo.SetValue(). In the value type scenarios, invoking FieldInfo.SetValue(this._value, value) does not change this._value, because it changes the copy of this._value. I searched the Web and found a solution for setting the value of field: internal static class FieldInfoExtensions { internal static void SetValue<T>(this FieldInfo field, ref T obj, object value) { if (typeof(T).IsValueType) { field.SetValueDirect(__makeref(obj), value); // For value type. } else { field.SetValue(obj, value); // For reference type. } } } Here __makeref is a undocumented keyword of C#. But method invocation has problem. This is the source code of TryInvokeMember(): public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (binder == null) { throw new ArgumentNullException("binder"); } MethodInfo method = this._type.GetTypeMethod(binder.Name, args) ?? this._type.GetInterfaceMethod(binder.Name, args) ?? this._type.GetBaseMethod(binder.Name, args); if (method != null) { // Oops! // If the returnValue is a struct, it is copied to heap. object resultValue = method.Invoke(this._value, args); // And result is a wrapper of that copied struct. result = new DynamicWrapper<object>(ref resultValue); return true; } result = null; return false; } If the returned value is of value type, it will definitely copied, because MethodInfo.Invoke() does return object. If changing the value of the result, the copied struct is changed instead of the original struct. And so is the property and index accessing. They are both actually method invocation. For less confusion, setting property and index are not allowed on struct. Conclusions The DynamicWrapper<T> provides a simplified solution for reflection programming. It works for normal classes (reference types), accessing both instance and static members. In most of the scenarios, just remember to invoke ToDynamic() method, and access whatever you want: StaticType result = someValue.ToDynamic()._field.Method().Property[index]; In some special scenarios which requires changing the value of a struct (value type), this DynamicWrapper<T> does not work perfectly. Only changing struct’s field value is supported. The source code can be downloaded from here, including a few unit test code.

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >