Search Results

Search found 5751 results on 231 pages for 'analysis patterns'.

Page 91/231 | < Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >

  • Obtain patterns in one file from another using ack or awk or better way than grep?

    - by Rock
    Is there a way to obtain patterns in one file (a list of patterns) from another file using ack as the -f option in grep? I see there is an -f option in ack but it's different with the -f in grep. Perhaps an example will give you a better idea. Suppose I have file1: file1: a c e And file2: file2: a 1 b 2 c 3 d 4 e 5 And I want to obtain all the patterns in file1 from file2 to give: a 1 c 3 e 5 Can ack do this? Otherwise, is there a better way to handle the job (such like awk or using hash) because I have millions of records in both files and really need an efficient way to complete? Thanks!

    Read the article

  • What are the design patterns for HTML and CSS ?

    - by IHawk
    I know that is a very embracing question, but I have just started with Ruby on Rails, and still have a long way with CSS and HTML. There are lots of books about CSS and HTML patterns, but I would like to know what is really applied to actual webpages. For example, what's the best way of doing a simple webpage with a lateral menu, a logo on the top, and some text below? Ok, it seems stupid, but there's lot of ways of doing that, or not ? So, how can I learn this patterns and what are the real patterns ? Would appreciate suggestions of books, articles, etc.

    Read the article

  • How can I load an MP3 or similar music file for display and anaysis in wxWdigets?

    - by Jon Cage
    I'm developing a GUI in wxPython which allows a user to generate sequences of colours for some toys I'm building. Part of the program needs to load an MP3 (and potentially other formats further down the line) and display it to the user. That shuold be sufficient to get started but later I'd like to add features like identifying beats and some crude frequency analysis. Is there any simple way of loading / understanding an MP3's contents to display a plot of it's amplitudes to the screen using wxWidgets? I later intend to port to C++/wxWidgets for speed and to avoid having to distribute wxPython.

    Read the article

  • Is there some way to assume @Nullable as default? (using FindBugs or any other free tool).

    - by alex2k8
    Consider such code public void m1(String text) { if(text == null) text = "<empty>"; System.out.println(text.toLowerCase()); } And this is a buggy version: public void m1(String text) { System.out.println(text.toLowerCase()); } If null value passed, the NullPointerException may be thrown. I would like the static-analysis tool (e.g. FindBugs) to report this issue. Unsuccessfully the FindBugs (at least by default) requires me to specify @Nullable annotation explicitly. public void m1(@Nullable String text) { System.out.println(text.toLowerCase()); // FindBugs: text must be nonnull but is marked as nullable } The problem is that if I forget to annotate it, the bug will be missed!!! How can I make the FindBugs (or any other free tool) to assume @Nullable by default?

    Read the article

  • how to raise warning if return value is disregarded - gcc or static code check?

    - by Drakosha
    I'd like to see all the places in my code (C++) which disregard return value of a function. How can I do it - with gcc or static code analysis tool? Bad code example: int f(int z) { return z + (z*2) + z/3 + z*z + 23; } int main() { int i = 7; f(i); ///// <<----- here I disregard the return value return 1; } Update: it should work even if the function and its use are in different files free static check tool

    Read the article

  • Is object clearing/array deallocation really necessary in VB6/VBA (Pros/Cons?)

    - by Oorang
    Hello, A lot of what I have learned about VB I learned from using Static Code Analysis (Particularly Aivosto's Project Analyzer). And one one of things it checks for is whether or not you cleared all objects and arrays. I used to just do this blindly because PA said so. But now that I know a little bit more about the way VB releases resources, it seems to me that these things should be happening automatically. Is this a legacy feature from pre VB6, or is there a reason why you should explicitly set objects back to nothing and use Erase on arrays?

    Read the article

  • CA2000 passing object reference to base constructor in C#

    - by Timothy
    I receive a warning when I run some code through Visual Studio's Code Analysis utility which I'm not sure how to resolve. Perhaps someone here has come across a similar issue, resolved it, and is willing to share their insight. I'm programming a custom-painted cell used in a DataGridView control. The code resembles: public class DataGridViewMyCustomColumn : DataGridViewColumn { public DataGridViewMyCustomColumn() : base(new DataGridViewMyCustomCell()) { } It generates the following warning: CA2000 : Microsoft.Reliability : In method 'DataGridViewMyCustomColumn.DataGridViewMyCustomColumn()' call System.IDisposable.Dispose on object 'new DataGridViewMyCustomCell()' before all references to it are out of scope. I understand it is warning me DataGridViewMyCustomCell (or a class that it inherits from) implements the IDisposable interface and the Dispose() method should be called to clean up any resources claimed by DataGridViewMyCustomCell when it is no longer. The examples I've seen on the internet suggest a using block to scope the lifetime of the object and have the system automatically dispose it, but base isn't recognized when moved into the body of the constructor so I can't write a using block around it... which I'm not sure I'd want to do anyway, since wouldn't that instruct the run time to free the object which could still be used later inside the base class? My question then, is the code okay as is? Or, how could it be refactored to resolve the warning? I don't want to suppress the warning unless it is truly appropriate to do so.

    Read the article

  • CA2000 and disposal of WCF client

    - by Mayo
    There is plenty of information out there concerning WCF clients and the fact that you cannot simply rely on a using statement to dispose of the client. This is because the Close method can throw an exception (i.e. if the server hosting the service doesn't respond). I've done my best to implement something that adheres to the numerous suggestions out there. public void DoSomething() { MyServiceClient client = new MyServiceClient(); // from service reference try { client.DoSomething(); } finally { client.CloseProxy(); } } public static void CloseProxy(this ICommunicationObject proxy) { if (proxy == null) return; try { if (proxy.State != CommunicationState.Closed && proxy.State != CommunicationState.Faulted) { proxy.Close(); } else { proxy.Abort(); } } catch (CommunicationException) { proxy.Abort(); } catch (TimeoutException) { proxy.Abort(); } catch { proxy.Abort(); throw; } } This appears to be working as intended. However, when I run Code Analysis in Visual Studio 2010 I still get a CA2000 warning. CA2000 : Microsoft.Reliability : In method 'DoSomething()', call System.IDisposable.Dispose on object 'client' before all references to it are out of scope. Is there something I can do to my code to get rid of the warning or should I use SuppressMessage to hide this warning once I am comfortable that I am doing everything possible to be sure the client is disposed of? Related resources that I've found: http://www.theroks.com/2011/03/04/wcf-dispose-problem-with-using-statement/ http://www.codeproject.com/Articles/151755/Correct-WCF-Client-Proxy-Closing.aspx http://codeguru.earthweb.com/csharp/.net/net_general/tipstricks/article.php/c15941/

    Read the article

  • How to obtain dependency metrics from Java source code?

    - by Bram Schoenmakers
    For an assignment we have to extract some software metrics from the Hibernate project. We have to extract the afferent coupling and efferent coupling metrics (dependency fan-in, fan-out) from each revision of each package in Hibernate. Some tools were provided which are able to extract these metrics, such as ckjm and JDepend. Other tools I have checked were Sonar, javancss and AOP. There is also the Metrics Eclipse plugin which I didn't get to work either. What these tools have in common, as far as I can see, is that they all operate on bytecode (*.class files). This is a problem, because I have to build every revision from source in order to run, say, JDepend on it. Older revisions won't build because my development stack is too recent. What I would like to do is to do this kind of analysis on source files so that I don't have to build each revision. Is this possible? Or is there a good reason why all these tools only operate on bytecode?

    Read the article

  • Verizon SongID - How is it programmed?

    - by CheeseConQueso
    For anyone not familiar with Verizon's SongID program, it is a free application downloadable through Verizon's VCast network. It listens to a song for 10 seconds at any point during the song and then sends this data to some all-knowing algorithmic beast that chews it up and sends you back all the ID3 tags (artist, album, song, etc...) The first two parts and last part are straightforward, but what goes on during the processing after the recorded sound is sent? I figure it must take the sound file (what format?), parse it (how? with what?) for some key identifiers (what are these? regular attributes of wave functions? phase/shift/amplitude/etc), and check it against a database. Everything I find online about how this works is something generic like what I typed above. From audiotag.info This service is based on a sophisticated audio recognition algorithm combining advanced audio fingerprinting technology and a large songs' database. When you upload an audio file, it is being analyzed by an audio engine. During the analysis its audio “fingerprint” is extracted and identified by comparing it to the music database. At the completion of this recognition process, information about songs with their matching probabilities are displayed on screen.

    Read the article

  • Time complexity with bit cost

    - by Keyser
    I think I might have completely misunderstood bit cost analysis. I'm trying to wrap my head around the concept of studying an algorithm's time complexity with respect to bit cost (instead of unit cost) and it seems to be impossible to find anything on the subject. Is this considered to be so trivial that no one ever needs to have it explained to them? Well I do. (Also, there doesn't even seem to be anything on wikipedia which is very unusual). Here's what I have so far: The bit cost of multiplication and division of two numbers with n bits is O(n^2) (in general?) So, for example: int number = 2; for(int i = 0; i < n; i++ ){ number = i*i; } has a time complexity with respect to bit cost of O(n^3), because it does n multiplications (right?) But in a regular scenario we want the time complexity with respect to the input. So, how does that scenario work? The number of bits in i could be considered a constant. Which would make the time complexity the same as with unit cost except with a bigger constant (and both would be linear). Also, I'm guessing addition and subtraction can be done in constant time, O(1). Couldn't find any info on it but it seems reasonable since it's one assembler operation.

    Read the article

  • Why do I get CA1806 when I catch exception in C++/CLI?

    - by brickner
    I've recently upgraded my project from Visual Studio 2008 to Visual Studio 2010. By enabling Code Analysis and compiling in Release, I'm getting warning CA1806: Do not ignore method results. I've managed to reduce the code that produces the warning to this code: .h file: public ref class Foo { public: void Bar(); }; .cpp file: void Foo::Bar() { try { } catch (const std::exception&) // here I get the warning { } } the warning: CA1806 : Microsoft.Usage : 'Foo::Bar(void)' calls 'Global::__CxxRegisterExceptionObject(void*, void*)' but does not use the HRESULT or error code that the method returns. This could lead to unexpected behavior in error conditions or low-resource situations. Use the result in a conditional statement, assign the result to a variable, or pass it as an argument to another method. If I try to use the exception value or do catch(...) the warning still appears. If I catch managed exceptions instead or compile in Debug I don't get the warning. Why do I get this warning? UPDATE I've decided to open a bug report on Microsoft Connect.

    Read the article

  • How to overcome the programmer's block ?

    - by Nicolas Dorier
    How do you do when, during the development of your application, you can't decide yourself what to do next. You have no problem technically speaking, you have no problem to write clean code BUT you have a problem to decide yourself on what to code now. And you spend time thinking and thinking again on your design, in the car, in the shower, and you cannot write a single line of code... I think we call this "analysis paralysis". I hate being in this state ! How can you avoid this ? How do you do to not fall in this state ? I think this occurs when we are writting a big chunk of code with no visible improvement, but I'm not sure... UPDATE Like some of you said, this problem is also what we call the "programmer's block" (analogy with the writer's block). Doing some TDD doesn't help because I'm stuck, I can't decide myself what class to code, what methods to put inside (even a name of method). Though I admit that it helps to break a big chunk of code into smaller ones. Like Talesh said my head becomes full of "what-if".

    Read the article

  • P/Invoke declarations should not be safe-critical

    - by Bobrovsky
    My code imports following native methods: DeleteObject, GetFontData and SelectObject from gdi32.dll GetDC and ReleaseDC from user32.dll I want to run the code in full trust and medium trust environments (I am fine with exceptions being thrown when these imported methods are indirectly used in medium trust environments). When I run Code Analysis on the code I get warnings like: CA5122 P/Invoke declarations should not be safe-critical. P/Invoke method 'GdiFont.DeleteObject(IntPtr)' is marked safe-critical. Since P/Invokes may only be called by critical code, this declaration should either be marked as security critical, or have its annotation removed entirely to avoid being misleading. Could someone explain me (in layman terms) what does this warning really mean? I tried putting these imports in static SafeNativeMethods class as internal static methods but this doesn't make the warnings go away. I didn't try to put them in NativeMethods because after reading this article I am unsure that it's the right way to go because I don't want my code to be completely unusable in medium trust environments (I think this will be the consequence of moving imports to NativeMethods). Honestly, I am pretty much confused about the real meaning of the warning and consequences of different options to suppressing it. Could someone shed some light on all this? EDIT: My code target .NET 2.0 framework. Assembly is marked with [assembly: AllowPartiallyTrustedCallers] Methods are declared like this: [DllImport("gdi32")] internal static extern int DeleteObject(HANDLE hObject);

    Read the article

  • Can ASM method-visitors be used with interfaces?

    - by Olaf Mertens
    I need to write a tool that lists the classes that call methods of specified interfaces. It will be used as part of the build process of a large java application consisting of many modules. The goal is to automatically document the dependencies between certain java modules. I found several tools for dependency analysis, but they don't work on the method level, just for packages or jars. Finally I found ASM, that seems to do what I need. The following code prints the method dependencies of all class files in a given directory: import java.io.*; import java.util.*; import org.objectweb.asm.ClassReader; public class Test { public static void main(String[] args) throws Exception { File dir = new File(args[0]); List<File> classFiles = new LinkedList<File>(); findClassFiles(classFiles, dir); for (File classFile : classFiles) { InputStream input = new FileInputStream(classFile); new ClassReader(input).accept(new MyClassVisitor(), 0); input.close(); } } private static void findClassFiles(List<File> list, File dir) { for (File file : dir.listFiles()) { if (file.isDirectory()) { findClassFiles(list, file); } else if (file.getName().endsWith(".class")) { list.add(file); } } } } import org.objectweb.asm.MethodVisitor; import org.objectweb.asm.commons.EmptyVisitor; public class MyClassVisitor extends EmptyVisitor { private String className; @Override public void visit(int version, int access, String name, String signature, String superName, String[] interfaces) { this.className = name; } @Override public MethodVisitor visitMethod(int access, String name, String desc, String signature, String[] exceptions) { System.out.println(className + "." + name); return new MyMethodVisitor(); } } import org.objectweb.asm.commons.EmptyVisitor; public class MyMethodVisitor extends EmptyVisitor { @Override public void visitMethodInsn(int opcode, String owner, String name, String desc) { String key = owner + "." + name; System.out.println(" " + key); } } The Problem: The code works for regular classes only! If the class file contains an interface, visitMethod is called, but not visitMethodInsn. I don't get any info about the callers of interface methods. Any ideas?

    Read the article

  • Oracle Fusion Supply Chain Management (SCM) Designs May Improve End User Productivity

    - by Applications User Experience
    By Applications User Experience on March 10, 2011 Michele Molnar, Senior Usability Engineer, Applications User Experience The Challenge: The SCM User Experience team, in close collaboration with product management and strategy, completely redesigned the user experience for Oracle Fusion applications. One of the goals of this redesign was to increase end user productivity by applying design patterns and guidelines and incorporating findings from extensive usability research. But a question remained: How do we know that the Oracle Fusion designs will actually increase end user productivity? The Test: To answer this question, the SCM Usability Engineers compared Oracle Fusion designs to their corresponding existing Oracle applications using the workflow time analysis method. The workflow time analysis method breaks tasks into a sequence of operators. By applying standard time estimates for all of the operators in the task, an estimate of the overall task time can be calculated. The workflow time analysis method has been recently adopted by the Applications User Experience group for use in predicting end user productivity. Using this method, a design can be tested and refined as needed to improve productivity even before the design is coded. For the study, we selected some of our recent designs for Oracle Fusion Product Information Management (PIM). The designs encompassed tasks performed by Product Managers to create, manage, and define products for their organization. (See Figure 1 for an example.) In applying this method, the SCM Usability Engineers collaborated with Product Management to compare the new Oracle Fusion Applications designs against Oracle’s existing applications. Together, we performed the following activities: Identified the five most frequently performed tasks Created detailed task scenarios that provided the context for each task Conducted task walkthroughs Analyzed and documented the steps and flow required to complete each task Applied standard time estimates to the operators in each task to estimate the overall task completion time Figure 1. The interactions on each Oracle Fusion Product Information Management screen were documented, as indicated by the red highlighting. The task scenario and script provided the context for each task.  The Results: The workflow time analysis method predicted that the Oracle Fusion Applications designs would result in productivity gains in each task, ranging from 8% to 62%, with an overall productivity gain of 43%. All other factors being equal, the new designs should enable these tasks to be completed in about half the time it takes with existing Oracle Applications. Further analysis revealed that these performance gains would be achieved by reducing the number of clicks and screens needed to complete the tasks. Conclusions: Using the workflow time analysis method, we can expect the Oracle Fusion Applications redesign to succeed in improving end user productivity. The workflow time analysis method appears to be an effective and efficient tool for testing, refining, and retesting designs to optimize productivity. The workflow time analysis method does not replace usability testing with end users, but it can be used as an early predictor of design productivity even before designs are coded. We are planning to conduct usability tests later in the development cycle to compare actual end user data with the workflow time analysis results. Such results can potentially be used to validate the productivity improvement predictions. Used together, the workflow time analysis method and usability testing will enable us to continue creating, evaluating, and delivering Oracle Fusion designs that exceed the expectations of our end users, both in the quality of the user experience and in productivity. (For more information about studying productivity, refer to the Measuring User Productivity blog.)

    Read the article

  • Grontmij|Carl Bro A/S Relies on Telerik Reporting for Data Presentation and Analysis of Critical Bus

    Grontmij | Carl Bro A/S, an international company providing consultancy services in the fields of building, transportation, water, environment, energy and industry is using Telerik Reporting to save coding time and build an expandable  solution with swift performance and rich users interface. The main objective was to design and develop a web application that would provide users with an overview of construction budgets, contacts and all documents related to the properties and buildings they managed....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Should we exclude code for the code coverage analysis?

    - by romaintaz
    I'm working on several applications, mainly legacy ones. Currently, their code coverage is quite low: generally between 10 and 50%. Since several weeks, we have recurrent discussions with the Bangalore teams (main part of the development is made offshore in India) regarding the exclusions of packages or classes for Cobertura (our code coverage tool, even if we are currently migrating to JaCoCo). Their point of view is the following: as they will not write any unit tests on some layers of the application (1), these layers should be simply excluded from the code coverage measure. In others words, they want to limit the code coverage measure to the code that is tested or should be tested. Also, when they work on unit test for a complex class, the benefits - purely in term of code coverage - will be unnoticed due in a large application. Reducing the scope of the code coverage will make this kind of effort more visible... The interest of this approach is that we will have a code coverage measure that indicates the current status of the part of the application we consider as testable. However, my point of view is that we are somehow faking the figures. This solution is an easy way to reach higher level of code coverage without any effort. Another point that bothers me is the following: if we show a coverage increase from one week to another, how can we tell if this good news is due to the good work of the developers, or simply due to new exclusions? In addition, we will not be able to know exactly what is considered in the code coverage measure. For example, if I have a 10,000 lines of code application with 40% of code coverage, I can deduct that 40% of my code base is tested (2). But what happen if we set exclusions? If the code coverage is now 60%, what can I deduct exactly? That 60% of my "important" code base is tested? How can I As far as I am concerned, I prefer to keep the "real" code coverage value, even if we can't be cheerful about it. In addition, thanks to Sonar, we can easily navigate in our code base and know, for any module / package / class, its own code coverage. But of course, the global code coverage will still be low. What is your opinion on that subject? How do you do on your projects? Thanks. (1) These layers are generally related to the UI / Java beans, etc. (2) I know that's not true. In fact, it only means that 40% of my code base

    Read the article

  • SOA online seminar by Griffiths Waite &ndash; adopt Fusion Applications patterns today

    - by Jürgen Kress
    Our SOA Specialized partner Griffiths Waite developed a series of Oracle Fusion Middleware online seminars. Mark Simpson Oracle ACE Director gives an insight of the Oracle strategy, how Oracle is using Fusion Middleware to build Fusion Applications and how you can profit in your project from the Fusion Architecture. Giving examples how customers can adopt use cases for Application Integration & Composite Application Portals & Application Modernization & Business Process Management. If you are interested make sure you watch the online seminar and take the SOA Maturity Assessment For more information on SOA Specialization and the SOA Partner Community please feel free to register at www.oracle.com/goto/emea/soa (OPN account required) Blog Twitter LinkedIn Mix Forum Wiki Website Technorati Tags: Mark Simpson,Griffiths Waite,Fusion Middleware,Fusion Applications,SOA,Oracle,SOA Community,OPN,SOA Specialization,Specialization,Jürgen Kress

    Read the article

  • Does the google crawler really guess URL patterns and index pages that were never linked against?

    - by Dominik
    I'm experiencing problems with indexed pages which were (probably) never linked to. Here's the setup: Data-Server: Application with RESTful interface which provides the data Website A: Provides the data of (1) at http://website-a.example.com/?id=RESOURCE_ID Website B: Provides the data of (1) at http://website-b.example.com/?id=OTHER_RESOURCE_ID So the whole, non-private data is stored on (1) and the websites (2) and (3) can fetch and display this data, which is a representation of the data with additional cross-linking between those. In fact, the URL /?id=1 of website-a points to the same resource as /?id=1 of website-b. However, the resource id:1 is useless at website-b. Unfortunately, the google index for website-b now contains several links of resources belonging to website-a and vice versa. I "heard" that the google crawler tries to determine the URL-pattern (which makes sense for deciding which page should go into the index and which not) and furthermore guesses other URLs by trying different values (like "I know that id 1 exists, let's try 2, 3, 4, ..."). Is there any evidence that the google crawler really behaves that way (which I doubt). My guess is that the google crawler submitted a HTML-Form and somehow got links to those unwanted resources. I found some similar posted questions about that, including "Google webmaster central: indexing and posting false pages" [link removed] however, none of those pages give an evidence.

    Read the article

  • What are common patterns for handling possible pluralization in message properties?

    - by C. Ross
    Obviously users like to see text properly pluralized, and pluralization schemes vary in the various written languages one may encounter. When internationalizing an app, what pattern(s) are useful for handling messages with possible pluralization? What about messages with multiple possible pluralization? For example: "N review(s):" One pattern would be reviews.title.singular="{0} review:" reviews.title.singular="{0} reviews:" And this may not support all languages. Or a more complicated case: "Found M question(s) with N comment(s)." This would be difficult to support in English?

    Read the article

  • Is there extensible structured file analyzer, like network analysis tools?

    - by ???
    There are many network analysis tools like Wireshark, Sniffer Pro, Omnipeak which can dump the packet data in structured manner. I'm just writing my own file analyzer for general purpose, which can dump JPEG, PNG, EXE, ELF, ASN.1 DER encoded files, etc. in tree style. There are so many file formats in the world that I can't handle them all. So I'm wondering if there's some software already there, with pluggable architecture and a large established file format repository?

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

< Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >