Search Results

Search found 9338 results on 374 pages for 'fedora 15'.

Page 90/374 | < Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Node.js Adventure - Host Node.js on Windows Azure Worker Role

    - by Shaun
    In my previous post I demonstrated about how to develop and deploy a Node.js application on Windows Azure Web Site (a.k.a. WAWS). WAWS is a new feature in Windows Azure platform. Since it’s low-cost, and it provides IIS and IISNode components so that we can host our Node.js application though Git, FTP and WebMatrix without any configuration and component installation. But sometimes we need to use the Windows Azure Cloud Service (a.k.a. WACS) and host our Node.js on worker role. Below are some benefits of using worker role. - WAWS leverages IIS and IISNode to host Node.js application, which runs in x86 WOW mode. It reduces the performance comparing with x64 in some cases. - WACS worker role does not need IIS, hence there’s no restriction of IIS, such as 8000 concurrent requests limitation. - WACS provides more flexibility and controls to the developers. For example, we can RDP to the virtual machines of our worker role instances. - WACS provides the service configuration features which can be changed when the role is running. - WACS provides more scaling capability than WAWS. In WAWS we can have at most 3 reserved instances per web site while in WACS we can have up to 20 instances in a subscription. - Since when using WACS worker role we starts the node by ourselves in a process, we can control the input, output and error stream. We can also control the version of Node.js.   Run Node.js in Worker Role Node.js can be started by just having its execution file. This means in Windows Azure, we can have a worker role with the “node.exe” and the Node.js source files, then start it in Run method of the worker role entry class. Let’s create a new windows azure project in Visual Studio and add a new worker role. Since we need our worker role execute the “node.exe” with our application code we need to add the “node.exe” into our project. Right click on the worker role project and add an existing item. By default the Node.js will be installed in the “Program Files\nodejs” folder so we can navigate there and add the “node.exe”. Then we need to create the entry code of Node.js. In WAWS the entry file must be named “server.js”, which is because it’s hosted by IIS and IISNode and IISNode only accept “server.js”. But here as we control everything we can choose any files as the entry code. For example, I created a new JavaScript file named “index.js” in project root. Since we created a C# Windows Azure project we cannot create a JavaScript file from the context menu “Add new item”. We have to create a text file, and then rename it to JavaScript extension. After we added these two files we should set their “Copy to Output Directory” property to “Copy Always”, or “Copy if Newer”. Otherwise they will not be involved in the package when deployed. Let’s paste a very simple Node.js code in the “index.js” as below. As you can see I created a web server listening at port 12345. 1: var http = require("http"); 2: var port = 12345; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then we need to start “node.exe” with this file when our worker role was started. This can be done in its Run method. I found the Node.js and entry JavaScript file name, and then create a new process to run it. Our worker role will wait for the process to be exited. If everything is OK once our web server was opened the process will be there listening for incoming requests, and should not be terminated. The code in worker role would be like this. 1: public override void Run() 2: { 3: // This is a sample worker implementation. Replace with your logic. 4: Trace.WriteLine("NodejsHost entry point called", "Information"); 5:  6: // retrieve the node.exe and entry node.js source code file name. 7: var node = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot\node.exe"); 8: var js = "index.js"; 9:  10: // prepare the process starting of node.exe 11: var info = new ProcessStartInfo(node, js) 12: { 13: CreateNoWindow = false, 14: ErrorDialog = true, 15: WindowStyle = ProcessWindowStyle.Normal, 16: UseShellExecute = false, 17: WorkingDirectory = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot") 18: }; 19: Trace.WriteLine(string.Format("{0} {1}", node, js), "Information"); 20:  21: // start the node.exe with entry code and wait for exit 22: var process = Process.Start(info); 23: process.WaitForExit(); 24: } Then we can run it locally. In the computer emulator UI the worker role started and it executed the Node.js, then Node.js windows appeared. Open the browser to verify the website hosted by our worker role. Next let’s deploy it to azure. But we need some additional steps. First, we need to create an input endpoint. By default there’s no endpoint defined in a worker role. So we will open the role property window in Visual Studio, create a new input TCP endpoint to the port we want our website to use. In this case I will use 80. Even though we created a web server we should add a TCP endpoint of the worker role, since Node.js always listen on TCP instead of HTTP. And then changed the “index.js”, let our web server listen on 80. 1: var http = require("http"); 2: var port = 80; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then publish it to Windows Azure. And then in browser we can see our Node.js website was running on WACS worker role. We may encounter an error if we tried to run our Node.js website on 80 port at local emulator. This is because the compute emulator registered 80 and map the 80 endpoint to 81. But our Node.js cannot detect this operation. So when it tried to listen on 80 it will failed since 80 have been used.   Use NPM Modules When we are using WAWS to host Node.js, we can simply install modules we need, and then just publish or upload all files to WAWS. But if we are using WACS worker role, we have to do some extra steps to make the modules work. Assuming that we plan to use “express” in our application. Firstly of all we should download and install this module through NPM command. But after the install finished, they are just in the disk but not included in the worker role project. If we deploy the worker role right now the module will not be packaged and uploaded to azure. Hence we need to add them to the project. On solution explorer window click the “Show all files” button, select the “node_modules” folder and in the context menu select “Include In Project”. But that not enough. We also need to make all files in this module to “Copy always” or “Copy if newer”, so that they can be uploaded to azure with the “node.exe” and “index.js”. This is painful step since there might be many files in a module. So I created a small tool which can update a C# project file, make its all items as “Copy always”. The code is very simple. 1: static void Main(string[] args) 2: { 3: if (args.Length < 1) 4: { 5: Console.WriteLine("Usage: copyallalways [project file]"); 6: return; 7: } 8:  9: var proj = args[0]; 10: File.Copy(proj, string.Format("{0}.bak", proj)); 11:  12: var xml = new XmlDocument(); 13: xml.Load(proj); 14: var nsManager = new XmlNamespaceManager(xml.NameTable); 15: nsManager.AddNamespace("pf", "http://schemas.microsoft.com/developer/msbuild/2003"); 16:  17: // add the output setting to copy always 18: var contentNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:Content", nsManager); 19: UpdateNodes(contentNodes, xml, nsManager); 20: var noneNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:None", nsManager); 21: UpdateNodes(noneNodes, xml, nsManager); 22: xml.Save(proj); 23:  24: // remove the namespace attributes 25: var content = xml.InnerXml.Replace("<CopyToOutputDirectory xmlns=\"\">", "<CopyToOutputDirectory>"); 26: xml.LoadXml(content); 27: xml.Save(proj); 28: } 29:  30: static void UpdateNodes(XmlNodeList nodes, XmlDocument xml, XmlNamespaceManager nsManager) 31: { 32: foreach (XmlNode node in nodes) 33: { 34: var copyToOutputDirectoryNode = node.SelectSingleNode("pf:CopyToOutputDirectory", nsManager); 35: if (copyToOutputDirectoryNode == null) 36: { 37: var n = xml.CreateNode(XmlNodeType.Element, "CopyToOutputDirectory", null); 38: n.InnerText = "Always"; 39: node.AppendChild(n); 40: } 41: else 42: { 43: if (string.Compare(copyToOutputDirectoryNode.InnerText, "Always", true) != 0) 44: { 45: copyToOutputDirectoryNode.InnerText = "Always"; 46: } 47: } 48: } 49: } Please be careful when use this tool. I created only for demo so do not use it directly in a production environment. Unload the worker role project, execute this tool with the worker role project file name as the command line argument, it will set all items as “Copy always”. Then reload this worker role project. Now let’s change the “index.js” to use express. 1: var express = require("express"); 2: var app = express(); 3:  4: var port = 80; 5:  6: app.configure(function () { 7: }); 8:  9: app.get("/", function (req, res) { 10: res.send("Hello Node.js!"); 11: }); 12:  13: app.get("/User/:id", function (req, res) { 14: var id = req.params.id; 15: res.json({ 16: "id": id, 17: "name": "user " + id, 18: "company": "IGT" 19: }); 20: }); 21:  22: app.listen(port); Finally let’s publish it and have a look in browser.   Use Windows Azure SQL Database We can use Windows Azure SQL Database (a.k.a. WACD) from Node.js as well on worker role hosting. Since we can control the version of Node.js, here we can use x64 version of “node-sqlserver” now. This is better than if we host Node.js on WAWS since it only support x86. Just install the “node-sqlserver” module from NPM, copy the “sqlserver.node” from “Build\Release” folder to “Lib” folder. Include them in worker role project and run my tool to make them to “Copy always”. Finally update the “index.js” to use WASD. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:{SERVER NAME}.database.windows.net,1433;Database={DATABASE NAME};Uid={LOGIN}@{SERVER NAME};Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Publish to azure and now we can see our Node.js is working with WASD through x64 version “node-sqlserver”.   Summary In this post I demonstrated how to host our Node.js in Windows Azure Cloud Service worker role. By using worker role we can control the version of Node.js, as well as the entry code. And it’s possible to do some pre jobs before the Node.js application started. It also removed the IIS and IISNode limitation. I personally recommended to use worker role as our Node.js hosting. But there are some problem if you use the approach I mentioned here. The first one is, we need to set all JavaScript files and module files as “Copy always” or “Copy if newer” manually. The second one is, in this way we cannot retrieve the cloud service configuration information. For example, we defined the endpoint in worker role property but we also specified the listening port in Node.js hardcoded. It should be changed that our Node.js can retrieve the endpoint. But I can tell you it won’t be working here. In the next post I will describe another way to execute the “node.exe” and Node.js application, so that we can get the cloud service configuration in Node.js. I will also demonstrate how to use Windows Azure Storage from Node.js by using the Windows Azure Node.js SDK.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Daily tech links for .net and related technologies - Apr 26-28, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - Apr 26-28, 2010 Web Development MVC: Unit Testing Action Filters - Donn ASP.NET MVC 2: Ninja Black Belt Tips - Scott Hanselman Turn on Compile-time View Checking for ASP.NET MVC Projects in TFS Build 2010 - Jim Lamb Web Design List of 25+ New tags introduced in HTML 5 - techfreakstuff 15 CSS Habits to Develop for Frustration-Free Coding - noupe Silverlight, WPF & RIA Essential Silverlight and WPF Skills: The UI Thread, Dispatchers, Background...(read more)

    Read the article

  • Errors when installing Open Office

    - by user109036
    I followed the first set of instructions on this page to install Open Office: How to install Open Office? However, the last step which says to change the CHMOD of a folder, I got an error saying that the directory does not exist. Open Office now appears in my Ubuntu start menu, but clicking on it does nothing. I tried a reboot. Below is what I could copy from my terminal. I am running the latest Ubuntu. I have not uninstalled Libreoffice as suggested somewhere. The reason is that in the Ubuntu software centre, Libre office appears to be made up of several components and I don't know which ones to remove (or all maybe?). They are Libreoffice Draw, Math, Writer, Calc. After this operation, 480 MB of additional disk space will be used. Do you want to continue [Y/n]? y Get:1 http://gb.archive.ubuntu.com/ubuntu/ quantal-updates/universe openjdk-6-jre-lib all 6b24-1.11.5-0ubuntu1~12.10.1 [6,135 kB] Get:2 http://ppa.launchpad.net/upubuntu-com/office/ubuntu/ quantal/main openoffice amd64 3.4~oneiric [321 MB] Get:3 http://gb.archive.ubuntu.com/ubuntu/ quantal/main ca-certificates-java all 20120721 [13.2 kB] Get:4 http://gb.archive.ubuntu.com/ubuntu/ quantal/main tzdata-java all 2012e-0ubuntu2 [140 kB] Get:5 http://gb.archive.ubuntu.com/ubuntu/ quantal/main java-common all 0.43ubuntu3 [61.7 kB] Get:6 http://gb.archive.ubuntu.com/ubuntu/ quantal-updates/universe openjdk-6-jre-headless amd64 6b24-1.11.5-0ubuntu1~12.10.1 [25.4 MB] Get:7 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libgif4 amd64 4.1.6-9.1ubuntu1 [31.3 kB] Get:8 http://gb.archive.ubuntu.com/ubuntu/ quantal-updates/universe openjdk-6-jre amd64 6b24-1.11.5-0ubuntu1~12.10.1 [234 kB] Get:9 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libatk-wrapper-java all 0.30.4-0ubuntu4 [29.8 kB] Get:10 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libatk-wrapper-java-jni amd64 0.30.4-0ubuntu4 [31.1 kB] Get:11 http://gb.archive.ubuntu.com/ubuntu/ quantal/main xorg-sgml-doctools all 1:1.10-1 [12.0 kB] Get:12 http://gb.archive.ubuntu.com/ubuntu/ quantal/main x11proto-core-dev all 7.0.23-1 [744 kB] Get:13 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libice-dev amd64 2:1.0.8-2 [57.6 kB] Get:14 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libpthread-stubs0 amd64 0.3-3 [3,258 B] Get:15 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libpthread-stubs0-dev amd64 0.3-3 [2,866 B] Get:16 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libsm-dev amd64 2:1.2.1-2 [19.9 kB] Get:17 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxau-dev amd64 1:1.0.7-1 [10.2 kB] Get:18 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxdmcp-dev amd64 1:1.1.1-1 [26.9 kB] Get:19 http://gb.archive.ubuntu.com/ubuntu/ quantal/main x11proto-input-dev all 2.2-1 [133 kB] Get:20 http://gb.archive.ubuntu.com/ubuntu/ quantal/main x11proto-kb-dev all 1.0.6-2 [269 kB] Get:21 http://gb.archive.ubuntu.com/ubuntu/ quantal/main xtrans-dev all 1.2.7-1 [84.3 kB] Get:22 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxcb1-dev amd64 1.8.1-1ubuntu1 [82.6 kB] Get:23 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libx11-dev amd64 2:1.5.0-1 [912 kB] Get:24 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libx11-doc all 2:1.5.0-1 [2,460 kB] Get:25 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxt-dev amd64 1:1.1.3-1 [492 kB] Get:26 http://gb.archive.ubuntu.com/ubuntu/ quantal/main ttf-dejavu-extra all 2.33-2ubuntu1 [3,420 kB] Get:27 http://gb.archive.ubuntu.com/ubuntu/ quantal-updates/universe icedtea-6-jre-cacao amd64 6b24-1.11.5-0ubuntu1~12.10.1 [417 kB] Get:28 http://gb.archive.ubuntu.com/ubuntu/ quantal-updates/universe icedtea-6-jre-jamvm amd64 6b24-1.11.5-0ubuntu1~12.10.1 [581 kB] Get:29 http://gb.archive.ubuntu.com/ubuntu/ quantal-updates/main icedtea-netx-common all 1.3-1ubuntu1.1 [617 kB] Get:30 http://gb.archive.ubuntu.com/ubuntu/ quantal-updates/main icedtea-netx amd64 1.3-1ubuntu1.1 [16.2 kB] Get:31 http://gb.archive.ubuntu.com/ubuntu/ quantal-updates/universe openjdk-6-jdk amd64 6b24-1.11.5-0ubuntu1~12.10.1 [11.1 MB] Fetched 374 MB in 9min 18s (671 kB/s) Extract templates from packages: 100% Selecting previously unselected package openjdk-6-jre-lib. (Reading database ... 143191 files and directories currently installed.) Unpacking openjdk-6-jre-lib (from .../openjdk-6-jre-lib_6b24-1.11.5-0ubuntu1~12.10.1_all.deb) ... Selecting previously unselected package ca-certificates-java. Unpacking ca-certificates-java (from .../ca-certificates-java_20120721_all.deb) ... Selecting previously unselected package tzdata-java. Unpacking tzdata-java (from .../tzdata-java_2012e-0ubuntu2_all.deb) ... Selecting previously unselected package java-common. Unpacking java-common (from .../java-common_0.43ubuntu3_all.deb) ... Selecting previously unselected package openjdk-6-jre-headless:amd64. Unpacking openjdk-6-jre-headless:amd64 (from .../openjdk-6-jre-headless_6b24-1.11.5-0ubuntu1~12.10.1_amd64.deb) ... Selecting previously unselected package libgif4:amd64. Unpacking libgif4:amd64 (from .../libgif4_4.1.6-9.1ubuntu1_amd64.deb) ... Selecting previously unselected package openjdk-6-jre:amd64. Unpacking openjdk-6-jre:amd64 (from .../openjdk-6-jre_6b24-1.11.5-0ubuntu1~12.10.1_amd64.deb) ... Selecting previously unselected package libatk-wrapper-java. Unpacking libatk-wrapper-java (from .../libatk-wrapper-java_0.30.4-0ubuntu4_all.deb) ... Selecting previously unselected package libatk-wrapper-java-jni:amd64. Unpacking libatk-wrapper-java-jni:amd64 (from .../libatk-wrapper-java-jni_0.30.4-0ubuntu4_amd64.deb) ... Selecting previously unselected package xorg-sgml-doctools. Unpacking xorg-sgml-doctools (from .../xorg-sgml-doctools_1%3a1.10-1_all.deb) ... Selecting previously unselected package x11proto-core-dev. Unpacking x11proto-core-dev (from .../x11proto-core-dev_7.0.23-1_all.deb) ... Selecting previously unselected package libice-dev:amd64. Unpacking libice-dev:amd64 (from .../libice-dev_2%3a1.0.8-2_amd64.deb) ... Selecting previously unselected package libpthread-stubs0:amd64. Unpacking libpthread-stubs0:amd64 (from .../libpthread-stubs0_0.3-3_amd64.deb) ... Selecting previously unselected package libpthread-stubs0-dev:amd64. Unpacking libpthread-stubs0-dev:amd64 (from .../libpthread-stubs0-dev_0.3-3_amd64.deb) ... Selecting previously unselected package libsm-dev:amd64. Unpacking libsm-dev:amd64 (from .../libsm-dev_2%3a1.2.1-2_amd64.deb) ... Selecting previously unselected package libxau-dev:amd64. Unpacking libxau-dev:amd64 (from .../libxau-dev_1%3a1.0.7-1_amd64.deb) ... Selecting previously unselected package libxdmcp-dev:amd64. Unpacking libxdmcp-dev:amd64 (from .../libxdmcp-dev_1%3a1.1.1-1_amd64.deb) ... Selecting previously unselected package x11proto-input-dev. Unpacking x11proto-input-dev (from .../x11proto-input-dev_2.2-1_all.deb) ... Selecting previously unselected package x11proto-kb-dev. Unpacking x11proto-kb-dev (from .../x11proto-kb-dev_1.0.6-2_all.deb) ... Selecting previously unselected package xtrans-dev. Unpacking xtrans-dev (from .../xtrans-dev_1.2.7-1_all.deb) ... Selecting previously unselected package libxcb1-dev:amd64. Unpacking libxcb1-dev:amd64 (from .../libxcb1-dev_1.8.1-1ubuntu1_amd64.deb) ... Selecting previously unselected package libx11-dev:amd64. Unpacking libx11-dev:amd64 (from .../libx11-dev_2%3a1.5.0-1_amd64.deb) ... Selecting previously unselected package libx11-doc. Unpacking libx11-doc (from .../libx11-doc_2%3a1.5.0-1_all.deb) ... Selecting previously unselected package libxt-dev:amd64. Unpacking libxt-dev:amd64 (from .../libxt-dev_1%3a1.1.3-1_amd64.deb) ... Selecting previously unselected package ttf-dejavu-extra. Unpacking ttf-dejavu-extra (from .../ttf-dejavu-extra_2.33-2ubuntu1_all.deb) ... Selecting previously unselected package icedtea-6-jre-cacao:amd64. Unpacking icedtea-6-jre-cacao:amd64 (from .../icedtea-6-jre-cacao_6b24-1.11.5-0ubuntu1~12.10.1_amd64.deb) ... Selecting previously unselected package icedtea-6-jre-jamvm:amd64. Unpacking icedtea-6-jre-jamvm:amd64 (from .../icedtea-6-jre-jamvm_6b24-1.11.5-0ubuntu1~12.10.1_amd64.deb) ... Selecting previously unselected package icedtea-netx-common. Unpacking icedtea-netx-common (from .../icedtea-netx-common_1.3-1ubuntu1.1_all.deb) ... Selecting previously unselected package icedtea-netx:amd64. Unpacking icedtea-netx:amd64 (from .../icedtea-netx_1.3-1ubuntu1.1_amd64.deb) ... Selecting previously unselected package openjdk-6-jdk:amd64. Unpacking openjdk-6-jdk:amd64 (from .../openjdk-6-jdk_6b24-1.11.5-0ubuntu1~12.10.1_amd64.deb) ... Selecting previously unselected package openoffice. Unpacking openoffice (from .../openoffice_3.4~oneiric_amd64.deb) ... Processing triggers for doc-base ... Processing 2 added doc-base files... Processing triggers for man-db ... Processing triggers for desktop-file-utils ... Processing triggers for bamfdaemon ... Rebuilding /usr/share/applications/bamf.index... Processing triggers for gnome-menus ... Processing triggers for hicolor-icon-theme ... Processing triggers for fontconfig ... Processing triggers for gnome-icon-theme ... Processing triggers for shared-mime-info ... Setting up tzdata-java (2012e-0ubuntu2) ... Setting up java-common (0.43ubuntu3) ... Setting up libgif4:amd64 (4.1.6-9.1ubuntu1) ... Setting up xorg-sgml-doctools (1:1.10-1) ... Setting up x11proto-core-dev (7.0.23-1) ... Setting up libice-dev:amd64 (2:1.0.8-2) ... Setting up libpthread-stubs0:amd64 (0.3-3) ... Setting up libpthread-stubs0-dev:amd64 (0.3-3) ... Setting up libsm-dev:amd64 (2:1.2.1-2) ... Setting up libxau-dev:amd64 (1:1.0.7-1) ... Setting up libxdmcp-dev:amd64 (1:1.1.1-1) ... Setting up x11proto-input-dev (2.2-1) ... Setting up x11proto-kb-dev (1.0.6-2) ... Setting up xtrans-dev (1.2.7-1) ... Setting up libxcb1-dev:amd64 (1.8.1-1ubuntu1) ... Setting up libx11-dev:amd64 (2:1.5.0-1) ... Setting up libx11-doc (2:1.5.0-1) ... Setting up libxt-dev:amd64 (1:1.1.3-1) ... Setting up ttf-dejavu-extra (2.33-2ubuntu1) ... Setting up icedtea-netx-common (1.3-1ubuntu1.1) ... Setting up openjdk-6-jre-lib (6b24-1.11.5-0ubuntu1~12.10.1) ... Setting up openjdk-6-jre-headless:amd64 (6b24-1.11.5-0ubuntu1~12.10.1) ... update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java to provide /usr/bin/java (java) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/keytool to provide /usr/bin/keytool (keytool) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/pack200 to provide /usr/bin/pack200 (pack200) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/rmid to provide /usr/bin/rmid (rmid) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/rmiregistry to provide /usr/bin/rmiregistry (rmiregistry) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/unpack200 to provide /usr/bin/unpack200 (unpack200) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/orbd to provide /usr/bin/orbd (orbd) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/servertool to provide /usr/bin/servertool (servertool) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/tnameserv to provide /usr/bin/tnameserv (tnameserv) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/lib/jexec to provide /usr/bin/jexec (jexec) in auto mode Setting up ca-certificates-java (20120721) ... Adding debian:Deutsche_Telekom_Root_CA_2.pem Adding debian:Comodo_Trusted_Services_root.pem Adding debian:Certum_Trusted_Network_CA.pem Adding debian:thawte_Primary_Root_CA_-_G2.pem Adding debian:UTN_USERFirst_Hardware_Root_CA.pem Adding debian:AddTrust_Low-Value_Services_Root.pem Adding debian:Microsec_e-Szigno_Root_CA.pem Adding debian:SwissSign_Silver_CA_-_G2.pem Adding debian:ComSign_Secured_CA.pem Adding debian:Buypass_Class_2_CA_1.pem Adding debian:Verisign_Class_1_Public_Primary_Certification_Authority_-_G3.pem Adding debian:Certum_Root_CA.pem Adding debian:AddTrust_External_Root.pem Adding debian:Chambers_of_Commerce_Root_-_2008.pem Adding debian:Starfield_Root_Certificate_Authority_-_G2.pem Adding debian:Verisign_Class_1_Public_Primary_Certification_Authority_-_G2.pem Adding debian:Visa_eCommerce_Root.pem Adding debian:Digital_Signature_Trust_Co._Global_CA_3.pem Adding debian:AC_Raíz_Certicámara_S.A..pem Adding debian:NetLock_Arany_=Class_Gold=_Fotanúsítvány.pem Adding debian:Taiwan_GRCA.pem Adding debian:Camerfirma_Chambers_of_Commerce_Root.pem Adding debian:Juur-SK.pem Adding debian:Entrust.net_Premium_2048_Secure_Server_CA.pem Adding debian:XRamp_Global_CA_Root.pem Adding debian:Security_Communication_RootCA2.pem Adding debian:AddTrust_Qualified_Certificates_Root.pem Adding debian:NetLock_Qualified_=Class_QA=_Root.pem Adding debian:TC_TrustCenter_Class_2_CA_II.pem Adding debian:DST_ACES_CA_X6.pem Adding debian:thawte_Primary_Root_CA.pem Adding debian:thawte_Primary_Root_CA_-_G3.pem Adding debian:GeoTrust_Universal_CA_2.pem Adding debian:ACEDICOM_Root.pem Adding debian:Security_Communication_EV_RootCA1.pem Adding debian:America_Online_Root_Certification_Authority_2.pem Adding debian:TC_TrustCenter_Universal_CA_I.pem Adding debian:SwissSign_Platinum_CA_-_G2.pem Adding debian:Global_Chambersign_Root_-_2008.pem Adding debian:SecureSign_RootCA11.pem Adding debian:GeoTrust_Global_CA_2.pem Adding debian:Buypass_Class_3_CA_1.pem Adding debian:Baltimore_CyberTrust_Root.pem Adding debian:UbuntuOne-Go_Daddy_Class_2_CA.pem Adding debian:Equifax_Secure_eBusiness_CA_1.pem Adding debian:SwissSign_Gold_CA_-_G2.pem Adding debian:AffirmTrust_Premium_ECC.pem Adding debian:TC_TrustCenter_Universal_CA_III.pem Adding debian:ca.pem Adding debian:Verisign_Class_3_Public_Primary_Certification_Authority_-_G2.pem Adding debian:NetLock_Express_=Class_C=_Root.pem Adding debian:VeriSign_Class_3_Public_Primary_Certification_Authority_-_G5.pem Adding debian:Firmaprofesional_Root_CA.pem Adding debian:Comodo_Secure_Services_root.pem Adding debian:cacert.org.pem Adding debian:GeoTrust_Primary_Certification_Authority.pem Adding debian:RSA_Security_2048_v3.pem Adding debian:Staat_der_Nederlanden_Root_CA.pem Adding debian:Cybertrust_Global_Root.pem Adding debian:DigiCert_High_Assurance_EV_Root_CA.pem Adding debian:TDC_OCES_Root_CA.pem Adding debian:A-Trust-nQual-03.pem Adding debian:Equifax_Secure_CA.pem Adding debian:Digital_Signature_Trust_Co._Global_CA_1.pem Adding debian:GeoTrust_Global_CA.pem Adding debian:Starfield_Class_2_CA.pem Adding debian:ApplicationCA_-_Japanese_Government.pem Adding debian:Swisscom_Root_CA_1.pem Adding debian:Verisign_Class_2_Public_Primary_Certification_Authority_-_G2.pem Adding debian:Camerfirma_Global_Chambersign_Root.pem Adding debian:QuoVadis_Root_CA_3.pem Adding debian:QuoVadis_Root_CA.pem Adding debian:Comodo_AAA_Services_root.pem Adding debian:ComSign_CA.pem Adding debian:AddTrust_Public_Services_Root.pem Adding debian:DigiCert_Assured_ID_Root_CA.pem Adding debian:UTN_DATACorp_SGC_Root_CA.pem Adding debian:CA_Disig.pem Adding debian:E-Guven_Kok_Elektronik_Sertifika_Hizmet_Saglayicisi.pem Adding debian:GlobalSign_Root_CA_-_R3.pem Adding debian:QuoVadis_Root_CA_2.pem Adding debian:Entrust_Root_Certification_Authority.pem Adding debian:GTE_CyberTrust_Global_Root.pem Adding debian:ValiCert_Class_1_VA.pem Adding debian:Autoridad_de_Certificacion_Firmaprofesional_CIF_A62634068.pem Adding debian:GeoTrust_Primary_Certification_Authority_-_G2.pem Adding debian:spi-ca-2003.pem Adding debian:America_Online_Root_Certification_Authority_1.pem Adding debian:AffirmTrust_Premium.pem Adding debian:Sonera_Class_1_Root_CA.pem Adding debian:Verisign_Class_2_Public_Primary_Certification_Authority_-_G3.pem Adding debian:Certplus_Class_2_Primary_CA.pem Adding debian:TURKTRUST_Certificate_Services_Provider_Root_2.pem Adding debian:Network_Solutions_Certificate_Authority.pem Adding debian:Go_Daddy_Class_2_CA.pem Adding debian:StartCom_Certification_Authority.pem Adding debian:Hongkong_Post_Root_CA_1.pem Adding debian:Hellenic_Academic_and_Research_Institutions_RootCA_2011.pem Adding debian:Thawte_Premium_Server_CA.pem Adding debian:EBG_Elektronik_Sertifika_Hizmet_Saglayicisi.pem Adding debian:TURKTRUST_Certificate_Services_Provider_Root_1.pem Adding debian:NetLock_Business_=Class_B=_Root.pem Adding debian:Microsec_e-Szigno_Root_CA_2009.pem Adding debian:DigiCert_Global_Root_CA.pem Adding debian:VeriSign_Class_3_Public_Primary_Certification_Authority_-_G4.pem Adding debian:IGC_A.pem Adding debian:TWCA_Root_Certification_Authority.pem Adding debian:S-TRUST_Authentication_and_Encryption_Root_CA_2005_PN.pem Adding debian:VeriSign_Universal_Root_Certification_Authority.pem Adding debian:DST_Root_CA_X3.pem Adding debian:Verisign_Class_1_Public_Primary_Certification_Authority.pem Adding debian:Root_CA_Generalitat_Valenciana.pem Adding debian:UTN_USERFirst_Email_Root_CA.pem Adding debian:ssl-cert-snakeoil.pem Adding debian:Starfield_Services_Root_Certificate_Authority_-_G2.pem Adding debian:GeoTrust_Primary_Certification_Authority_-_G3.pem Adding debian:Certinomis_-_Autorité_Racine.pem Adding debian:Verisign_Class_3_Public_Primary_Certification_Authority.pem Adding debian:TDC_Internet_Root_CA.pem Adding debian:UbuntuOne-ValiCert_Class_2_VA.pem Adding debian:AffirmTrust_Commercial.pem Adding debian:spi-cacert-2008.pem Adding debian:Izenpe.com.pem Adding debian:EC-ACC.pem Adding debian:Go_Daddy_Root_Certificate_Authority_-_G2.pem Adding debian:COMODO_ECC_Certification_Authority.pem Adding debian:CNNIC_ROOT.pem Adding debian:NetLock_Notary_=Class_A=_Root.pem Adding debian:Equifax_Secure_eBusiness_CA_2.pem Adding debian:Verisign_Class_3_Public_Primary_Certification_Authority_-_G3.pem Adding debian:Secure_Global_CA.pem Adding debian:UbuntuOne-Go_Daddy_CA.pem Adding debian:GeoTrust_Universal_CA.pem Adding debian:Wells_Fargo_Root_CA.pem Adding debian:Thawte_Server_CA.pem Adding debian:WellsSecure_Public_Root_Certificate_Authority.pem Adding debian:TC_TrustCenter_Class_3_CA_II.pem Adding debian:COMODO_Certification_Authority.pem Adding debian:Equifax_Secure_Global_eBusiness_CA.pem Adding debian:Security_Communication_Root_CA.pem Adding debian:GlobalSign_Root_CA_-_R2.pem Adding debian:TÜBITAK_UEKAE_Kök_Sertifika_Hizmet_Saglayicisi_-_Sürüm_3.pem Adding debian:Verisign_Class_4_Public_Primary_Certification_Authority_-_G3.pem Adding debian:certSIGN_ROOT_CA.pem Adding debian:RSA_Root_Certificate_1.pem Adding debian:ePKI_Root_Certification_Authority.pem Adding debian:Entrust.net_Secure_Server_CA.pem Adding debian:OISTE_WISeKey_Global_Root_GA_CA.pem Adding debian:Sonera_Class_2_Root_CA.pem Adding debian:Certigna.pem Adding debian:AffirmTrust_Networking.pem Adding debian:ValiCert_Class_2_VA.pem Adding debian:GlobalSign_Root_CA.pem Adding debian:Staat_der_Nederlanden_Root_CA_-_G2.pem Adding debian:SecureTrust_CA.pem done. Setting up openjdk-6-jre:amd64 (6b24-1.11.5-0ubuntu1~12.10.1) ... update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/policytool to provide /usr/bin/policytool (policytool) in auto mode Setting up libatk-wrapper-java (0.30.4-0ubuntu4) ... Setting up icedtea-6-jre-cacao:amd64 (6b24-1.11.5-0ubuntu1~12.10.1) ... Setting up icedtea-6-jre-jamvm:amd64 (6b24-1.11.5-0ubuntu1~12.10.1) ... Setting up icedtea-netx:amd64 (1.3-1ubuntu1.1) ... update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/javaws to provide /usr/bin/javaws (javaws) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/itweb-settings to provide /usr/bin/itweb-settings (itweb-settings) in auto mode update-alternatives: using /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/javaws to provide /usr/bin/javaws (javaws) in auto mode update-alternatives: using /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/itweb-settings to provide /usr/bin/itweb-settings (itweb-settings) in auto mode Setting up openjdk-6-jdk:amd64 (6b24-1.11.5-0ubuntu1~12.10.1) ... update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/appletviewer to provide /usr/bin/appletviewer (appletviewer) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/extcheck to provide /usr/bin/extcheck (extcheck) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/idlj to provide /usr/bin/idlj (idlj) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jar to provide /usr/bin/jar (jar) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jarsigner to provide /usr/bin/jarsigner (jarsigner) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/javac to provide /usr/bin/javac (javac) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/javadoc to provide /usr/bin/javadoc (javadoc) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/javah to provide /usr/bin/javah (javah) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/javap to provide /usr/bin/javap (javap) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jconsole to provide /usr/bin/jconsole (jconsole) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jdb to provide /usr/bin/jdb (jdb) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jhat to provide /usr/bin/jhat (jhat) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jinfo to provide /usr/bin/jinfo (jinfo) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jmap to provide /usr/bin/jmap (jmap) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jps to provide /usr/bin/jps (jps) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jrunscript to provide /usr/bin/jrunscript (jrunscript) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jsadebugd to provide /usr/bin/jsadebugd (jsadebugd) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jstack to provide /usr/bin/jstack (jstack) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jstat to provide /usr/bin/jstat (jstat) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/jstatd to provide /usr/bin/jstatd (jstatd) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/native2ascii to provide /usr/bin/native2ascii (native2ascii) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/rmic to provide /usr/bin/rmic (rmic) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/schemagen to provide /usr/bin/schemagen (schemagen) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/serialver to provide /usr/bin/serialver (serialver) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/wsgen to provide /usr/bin/wsgen (wsgen) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/wsimport to provide /usr/bin/wsimport (wsimport) in auto mode update-alternatives: using /usr/lib/jvm/java-6-openjdk-amd64/bin/xjc to provide /usr/bin/xjc (xjc) in auto mode Setting up openoffice (3.4~oneiric) ... Setting up libatk-wrapper-java-jni:amd64 (0.30.4-0ubuntu4) ... Processing triggers for libc-bin ... ldconfig deferred processing now taking place philip@X301-2:~$ sudo apt-get install libxrandr2:i386 libxinerama1:i386 Reading package lists... Done Building dependency tree Reading state information... Done The following package was automatically installed and is no longer required: linux-headers-3.5.0-17 Use 'apt-get autoremove' to remove it. The following extra packages will be installed: gcc-4.7-base:i386 libc6:i386 libgcc1:i386 libx11-6:i386 libxau6:i386 libxcb1:i386 libxdmcp6:i386 libxext6:i386 libxrender1:i386 Suggested packages: glibc-doc:i386 locales:i386 The following NEW packages will be installed gcc-4.7-base:i386 libc6:i386 libgcc1:i386 libx11-6:i386 libxau6:i386 libxcb1:i386 libxdmcp6:i386 libxext6:i386 libxinerama1:i386 libxrandr2:i386 libxrender1:i386 0 upgraded, 11 newly installed, 0 to remove and 93 not upgraded. Need to get 4,936 kB of archives. After this operation, 11.9 MB of additional disk space will be used. Do you want to continue [Y/n]? y Get:1 http://gb.archive.ubuntu.com/ubuntu/ quantal/main gcc-4.7-base i386 4.7.2-2ubuntu1 [15.5 kB] Get:2 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libc6 i386 2.15-0ubuntu20 [3,940 kB] Get:3 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libgcc1 i386 1:4.7.2-2ubuntu1 [53.5 kB] Get:4 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxau6 i386 1:1.0.7-1 [8,582 B] Get:5 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxdmcp6 i386 1:1.1.1-1 [13.1 kB] Get:6 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxcb1 i386 1.8.1-1ubuntu1 [48.7 kB] Get:7 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libx11-6 i386 2:1.5.0-1 [776 kB] Get:8 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxext6 i386 2:1.3.1-2 [33.9 kB] Get:9 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxinerama1 i386 2:1.1.2-1 [8,118 B] Get:10 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxrender1 i386 1:0.9.7-1 [20.1 kB] Get:11 http://gb.archive.ubuntu.com/ubuntu/ quantal/main libxrandr2 i386 2:1.4.0-1 [18.8 kB] Fetched 4,936 kB in 30s (161 kB/s) Preconfiguring packages ... Selecting previously unselected package gcc-4.7-base:i386. (Reading database ... 146005 files and directories currently installed.) Unpacking gcc-4.7-base:i386 (from .../gcc-4.7-base_4.7.2-2ubuntu1_i386.deb) ... Selecting previously unselected package libc6:i386. Unpacking libc6:i386 (from .../libc6_2.15-0ubuntu20_i386.deb) ... Selecting previously unselected package libgcc1:i386. Unpacking libgcc1:i386 (from .../libgcc1_1%3a4.7.2-2ubuntu1_i386.deb) ... Selecting previously unselected package libxau6:i386. Unpacking libxau6:i386 (from .../libxau6_1%3a1.0.7-1_i386.deb) ... Selecting previously unselected package libxdmcp6:i386. Unpacking libxdmcp6:i386 (from .../libxdmcp6_1%3a1.1.1-1_i386.deb) ... Selecting previously unselected package libxcb1:i386. Unpacking libxcb1:i386 (from .../libxcb1_1.8.1-1ubuntu1_i386.deb) ... Selecting previously unselected package libx11-6:i386. Unpacking libx11-6:i386 (from .../libx11-6_2%3a1.5.0-1_i386.deb) ... Selecting previously unselected package libxext6:i386. Unpacking libxext6:i386 (from .../libxext6_2%3a1.3.1-2_i386.deb) ... Selecting previously unselected package libxinerama1:i386. Unpacking libxinerama1:i386 (from .../libxinerama1_2%3a1.1.2-1_i386.deb) ... Selecting previously unselected package libxrender1:i386. Unpacking libxrender1:i386 (from .../libxrender1_1%3a0.9.7-1_i386.deb) ... Selecting previously unselected package libxrandr2:i386. Unpacking libxrandr2:i386 (from .../libxrandr2_2%3a1.4.0-1_i386.deb) ... Setting up gcc-4.7-base:i386 (4.7.2-2ubuntu1) ... Setting up libc6:i386 (2.15-0ubuntu20) ... Setting up libgcc1:i386 (1:4.7.2-2ubuntu1) ... Setting up libxau6:i386 (1:1.0.7-1) ... Setting up libxdmcp6:i386 (1:1.1.1-1) ... Setting up libxcb1:i386 (1.8.1-1ubuntu1) ... Setting up libx11-6:i386 (2:1.5.0-1) ... Setting up libxext6:i386 (2:1.3.1-2) ... Setting up libxinerama1:i386 (2:1.1.2-1) ... Setting up libxrender1:i386 (1:0.9.7-1) ... Setting up libxrandr2:i386 (2:1.4.0-1) ... Processing triggers for libc-bin ... ldconfig deferred processing now taking place $ sudo chmod a+rx /opt/openoffice.org3/share/uno_packages/cache/uno_packages chmod: cannot access `/opt/openoffice.org3/share/uno_packages/cache/uno_packages': No such file or directory

    Read the article

  • Speaking at Microsoft's Duth DevDays

    - by gsusx
    Last week I had the pleasure of presenting two sessions at Microsoft's Dutch DevDays at Den Hague. On Tuesday I presented a sessions about how to implement real world RESTFul services patterns using WCF, WCF Data Services and ASP.NET MVC2. During that session I showed a total of 15 small demos that highlighted how to implement key aspects of RESTful solutions such as Security, LowREST clients, URI modeling, Validation, Error Handling, etc. As part of those demos I used the OAuth implementation created...(read more)

    Read the article

  • E: mkinitramfs failure cpio 141 gzip 1

    - by Nagaraj Shindagi
    I'm using Ubuntu 12.04 LTS with Dell power-edge R720 server, facing the problem when I apt-get -f install Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 2 not fully installed or removed. After this operation, 0 B of additional disk space will be used. Setting up linux-image-3.2.0-37-generic-pae (3.2.0-37.58) ... Running depmod. update-initramfs: deferring update (hook will be called later) The link /initrd.img is a dangling linkto /boot/initrd.img-3.2.0-37-generic-pae Examining /etc/kernel/postinst.d. run-parts: executing /etc/kernel/postinst.d/initramfs-tools 3.2.0-37-generic-pae /boot/vmlinuz-3.2.0-37-generic-pae update-initramfs: Generating /boot/initrd.img-3.2.0-37-generic-pae gzip: stdout: No space left on device E: mkinitramfs failure cpio 141 gzip 1 update-initramfs: failed for /boot/initrd.img-3.2.0-37-generic-pae with 1. run-parts: /etc/kernel/postinst.d/initramfs-tools exited with return code 1 Failed to process /etc/kernel/postinst.d at /var/lib/dpkg/info/linux-image-3.2.0 -37-generic-pae.postinst line 1010. dpkg: error processing linux-image-3.2.0-37-generic-pae (--configure): subprocess installed post-installation script returned error exit status 2 dpkg: dependency problems prevent configuration of linux-image-generic-pae: linux-image-generic-pae depends on linux-image-3.2.0-37-generic-pae; however: Package linux-image-3.2.0-37-generic-pae is not configured yet. dpkg: error processing linux-image-generic-pae (--configure): dependency problems - leaving unconfigured No apport report written because the error message indicates its a followup erro r from a previous failure. Errors were encountered while processing: linux-image-3.2.0-37-generic-pae linux-image-generic-pae E: Sub-process /usr/bin/dpkg returned an error code (1) ------------ even i tried with apt-get clean apt-get remove apt-get autoremove apt-get purge there is no difference it will show the same error message as above, even i checked the disk space ----------- Filesystem 1K-blocks Used Available Use% Mounted on /dev/sda6 24030076 612456 22196964 3% / udev 16536644 4 16536640 1% /dev tmpfs 6618884 1164 6617720 1% /run none 5120 0 5120 0% /run/lock none 16547208 72 16547136 1% /run/shm cgroup 16547208 0 16547208 0% /sys/fs/cgroup /dev/sda1 93207 75034 13361 85% /boot /dev/sda10 9611492 1096076 8027176 13% /tmp /dev/sda12 9611492 226340 8896912 3% /opt /dev/sda13 9611492 152516 8970736 2% /srv /dev/sda7 9611492 592208 8531044 7% /home /dev/sda8 9611492 2656736 6466516 30% /usr /dev/sda9 9611492 696468 8426784 8% /var /dev/sda14 961237336 134563516 777845764 15% /usr/data /dev/sda15 618991384 84498388 503050052 15% /usr/data1 /dev/sda11 9611492 152616 8970636 2% /usr/local --------------- is there any problem on allotting the space to the partiations please let me know the solution its on urgent please help me on this issue regards

    Read the article

  • Apple publie un rapport sur sa diversité, « en tant que PDG, je ne suis pas satisfait de ces chiffres » a déclaré Tim Cook

    Apple publie un rapport sur sa diversité, « en tant que PDG, je ne suis pas satisfait de ces chiffres » a déclaré Tim Cook Apple a suivi l'exemple de ses concurrents et s'est également décidé à publier les statistiques sur la diversité de ses employés américains. Aux États-Unis, l'entreprise a déclaré que 55% de son effectif est de la race blanche, 15% sont d'origines asiatiques, 11% sont hispaniques et 7% sont noirs. 2 % se revendiquent comme appartenant à deux catégories, 1 % dans la catégorie...

    Read the article

  • SQL Server Driver for PHP 2.0 CTP2 is now released

    - by The Official Microsoft IIS Site
    digg_url = "http://blogs.msdn.com/b/sqlphp/archive/2010/06/15/sql-server-driver-for-php-2-0-ctp2-is-now-released.aspx";digg_title = "SQL Server Driver for PHP 2.0 CTP2 is now released";digg_bgcolor = "#FFFFFF";digg_skin = "normal"; digg_url = undefined;digg_title = undefined;digg_bgcolor = undefined;digg_skin = undefined; It is our pleasure to announce the release of Community Technology Preview 2 (CTP2) of the SQL Server Driver for PHP 2.0! We would like to...(read more)

    Read the article

  • Getting It Right The First Time

    - by andyleonard
    Introduction This post is the seventeenth part of a ramble-rant about the software business. The current posts in this series are: Goodwill, Negative and Positive Visions, Quests, Missions Right, Wrong, and Style Follow Me Balance, Part 1 Balance, Part 2 Definition of a Great Team The 15-Minute Meeting Metaproblems: Drama The Right Question Software is Organic, Part 1 Metaproblem: Terror I Don't Work On My Car A Turning Point Human Doings Everything Changes This post is about getting software right...(read more)

    Read the article

  • Adding Descriptive Flex Field (DFF) through OAF Personalization

    - by Manoj Madhusoodanan
    In this blog I will explain how to add a DFF to a existing OAF page through personalization.I am using Supplier Quick Update Page ( /oracle/apps/pos/supplier/webui/SuppSummPG ). If you want to see how to create DFF please click here. In this scenario I am using a custom DFF. Following are the details. Application -> Payables ( Code: SQLAP )Name -> XXCUST_SUPPLIER_DFFTitle -> XXCUST - Supplier DFFTable Name -> AP_SUPPLIERSDFV View name -> XXCUST_SUPPLIER_DFVReference Fields -> ATTRIBUTE_CATEGORY Following are the Context Field Details. Prompt -> Supplier TypeValue Set -> XXCUST_SUP_TYPE ( Values : External and Internal )Reference Field -> ATTRIBUTE_CATEGORY Below table shows the segment details of XXCUST_SUPPLIER_DFF. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Code Segments Column Value Set Global Data Elements Identification Number ATTRIBUTE1 15 Characters External Type ATTRIBUTE2 XXCUST_EXT_SUP_TYPE Values          Domestic           International Internal Department ATTRIBUTE2 15 Characters Following steps you need to perform to create flex item in the Quick Update page. 1) Click on Personalize Page.In the Personalize Page click on Complete View. 2) Click on Create Item.( Based on where you want to place the DFF choose appropriate layout). 3) Create flex item with following details. 4) If you want to arrange the item in the page click on Reorder. Following is the output.

    Read the article

  • Bad Screen Flicker from video recording of recordmydesktop

    - by Tarun
    I have ubuntu 11.10 and I installed recordmydesktop. Video recording from recordmydesktop always result in screen flicker. In recording I see half of the screen moving forward while half would be stuck. I checked the settings and "Frame per Second" is set to 15 One such recording is available here - http://www.youtube.com/watch?v=QafF44m2Ttk&feature=youtu.be I am quite new to Ubuntu and not sure what is wrong.

    Read the article

  • Cuppa Corner talk "A trip to First Normal Form" available - Domains, Functional Dependencies, Repeat

    - by tonyrogerson
    It's 15 minutes, I talk about Domains, Functional Dependencies, Repeating Groups, Relational Valued Attributes and of course First Normal Form. http://sqlcontent.sqlblogcasts.com/video/cctr20100507dbdesign1nf/cctr20100507dbdesign1nf.html For questions just ask on the http://sqlserverfaq.com chat control or Twitter using #sqlfaq tag. Slides are also availble here: http://sqlcontent.sqlblogcasts.com/video/cctr20100507dbdesign1nf/cc_tr20100507_dbdesign1nf.pptx...(read more)

    Read the article

  • WCF – interchangeable data-contract types

    - by nmarun
    In a WSDL based environment, unlike a CLR-world, we pass around the ‘state’ of an object and not the reference of an object. Well firstly, what does ‘state’ mean and does this also mean that we can send a struct where a class is expected (or vice-versa) as long as their ‘state’ is one and the same? Let’s see. So I have an operation contract defined as below: 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract] 5: Employee SaveEmployee(Employee employee); 6: } 7:  8: [ServiceBehavior] 9: public class LearnWcfService : ILearnWcfServiceExtend 10: { 11: public Employee SaveEmployee(Employee employee) 12: { 13: employee.EmployeeId = 123; 14: return employee; 15: } 16: } Quite simplistic operation there (which translates to ‘absolutely no business value’). Now, the data contract Employee mentioned above is a struct. 1: public struct Employee 2: { 3: public int EmployeeId { get; set; } 4:  5: public string FName { get; set; } 6: } After compilation and consumption of this service, my proxy (in the Reference.cs file) looks like below (I’ve ignored the rest of the details just to avoid unwanted confusion): 1: public partial struct Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged I call the service with the code below: 1: private static void CallWcfService() 2: { 3: Employee employee = new Employee { FName = "A" }; 4: Console.WriteLine("IsValueType: {0}", employee.GetType().IsValueType); 5: Console.WriteLine("IsClass: {0}", employee.GetType().IsClass); 6: Console.WriteLine("Before calling the service: {0} - {1}", employee.EmployeeId, employee.FName); 7: employee = LearnWcfServiceClient.SaveEmployee(employee); 8: Console.WriteLine("Return from the service: {0} - {1}", employee.EmployeeId, employee.FName); 9: } The output is: I now change my Employee type from a struct to a class in the proxy class and run the application: 1: public partial class Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged { The output this time is: The state of an object implies towards its composition, the properties and the values of these properties and not based on whether it is a reference type (class) or a value type (struct). And as shown above, we’re actually passing an object by its state and not by reference. Continuing on the same topic of ‘type-interchangeability’, WCF treats two data contracts as equivalent if they have the same ‘wire-representation’. We can do so using the DataContract and DataMember attributes’ Name property. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: public int Id { get; set; } 6:  7: [DataMember] 8: public string FirstName { get; set; } 9: } 10:  11: [DataContract(Name="Person")] 12: public class Employee 13: { 14: [DataMember(Name = "Id")] 15: public int EmployeeId { get; set; } 16:  17: [DataMember(Name="FirstName")] 18: public string FName { get; set; } 19: } I’ve created two data contracts with the exact same wire-representation. Just remember that the names and the types of data members need to match to be considered equivalent. The question then arises as to what gets generated in the proxy class. Despite us declaring two data contracts (Person and Employee), only one gets emitted – Person. This is because we’re saying that the Employee type has the same wire-representation as the Person type. Also that the signature of the SaveEmployee operation gets changed on the proxy side: 1: [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")] 2: [System.ServiceModel.ServiceContractAttribute(ConfigurationName="ServiceProxy.ILearnWcfServiceExtend")] 3: public interface ILearnWcfServiceExtend 4: { 5: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployee", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployeeResponse")] 6: ClientApplication.ServiceProxy.Person SaveEmployee(ClientApplication.ServiceProxy.Person employee); 7: } But, on the service side, the SaveEmployee still accepts and returns an Employee data contract. 1: [ServiceBehavior] 2: public class LearnWcfService : ILearnWcfServiceExtend 3: { 4: public Employee SaveEmployee(Employee employee) 5: { 6: employee.EmployeeId = 123; 7: return employee; 8: } 9: } Despite all these changes, our output remains the same as the last one: This is type-interchangeability at work! Here’s one more thing to ponder about. Our Person type is a struct and Employee type is a class. Then how is it that the Person type got emitted as a ‘class’ in the proxy? It’s worth mentioning that WSDL describes a type called Employee and does not say whether it is a class or a struct (see the SOAP message below): 1: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2: xmlns:tem="http://tempuri.org/" 3: xmlns:ser="http://schemas.datacontract.org/2004/07/ServiceApplication"> 4: <soapenv:Header/> 5: <soapenv:Body> 6: <tem:SaveEmployee> 7: <!--Optional:--> 8: <tem:employee> 9: <!--Optional:--> 10: <ser:EmployeeId>?</ser:EmployeeId> 11: <!--Optional:--> 12: <ser:FName>?</ser:FName> 13: </tem:employee> 14: </tem:SaveEmployee> 15: </soapenv:Body> 16: </soapenv:Envelope> There are some differences between how ‘Add Service Reference’ and the svcutil.exe generate the proxy class, but turns out both do some kind of reflection and determine the type of the data contract and emit the code accordingly. So since the Employee type is a class, the proxy ‘Person’ type gets generated as a class. In fact, reflecting on svcutil.exe application, you’ll see that there are a couple of places wherein a flag actually determines a type as a class or a struct. One example is in the ExportISerializableDataContract method in the System.Runtime.Serialization.CodeExporter class. Seems like these flags have a say in deciding whether the type gets emitted as a struct or a class. This behavior is different if you use the WSDL tool though. WSDL tool does not do any kind of reflection of the data contract / serialized type, it emits the type as a class by default. You can check this using the two command lines below:   Note to self: Remember ‘state’ and type-interchangeability when traversing through the WSDL planet!

    Read the article

  • Video on Architecture and Code Quality using Visual Studio 2012&ndash;interview with Marcel de Vries and Terje Sandstrom by Adam Cogan

    - by terje
    Find the video HERE. Adam Cogan did a great Web TV interview with Marcel de Vries and myself on the topics of architecture and code quality.  It was real fun participating in this session.  Although we know each other from the MVP ALM community,  Marcel, Adam and I haven’t worked together before. It was very interesting to see how we agreed on so many terms, and how alike we where thinking.  The basics of ensuring you have a good architecture and how you could document it is one thing.  Also, the same agreement on the importance of having a high quality code base, and how we used the Visual Studio 2012 tools, and some others (NDepend for example)  to measure and ensure that the code quality was where it should be.  As the tools, methods and thinking popped up during the interview it was a lot of “Hey !  I do that too!”.  The tools are not only for “after the fact” work, but we use them during the coding.  That way the tools becomes an integrated part of our coding work, and helps us to find issues we may have overlooked.  The video has a bunch of call outs, pinpointing important things to remember. These are also listed on the corresponding web page. I haven’t seen that touch before, but really liked this way of doing it – it makes it much easier to spot the highlights.  Titus Maclaren and Raj Dhatt from SSW have done a terrific job producing this video.  And thanks to Lei Xu for doing the camera and recording job.  Thanks guys ! Also, if you are at TechEd Amsterdam 2012, go and listen to Adam Cogan in his session on “A modern architecture review: Using the new code review tools” Friday 29th, 10.15-11.30 and Marcel de Vries session on “Intellitrace, what is it and how can I use it to my benefit” Wednesday 27th, 5-6.15 The highlights points out some important practices.  I’ll elaborate on a few of them here: Add instructions on how to compile the solution.  You do this by adding a text file with instructions to the solution, and keep it under source control.  These instructions should contain what is needed on top of a standard install of Visual Studio.  I do a lot of code reviews, and more often that not, I am not even able to compile the program, because they have used some tool or library that needs to be installed.  The same applies to any new developer who enters into the team, so do this to increase your productivity when the team changes, or a team member switches computer. Don’t forget to document what you have to configure on the computer, the IIS being a common one. The more automatic you can do this, the better.  Use NuGet to get down libraries. When the text document gets more than say, half a page, with a bunch of different things to do, convert it into a powershell script instead.  The metrics warning levels.  These are very conservatively set by Microsoft.  You rarely see anything but green, and besides, you should have color scales for each of the metrics.  I have a blog post describing a more appropriate set of levels, based on both research work and industry “best practices”.  The essential limits are: Cyclomatic complexity and coupling:  Higher numbers are worse On method levels: Green :  From 0 to 10 Yellow:  From 10 to 20  (some say 15).   Acceptable, but have a look to see if there is something unneeded here. Red: From 20 to 40:   Action required, get these down. Bleeding Red: Above 40   This is the real red alert.  Immediate action!  (My invention, as people have asked what do I do when I have cyclomatic complexity of 150.  The only answer I could think of was: RUN! ) Maintainability index:  Lower numbers are worse, scale from 0 to 100. On method levels: Green:  60 to 100 Yellow:  40 – 60.    You will always have methods here too, accept the higher ones, take a look at those who are down to the lower limit.  Check up against the other metrics.) Red:  20 – 40:  Action required, fix these. Bleeding red:  Below 20.  Immediate action required. When doing metrics analysis, you should leave the generated code out.  You do this by adding attributes, unfortunately Microsoft has “forgotten” to add these to all their stuff, so you might have to add them to some of the code.  It most cases it can be done so that it is not overwritten by a new round of code generation.  Take a look a my blog post here for details on how to do that. Class level metrics might also be useful, at least for coupling and maintenance.  But it is much more difficult to set any fixed limits on those.  Any metric aggregations on higher level tend to be pretty useless, as the number of methods vary pretty much, and there are little science on what number of methods can be regarded as good or bad.  NDepend have a recommendation, but they say it may vary too.  And in these days of data binding, the number might be pretty high, as properties counts as methods.  However, if you take the worst case situations, classes with more than 20 methods are suspicious, and coupling and cyclomatic complexity go red above 20, so any classes with more than 20x20 = 400 for these measures should be checked over. In the video we mention the SOLID principles, coined by “Uncle Bob” (Richard Martin). One of them, the Dependency Inversion principle we discuss in the video.  It is important to note that this principle is NOT on whether you should use a Dependency Inversion Container or not, it is about how you design the interfaces and interactions between your classes.  The Dependency Inversion Container is just one technique which is based on this principle, but which main purpose is to isolate things you would like to change at runtime, for example if you implement a plug in architecture.  Overuse of a Dependency Inversion Container is however, NOT a good thing.  It should be used for a purpose and not as a general DI solution.  The general DI solution and thinking however is useful far beyond the DIC.   You should always “program to an abstraction”, and not to the concreteness.  We also talk a bit about the GRASP patterns, a term coined by Craig Larman in his book Applying UML and design patterns. GRASP patterns stand for General Responsibility Assignment Software Patterns and describe fundamental principles of object design and responsibility assignment.  What I find great with these patterns is that they is another way to focus on the responsibility of a class.  One of the things I most often found that is broken in software designs, is that the class lack responsibility, and as a result there are a lot of classes mucking around in the internals of the other classes.  We also discuss the term “Code Smells”.  This term was invented by Kent Beck and Martin Fowler when they worked with Fowler’s “Refactoring” book. A code smell is a set of “bad” coding practices, which are the drivers behind a corresponding set of refactorings.  Here is a good list of the smells, and their corresponding refactor patterns. See also this.

    Read the article

  • Three Principles to Fix Your Broken Organization

    - by Michael Snow
    Everyone's organization is broken in some capacity. For some this is painfully visible both inside and outside their organization. For others, there are cracks noticed by only the keenest trained eyes used to looking for problems in the midst of perfection. We all know that there is often incredible hope in the despair of chaos and recognition of your problems is the first step on the road to recovery. Let us help you in your path to recovery. Join our very own, Christian Finn,  this Thursday (11/15), as he guides you through three important principles you can take back to the office to start the mending process. (Above Image Credits: the BEST site on the web to make fun of our organizations and ourselves: http://www.despair.com/ ) His three principles are NOT "TeamWork", "Ignorance" and "Tradition", but - before jumping lower on this blog post to click and register for the upcoming webcast - I thought it would be a good opportunity to give you a little taste of what we have to offer beyond the array of our fabulous On-Demand webcasts from our Social Business Thought Leader Webcast Series featuring Christian as the host. Instead, here's a snippet from our marketing team friends across the pond in Europe, where they hosted a Social Business Forum recently and featured Christian in a segment.  Simple. Powerful. Proven. Face it, your organization is broken. Customers are not the focus they should be. Processes are running amok. Your intranet is a ghost town. And colleagues wonder why it’s easier to get things done on the Web than at work. What’s the solution?Join us for this Webcast. Christian Finn will talk about three simple, powerful, and proven principles for improving your organization through collaboration. Each principle will be illustrated by real-world examples. Discover: How to dramatically improve workplace collaboration Why improved employee engagement creates better business results What’s the value of a fully engaged customer Time to Fix What’s Broken Register now for this Webcast—the tenth in the Oracle Social Business Thought Leaders Series. Register Now Thurs., Nov. 15, 2012 10 a.m. PT / 1 p.m. ET Presented by: Christian Finn Senior Director, Product Management, Oracle Copyright © 2012, Oracle Corporation and/or its affiliates. All rights reserved. Contact Us | Legal Notices and Terms of Use | Privacy Statement

    Read the article

  • ASP.NET MVC 2 Model Binding for a Collection

    - by nmarun
    Yes, my yet another post on Model Binding (previous one is here), but this one uses features presented in MVC 2. How I got to writing this blog? Well, I’m on a project where we’re doing some MVC things for a shopping cart. Let me show you what I was working with. Below are my model classes: 1: public class Product 2: { 3: public int Id { get; set; } 4: public string Name { get; set; } 5: public int Quantity { get; set; } 6: public decimal UnitPrice { get; set; } 7: } 8:   9: public class Totals 10: { 11: public decimal SubTotal { get; set; } 12: public decimal Tax { get; set; } 13: public decimal Total { get; set; } 14: } 15:   16: public class Basket 17: { 18: public List<Product> Products { get; set; } 19: public Totals Totals { get; set;} 20: } The view looks as below:  1: <h2>Shopping Cart</h2> 2:   3: <% using(Html.BeginForm()) { %> 4: 5: <h3>Products</h3> 6: <% for (int i = 0; i < Model.Products.Count; i++) 7: { %> 8: <div style="width: 100px;float:left;">Id</div> 9: <div style="width: 100px;float:left;"> 10: <%= Html.TextBox("ID", Model.Products[i].Id) %> 11: </div> 12: <div style="clear:both;"></div> 13: <div style="width: 100px;float:left;">Name</div> 14: <div style="width: 100px;float:left;"> 15: <%= Html.TextBox("Name", Model.Products[i].Name) %> 16: </div> 17: <div style="clear:both;"></div> 18: <div style="width: 100px;float:left;">Quantity</div> 19: <div style="width: 100px;float:left;"> 20: <%= Html.TextBox("Quantity", Model.Products[i].Quantity)%> 21: </div> 22: <div style="clear:both;"></div> 23: <div style="width: 100px;float:left;">Unit Price</div> 24: <div style="width: 100px;float:left;"> 25: <%= Html.TextBox("UnitPrice", Model.Products[i].UnitPrice)%> 26: </div> 27: <div style="clear:both;"><hr /></div> 28: <% } %> 29: 30: <h3>Totals</h3> 31: <div style="width: 100px;float:left;">Sub Total</div> 32: <div style="width: 100px;float:left;"> 33: <%= Html.TextBox("SubTotal", Model.Totals.SubTotal)%> 34: </div> 35: <div style="clear:both;"></div> 36: <div style="width: 100px;float:left;">Tax</div> 37: <div style="width: 100px;float:left;"> 38: <%= Html.TextBox("Tax", Model.Totals.Tax)%> 39: </div> 40: <div style="clear:both;"></div> 41: <div style="width: 100px;float:left;">Total</div> 42: <div style="width: 100px;float:left;"> 43: <%= Html.TextBox("Total", Model.Totals.Total)%> 44: </div> 45: <div style="clear:both;"></div> 46: <p /> 47: <input type="submit" name="Submit" value="Submit" /> 48: <% } %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Nothing fancy, just a bunch of div’s containing textboxes and a submit button. Just make note that the textboxes have the same name as the property they are going to display. Yea, yea, I know. I’m displaying unit price as a textbox instead of a label, but that’s beside the point (and trust me, this will not be how it’ll look on the production site!!). The way my controller works is that initially two dummy products are added to the basked object and the Totals are calculated based on what products were added in what quantities and their respective unit price. So when the page loads in edit mode, where the user can change the quantity and hit the submit button. In the ‘post’ version of the action method, the Totals get recalculated and the new total will be displayed on the screen. Here’s the code: 1: public ActionResult Index() 2: { 3: Product product1 = new Product 4: { 5: Id = 1, 6: Name = "Product 1", 7: Quantity = 2, 8: UnitPrice = 200m 9: }; 10:   11: Product product2 = new Product 12: { 13: Id = 2, 14: Name = "Product 2", 15: Quantity = 1, 16: UnitPrice = 150m 17: }; 18:   19: List<Product> products = new List<Product> { product1, product2 }; 20:   21: Basket basket = new Basket 22: { 23: Products = products, 24: Totals = ComputeTotals(products) 25: }; 26: return View(basket); 27: } 28:   29: [HttpPost] 30: public ActionResult Index(Basket basket) 31: { 32: basket.Totals = ComputeTotals(basket.Products); 33: return View(basket); 34: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That’s that. Now I run the app, I see two products with the totals section below them. I look at the view source and I see that the input controls have the right ID, the right name and the right value as well. 1: <input id="ID" name="ID" type="text" value="1" /> 2: <input id="Name" name="Name" type="text" value="Product 1" /> 3: ... 4: <input id="ID" name="ID" type="text" value="2" /> 5: <input id="Name" name="Name" type="text" value="Product 2" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } So just as a regular user would do, I change the quantity value of one of the products and hit the submit button. The ‘post’ version of the Index method gets called and I had put a break-point on line 32 in the above snippet. When I hovered my mouse on the ‘basked’ object, happily assuming that the object would be all bound and ready for use, I was surprised to see both basket.Products and basket.Totals were null. Huh? A little research and I found out that the reason the DefaultModelBinder could not do its job is because of a naming mismatch on the input controls. What I mean is that when you have to bind to a custom .net type, you need more than just the property name. You need to pass a qualified name to the name property of the input control. I modified my view and the emitted code looked as below: 1: <input id="Product_Name" name="Product.Name" type="text" value="Product 1" /> 2: ... 3: <input id="Product_Name" name="Product.Name" type="text" value="Product 2" /> 4: ... 5: <input id="Totals_SubTotal" name="Totals.SubTotal" type="text" value="550" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, I update the quantity and hit the submit button and I see that the Totals object is populated, but the Products list is still null. Once again I went: ‘Hmm.. time for more research’. I found out that the way to do this is to provide the name as: 1: <%= Html.TextBox(string.Format("Products[{0}].ID", i), Model.Products[i].Id) %> 2: <!-- this will be rendered as --> 3: <input id="Products_0__ID" name="Products[0].ID" type="text" value="1" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } It was only now that I was able to see both the products and the totals being properly bound in the ‘post’ action method. Somehow, I feel this is kinda ‘clunky’ way of doing things. Seems like people at MS felt in a similar way and offered us a much cleaner way to solve this issue. The simple solution is that instead of using a Textbox, we can either use a TextboxFor or an EditorFor helper method. This one directly spits out the name of the input property as ‘Products[0].ID and so on. Cool right? I totally fell for this and changed my UI to contain EditorFor helper method. At this point, I ran the application, changed the quantity field and pressed the submit button. Of course my basket object parameter in my action method was correctly bound after these changes. I let the app complete the rest of the lines in the action method. When the page finally rendered, I did see that the quantity was changed to what I entered before the post. But, wait a minute, the totals section did not reflect the changes and showed the old values. My status: COMPLETELY PUZZLED! Just to recap, this is what my ‘post’ Index method looked like: 1: [HttpPost] 2: public ActionResult Index(Basket basket) 3: { 4: basket.Totals = ComputeTotals(basket.Products); 5: return View(basket); 6: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } A careful debug confirmed that the basked.Products[0].Quantity showed the updated value and the ComputeTotals() method also returns the correct totals. But still when I passed this basket object, it ended up showing the old totals values only. I began playing a bit with the code and my first guess was that the input controls got their values from the ModelState object. For those who don’t know, the ModelState is a temporary storage area that ASP.NET MVC uses to retain incoming attempted values plus binding and validation errors. Also, the fact that input controls populate the values using data taken from: Previously attempted values recorded in the ModelState["name"].Value.AttemptedValue Explicitly provided value (<%= Html.TextBox("name", "Some value") %>) ViewData, by calling ViewData.Eval("name") FYI: ViewData dictionary takes precedence over ViewData's Model properties – read more here. These two indicators led to my guess. It took me quite some time, but finally I hit this post where Brad brilliantly explains why this is the preferred behavior. My guess was right and I, accordingly modified my code to reflect the following way: 1: [HttpPost] 2: public ActionResult Index(Basket basket) 3: { 4: // read the following posts to see why the ModelState 5: // needs to be cleared before passing it the view 6: // http://forums.asp.net/t/1535846.aspx 7: // http://forums.asp.net/p/1527149/3687407.aspx 8: if (ModelState.IsValid) 9: { 10: ModelState.Clear(); 11: } 12:   13: basket.Totals = ComputeTotals(basket.Products); 14: return View(basket); 15: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } What this does is that in the case where your ModelState IS valid, it clears the dictionary. This enables the values to be read from the model directly and not from the ModelState. So the verdict is this: If you need to pass other parameters (like html attributes and the like) to your input control, use 1: <%= Html.TextBox(string.Format("Products[{0}].ID", i), Model.Products[i].Id) %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Since, in EditorFor, there is no direct and simple way of passing this information to the input control. If you don’t have to pass any such ‘extra’ piece of information to the control, then go the EditorFor way. The code used in the post can be found here.

    Read the article

  • TFS 2010 SDK: Smart Merge - Programmatically Create your own Merge Tool

    - by Tarun Arora
    Technorati Tags: Team Foundation Server 2010,TFS SDK,TFS API,TFS Merge Programmatically,TFS Work Items Programmatically,TFS Administration Console,ALM   The information available in the Merge window in Team Foundation Server 2010 is very important in the decision making during the merging process. However, at present the merge window shows very limited information, more that often you are interested to know the work item, files modified, code reviewer notes, policies overridden, etc associated with the change set. Our friends at Microsoft are working hard to change the game again with vNext, but because at present the merge window is a model window you have to cancel the merge process and go back one after the other to check the additional information you need. If you can relate to what i am saying, you will enjoy this blog post! I will show you how to programmatically create your own merging window using the TFS 2010 API. A few screen shots of the WPF TFS 2010 API – Custom Merging Application that we will be creating programmatically, Excited??? Let’s start coding… 1. Get All Team Project Collections for the TFS Server You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetAllTeamProjectCollections() 2: { 3: TfsConfigurationServer configurationServer = 4: TfsConfigurationServerFactory. 5: GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 6: 7: CatalogNode catalogNode = configurationServer.CatalogNode; 8: return catalogNode.QueryChildren(new Guid[] 9: { CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: } 2. Get All Team Projects for the selected Team Project Collection You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetTeamProjects(string instanceId) 2: { 3: ReadOnlyCollection<CatalogNode> teamProjects = null; 4: 5: TfsConfigurationServer configurationServer = 6: TfsConfigurationServerFactory.GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 7: 8: CatalogNode catalogNode = configurationServer.CatalogNode; 9: var teamProjectCollections = catalogNode.QueryChildren(new Guid[] {CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: 12: foreach (var teamProjectCollection in teamProjectCollections) 13: { 14: if (string.Compare(teamProjectCollection.Resource.Properties["InstanceId"], instanceId, true) == 0) 15: { 16: teamProjects = teamProjectCollection.QueryChildren(new Guid[] { CatalogResourceTypes.TeamProject }, false, 17: CatalogQueryOptions.None); 18: } 19: } 20: 21: return teamProjects; 22: } 3. Get All Branches with in a Team Project programmatically I will be passing the name of the Team Project for which i want to retrieve all the branches. When consuming the ‘Version Control Service’ you have the method QueryRootBranchObjects, you need to pass the recursion type => none, one, full. Full implies you are interested in all branches under that root branch. 1: public static List<BranchObject> GetParentBranch(string projectName) 2: { 3: var branches = new List<BranchObject>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<teamProjectName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var allBranches = versionControl.QueryRootBranchObjects(RecursionType.Full); 9: 10: foreach (var branchObject in allBranches) 11: { 12: if (branchObject.Properties.RootItem.Item.ToUpper().Contains(projectName.ToUpper())) 13: { 14: branches.Add(branchObject); 15: } 16: } 17: 18: return branches; 19: } 4. Get All Branches associated to the Parent Branch Programmatically Now that we have the parent branch, it is important to retrieve all child branches of that parent branch. Lets see how we can achieve this using the TFS API. 1: public static List<ItemIdentifier> GetChildBranch(string parentBranch) 2: { 3: var branches = new List<ItemIdentifier>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var i = new ItemIdentifier(parentBranch); 9: var allBranches = 10: versionControl.QueryBranchObjects(i, RecursionType.None); 11: 12: foreach (var branchObject in allBranches) 13: { 14: foreach (var childBranche in branchObject.ChildBranches) 15: { 16: branches.Add(childBranche); 17: } 18: } 19: 20: return branches; 21: } 5. Get Merge candidates between two branches Programmatically Now that we have the parent and the child branch that we are interested to perform a merge between we will use the method ‘GetMergeCandidates’ in the namespace ‘Microsoft.TeamFoundation.VersionControl.Client’ => http://msdn.microsoft.com/en-us/library/bb138934(v=VS.100).aspx 1: public static MergeCandidate[] GetMergeCandidates(string fromBranch, string toBranch) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetMergeCandidates(fromBranch, toBranch, RecursionType.Full); 7: } 6. Get changeset details Programatically Now that we have the changeset id that we are interested in, we can get details of the changeset. The Changeset object contains the properties => http://msdn.microsoft.com/en-us/library/microsoft.teamfoundation.versioncontrol.client.changeset.aspx - Changes: Gets or sets an array of Change objects that comprise this changeset. - CheckinNote: Gets or sets the check-in note of the changeset. - Comment: Gets or sets the comment of the changeset. - PolicyOverride: Gets or sets the policy override information of this changeset. - WorkItems: Gets an array of work items that are associated with this changeset. 1: public static Changeset GetChangeSetDetails(int changeSetId) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetChangeset(changeSetId); 7: } 7. Possibilities In future posts i will try and extend this idea to explore further possibilities, but few features that i am sure will further help during the merge decision making process would be, - View changed files - Compare modified file with current/previous version - Merge Preview - Last Merge date Any other features that you can think of?

    Read the article

  • Las Vegas? Anybody?

    - by divya.malik
    Our next stop on the events calendar is the Mandalay Bay Convention Center in Las Vegas, for Collaborate 2010- April 18th- 22nd, 2010. Oracle Siebel CRM and Oracle CRM On Demand will be represented with two key sessions Monday, April 19th, 2010- 10.45 am-11.45 am, Breakers D, Mark Woollen, CRM Vice President Improving Sales Productivity While Increasing Revenues Monday, April 19th, 2010- 1.15 pm-2.15 pm, Breakers D, Rich Caballero, CRM Vice President Delivering Superior Customer Service with Oracle's Siebel Service Applications We will also be in the demogrounds, so stop by to see the latest CRM innovations from Oracle and talk to our CRM experts.

    Read the article

  • Top YouTube Plugins for WordPress Blogs

    - by Matt
    Smart Youtube Smart Youtube allow you to insert video and playlists into your WordPress post and in your RSS feed. It is perfectly work son Works on iPhone, iPad and iPod etc and issues a sidebar widget for videos as well. WP YouTube WP YouTube act as a a profile editor, where you can set [...] Related posts:WordPress Plugins to Help Make Your Site Responsive 15 Useful SEO Plugins For WordPress The Top 10 WordPress RSS Plugins

    Read the article

  • .NET development on a “Retina” MacBook Pro

    - by Jeff
    The rumor that Apple would release a super high resolution version of its 15” laptop has been around for quite awhile, and one I watched closely. After more than three years with a 17” MacBook Pro, and all of the screen real estate it offered, I was ready to replace it with something much lighter. It was a fantastic machine, still doing 6 or 7 hours after 460 charge cycles, but I wanted lighter and faster. With the SSD I put in it, I was able to sell it for $750. The appeal of higher resolution goes way back, when I would plug into a projector and scale up. Consolas, as it turns out, is a nice looking font for code when it’s bigger. While I have mostly indifference for iOS, I have to admit that a higher dot pitch on the iPhone and iPad is pretty to look at. So I ordered the new 15” “Retina” model as soon as the Apple Store went live with it, and got it seven days later. I’ve been primarily using Parallels as my VM of choice from OS X for about five years. They recently put out an update for compatibility with the display, though I’m not entirely sure what that means. I figured there would have to be some messing around to get the VM to look right. The combination that seems to work best is this: Set the display in OS X to “more room,” which is roughly the equivalent of the 1920x1200 that my 17” did. It’s not as stunning as the text at the default 1440x900 equivalent (in OS X), but it’s still quite readable. Parallels still doesn’t entirely know what to do with the high resolution, though what it should do is somehow treat it as native. That flaw aside, I set the Windows 7 scaling to 125%, and it generally looks pretty good. It’s not really taking advantage of the display for sharpness, but hopefully that’s something that Parallels will figure out. Screen tweaking aside, I got the base model with 16 gigs of RAM, so I give the VM 8. I can boot a Windows 7 VM in 9 seconds. Nine seconds! The Windows Experience Index scores are all 7 and above, except for graphics, which are both at 6. Again, that’s in a VM. It’s hard to believe there’s something so fast in a little slim package like that. Hopefully this one gets me at least three years, like the last one.

    Read the article

  • Keeping up with SQL Server cumulative updates

    - by AaronBertrand
    Yesterday, a conversation on twitter reminded me that I haven't been keeping up with posting cumulative updates. I missed these updates for SQL Server 2008 on March 15: Cumulative Update #7 for SQL Server 2008 SP1 (10.00.2766) Cumulative Update #10 for SQL Server 2008 RTM (10.00.1835) And yesterday Glenn Berry ( blog | twitter ) was the first I know of to blog about Cumulative Update #9 for SQL Server 2005 SP3 (9.00.4294). He also shares some interesting information about changes to the support policy...(read more)

    Read the article

  • Google I/O 2011: Querying Freebase: Get More From MQL

    Google I/O 2011: Querying Freebase: Get More From MQL Jamie Taylor Freebase's query language, MQL, lets you access data about more than 20 million curated entities and the connections between them. Level up your Freebase query skills with advanced syntax, optimisation tricks, schema introsopection, metaschema, and more. From: GoogleDevelopers Views: 2007 15 ratings Time: 46:49 More in Science & Technology

    Read the article

  • Nameserver not resolving or domain not pingable [closed]

    - by Ricky
    Sorry, if anyone can think of a better title please change it! I want to host my own websites from home. For testing purposes, I have a virtual machine running a trial version of Windows Server 2008 Enterprise. Note I currently run a VPS and host my own websites but due to a nice speed upgrade on our line I now want to host from home. I have several domains but I wanted to test with one, that is rickyoleary.com. Our ISP does not provide static IP addresses unless we have a business account so I've been looking at no-ip.com. I admit my networking isn't the best, hence this question but I've been bashing my head all day on this one. I created a host name, muffinbubble.no-ip.org which runs on IP: 86.148.124.15. I've setup IIS on the server with a simple test page. I've then forwarded port 80 traffic from the router and from what I can see, it's working. If I access my website (I was unable to link to this for some reason so please copy and paste this) - http://86.148.124.15/ - I see my test page. So the next step was to create my nameservers. This domain is with namecheap.com so I created my nameservers, ns1.rickyoleary.com and ns2.rickyoleary.com. Both these point to the same IP (and yes, that will be changed after testing), the same IP as above: 86.148.124.15. On the server itself I have set up DNS entries as below which I believe to be correct and added rickyoleary.com and www.rickyoleary.com in the host headers (or bindings) in IIS 7.0. If I try and look up my domain, rickyoleary.com it shows ns1.rickyoleary.com and ns2.rickyoleary.com as the nameservers. I then tried to use just-ping.com on my nameserver ns1.rickyoleary.com. I get 100% packets lost, but the correct IP address is returned (I'm guessing the router does not allow pings, but is still accessible...). I get no response when pinging rickyoleary.com. Here's the problems: I cannot ping ns1.rickyoleary.com or ns2.rickyoleary.com from a command prompt. I'm not sure if this is an issue. When I added the nameservers in Windows Server 2008 and clicked 'resolve' a message box displays stating "No such host is known". I cannot ping rickyoleary.com. rickyoleary.com is not showing my test page on my server. Now - please note, I've waited around 6 hours for propagation. From my experience, although you're told to wait 24 - 48 hours, the changes are normally pretty quick so perhaps I'm being impatient or naive to think it should all be working fine until then. I would really appreciate some help here. Thanks.

    Read the article

< Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >