Search Results

Search found 9128 results on 366 pages for 'hardware infrastructure'.

Page 91/366 | < Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >

  • Oracle Linux Partner Pavilion Spotlight III

    - by Ted Davis
    Three days until Oracle OpenWorld 2012 begins. The anticipation and excitement are building. In today's spotlight we are presenting an additional three partners exhibiting in the Oracle Linux Partner Pavilion at Oracle OpenWorld ( Booth #1033). Fujitsu will showcase a Gold tower system representing the one-millionth PRIMERGY server shipped, highlighting Fujitsu’s position as the #4 server vendor worldwide. Fujitsu’s broad range of server platforms is reshaping the data center with virtualization and cloud services, including those based on Oracle Linux and Oracle VM. BeyondTrust, the leader in providing context aware security intelligence, will be showcasing its threat management and policy enablement solutions for addressing IT security risks and simplifying compliance. BeyondTrust will discuss how to reduce security risks, close security gaps and improve visibility across your server and database infrastructure. Please stop by to see live demonstrations of BeyondTrust’s award winning vulnerability management and privilege identity management solutions supported on Oracle Linux. Virtualized infrastructure with Oracle VM and NetApp storage and data management solutions provides an integrated and seamless end user experience. Designed for maximum efficiency to allow for native NetApp deduplication and backup/recovery/cloning of VM’s or templates. Whether you are provisioning one or multiple server pools or dynamically re-provisioning storage for your virtual machines to meet business demands, with Oracle and NetApp, you have one single point-and-click console to rapidly and easily deploy a virtualized agile data infrastructure in minutes. So there you have it!  The third install of our Partner Spolight. Check out Part I and Part II of our Partner Spotlights from previous days if you've missed them. Remember to visit the Oracle Linux team at Oracle OpenWorld.

    Read the article

  • Randomly displayed flashing lines, no response to all shortcuts, just power off. [syslog included]

    - by B. Roland
    Hello! I have an old machine, and I want to use for that to learn employees how to use Ubuntu, and to be easyer to switch from Windows. I've been installed 10.04, and updated, but this strange stuff is happend. Graphical installion failed, same strange thing. With alternate workd. Sometimes, when I boot up, a boot message displayed: Keyboard failure..., often diplayed after reboot, and after shutdown, when I haven't plugged off from AC. I replaced the keyboard yet, same failure... If I powered off, and plugged off from AC, no keyboard problems displayed in boot time. Details Configuration: Dell OptiPlex GX60 - in original cover, no changes. 256 MB DDR 166 MHz Intel® Celeron® Processor 2.40 GHz Dell 0C3207 Base Board I know, that is not enough, but I have three other Nec compuers, with nearly similar config, and they works well with 9.10, 10.04, 10.10. Live CDs I've been tried with 10.04 and 10.10, but the problem is displayed too. With 9.10 no strange things displayed, but it froze, during a simple apt-get install. Syslog An error loop is logged here, but I paste the whole startup and error lines. The flashing lines are displayed sometimes immediately after login, but sometimes after 10 minutes, but once occured, that nothing happend. Strange thing is displayed immediately after login: here. An other boot, after some minutes, strange lines, and loop in log appeard: here. The loop should be that: Jan 23 00:20:08 machine_name kernel: [ 46.782212] [drm:i915_gem_entervt_ioctl] *ERROR* Reenabling wedged hardware, good luck Jan 23 00:20:08 machine_name kernel: [ 47.100033] [drm:i915_hangcheck_elapsed] *ERROR* Hangcheck timer elapsed... GPU hung Jan 23 00:20:08 machine_name kernel: [ 47.100045] render error detected, EIR: 0x00000000 Jan 23 00:20:08 machine_name kernel: [ 47.101487] [drm:i915_do_wait_request] *ERROR* i915_do_wait_request returns -5 (awaiting 16 at 9) Jan 23 00:20:11 machine_name kernel: [ 49.152020] [drm:i915_gem_idle] *ERROR* hardware wedged Jan 23 00:20:11 machine_name gdm-simple-slave[1245]: WARNING: Unable to load file '/etc/gdm/custom.conf': No such file or directory Jan 23 00:20:11 machine_name acpid: client 1239[0:0] has disconnected Jan 23 00:20:11 machine_name acpid: client connected from 1247[0:0] Jan 23 00:20:11 machine_name acpid: 1 client rule loaded UPDATE Added syslog things: before errors, error loop, the complete shutdown(after the big updates): Jan 28 20:40:30 machine_name rtkit-daemon[1339]: Sucessfully called chroot. Jan 28 20:40:30 machine_name rtkit-daemon[1339]: Sucessfully dropped privileges. Jan 28 20:40:30 machine_name rtkit-daemon[1339]: Sucessfully limited resources. Jan 28 20:40:30 machine_name rtkit-daemon[1339]: Running. Jan 28 20:40:30 machine_name rtkit-daemon[1339]: Watchdog thread running. Jan 28 20:40:30 machine_name rtkit-daemon[1339]: Canary thread running. Jan 28 20:40:30 machine_name rtkit-daemon[1339]: Sucessfully made thread 1337 of process 1337 (n/a) owned by '1001' high priority at nice level -11. Jan 28 20:40:30 machine_name rtkit-daemon[1339]: Supervising 1 threads of 1 processes of 1 users. Jan 28 20:40:32 machine_name rtkit-daemon[1339]: Sucessfully made thread 1345 of process 1337 (n/a) owned by '1001' RT at priority 5. Jan 28 20:40:32 machine_name rtkit-daemon[1339]: Supervising 2 threads of 1 processes of 1 users. Jan 28 20:40:32 machine_name rtkit-daemon[1339]: Sucessfully made thread 1349 of process 1337 (n/a) owned by '1001' RT at priority 5. Jan 28 20:40:32 machine_name rtkit-daemon[1339]: Supervising 3 threads of 1 processes of 1 users. Jan 28 20:40:37 machine_name pulseaudio[1337]: ratelimit.c: 2 events suppressed Jan 28 20:41:33 machine_name AptDaemon: INFO: Initializing daemon Jan 28 20:41:44 machine_name kernel: [ 167.691563] lo: Disabled Privacy Extensions Jan 28 20:47:33 machine_name AptDaemon: INFO: Quiting due to inactivity Jan 28 20:47:33 machine_name AptDaemon: INFO: Shutdown was requested Jan 28 20:59:50 machine_name kernel: [ 1253.840513] lo: Disabled Privacy Extensions Jan 28 21:17:02 machine_name CRON[1874]: (root) CMD ( cd / && run-parts --report /etc/cron.hourly) Jan 28 21:17:38 machine_name kernel: [ 2321.553239] lo: Disabled Privacy Extensions Jan 28 22:07:44 machine_name kernel: [ 5327.840254] lo: Disabled Privacy Extensions Jan 28 22:17:02 machine_name CRON[2665]: (root) CMD ( cd / && run-parts --report /etc/cron.hourly) Jan 28 22:32:38 machine_name sudo: pam_sm_authenticate: Called Jan 28 22:32:38 machine_name sudo: pam_sm_authenticate: username = [some_user] Jan 28 22:32:38 machine_name sudo: pam_sm_authenticate: /home/some_user is already mounted Jan 28 22:57:03 machine_name kernel: [ 8286.641472] lo: Disabled Privacy Extensions Jan 28 22:57:24 machine_name sudo: pam_sm_authenticate: Called Jan 28 22:57:24 machine_name sudo: pam_sm_authenticate: username = [some_user] Jan 28 22:57:24 machine_name sudo: pam_sm_authenticate: /home/some_user is already mounted Jan 28 23:07:42 machine_name kernel: [ 8925.272030] [drm:i915_hangcheck_elapsed] *ERROR* Hangcheck timer elapsed... GPU hung Jan 28 23:07:42 machine_name kernel: [ 8925.272048] render error detected, EIR: 0x00000000 Jan 28 23:07:42 machine_name kernel: [ 8925.272093] [drm:i915_do_wait_request] *ERROR* i915_do_wait_request returns -5 (awaiting 171453 at 171452) Jan 28 23:07:45 machine_name kernel: [ 8928.868041] [drm:i915_gem_idle] *ERROR* hardware wedged Jan 28 23:08:10 machine_name acpid: client 925[0:0] has disconnected Jan 28 23:08:10 machine_name acpid: client connected from 8127[0:0] Jan 28 23:08:10 machine_name acpid: 1 client rule loaded Jan 28 23:08:11 machine_name kernel: [ 8955.046248] [drm:i915_gem_entervt_ioctl] *ERROR* Reenabling wedged hardware, good luck Jan 28 23:08:12 machine_name kernel: [ 8955.364016] [drm:i915_hangcheck_elapsed] *ERROR* Hangcheck timer elapsed... GPU hung Jan 28 23:08:12 machine_name kernel: [ 8955.364027] render error detected, EIR: 0x00000000 Jan 28 23:08:12 machine_name kernel: [ 8955.364407] [drm:i915_do_wait_request] *ERROR* i915_do_wait_request returns -5 (awaiting 171457 at 171452) Jan 28 23:08:14 machine_name kernel: [ 8957.472025] [drm:i915_gem_idle] *ERROR* hardware wedged Jan 28 23:08:14 machine_name acpid: client 8127[0:0] has disconnected Jan 28 23:08:14 machine_name acpid: client connected from 8141[0:0] Jan 28 23:08:14 machine_name acpid: 1 client rule loaded Jan 28 23:08:15 machine_name kernel: [ 8958.671722] [drm:i915_gem_entervt_ioctl] *ERROR* Reenabling wedged hardware, good luck Jan 28 23:08:15 machine_name kernel: [ 8958.988015] [drm:i915_hangcheck_elapsed] *ERROR* Hangcheck timer elapsed... GPU hung Jan 28 23:08:15 machine_name kernel: [ 8958.988026] render error detected, EIR: 0x00000000 Jan 28 23:08:15 machine_name kernel: [ 8958.989400] [drm:i915_do_wait_request] *ERROR* i915_do_wait_request returns -5 (awaiting 171459 at 171452) Jan 28 23:08:16 machine_name init: tty4 main process (848) killed by TERM signal Jan 28 23:08:16 machine_name init: tty5 main process (856) killed by TERM signal Jan 28 23:08:16 machine_name NetworkManager: nm_signal_handler(): Caught signal 15, shutting down normally. Jan 28 23:08:16 machine_name init: tty2 main process (874) killed by TERM signal Jan 28 23:08:16 machine_name init: tty3 main process (875) killed by TERM signal Jan 28 23:08:16 machine_name init: tty6 main process (877) killed by TERM signal Jan 28 23:08:16 machine_name init: cron main process (890) killed by TERM signal Jan 28 23:08:16 machine_name init: tty1 main process (1146) killed by TERM signal Jan 28 23:08:16 machine_name avahi-daemon[644]: Got SIGTERM, quitting. Jan 28 23:08:16 machine_name avahi-daemon[644]: Leaving mDNS multicast group on interface eth0.IPv4 with address 10.238.11.134. Jan 28 23:08:16 machine_name acpid: exiting Jan 28 23:08:16 machine_name init: avahi-daemon main process (644) terminated with status 255 Jan 28 23:08:17 machine_name kernel: Kernel logging (proc) stopped. Jan 28 23:09:00 machine_name kernel: imklog 4.2.0, log source = /proc/kmsg started. Jan 28 23:09:00 machine_name rsyslogd: [origin software="rsyslogd" swVersion="4.2.0" x-pid="516" x-info="http://www.rsyslog.com"] (re)start Jan 28 23:09:00 machine_name rsyslogd: rsyslogd's groupid changed to 103 Jan 28 23:09:00 machine_name rsyslogd: rsyslogd's userid changed to 101 Jan 28 23:09:00 machine_name rsyslogd-2039: Could no open output file '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ] When I hit the On/Off button, the system shuts down normally. May be it a hardware problem, but I don't know... Can you say something useful to solve my problem?

    Read the article

  • Today at Oracle OpenWorld 2012

    - by Scott McNeil
    We have another full day of great Oracle OpenWorld keynotes, sessions, demos and customer presentations in the Seen and Be Heard threater. Here's a quick run down of what's happening today with Oracle Enterprise Manager 12c: Download the Oracle Enterprise Manager 12c OpenWorld schedule (PDF) Oracle Enterprise Manager Cloud Control 12c (and Private Cloud) General Session Tues 2 Oct, 2012 Time Title Location 11:45 AM - 12:45 PM General Session: Using Oracle Enterprise Manager to Manage Your Own Private Cloud Moscone South - 103* 1:15 PM - 2:15 PM General Session: Breakthrough Efficiency in Private Cloud Infrastructure Moscone West - 3014 Conference Session Tues 2 Oct, 2012 Time Title Location 10:15 AM - 11:15 AM Oracle Exadata/Oracle Enterprise Manager 12c: Journey into Oracle Database Cloud Moscone West - 3018 10:15 AM - 11:15 AM Bulletproof Your Application Upgrades with Secure Data Masking and Subsetting Moscone West - 3020 10:15 AM - 11:15 AM Oracle Enterprise Manager 12c: Architecture Deep Dive, Tips, and Techniques Moscone South - 303 11:45 AM - 12:45 PM RDBMS Forensics: Troubleshooting with Active Session History Moscone West - 3018 11:45 AM - 12:45 PM Building and Operationalizing Your Data Center Environment with Oracle Exalogic Moscone South - 309 11:45 AM - 12:45 PM Securely Building a National Electronic Health Record: Singapore Case Study Westin San Francisco - Concordia 1:15 PM - 2:15 PM Managing Heterogeneous Environments with Oracle Enterprise Manager Moscone West - 3018 1:15 PM - 2:15 PM Complete Oracle WebLogic Server Management with Oracle Enterprise Manager 12c Moscone South - 309 1:15 PM - 2:15 PM Database Lifecycle Management with Oracle Enterprise Manager 12c Moscone West - 3020 1:15 PM - 2:15 PM Best Practices, Key Features, Tips, Techniques for Oracle Enterprise Manager 12c Upgrade Moscone South - 307 1:15 PM - 2:15 PM Enterprise Cloud with CSC’s Foundation Services for Oracle and Oracle Enterprise Manager 12c Moscone South - 236 5:00 PM - 6:00 PM Deep Dive 3-D on Oracle Exadata Management: From Discovery to Deployment to Diagnostics Moscone West - 3018 5:00 PM - 6:00 PM Everything You Need to Know About Monitoring and Troubleshooting Oracle GoldenGate Moscone West - 3005 5:00 PM - 6:00 PM Oracle Enterprise Manager 12c: The Nerve Center of Oracle Cloud Moscone West - 3020 5:00 PM - 6:00 PM Advanced Management of Oracle E-Business Suite with Oracle Enterprise Manager Moscone West - 2016 5:00 PM - 6:00 PM Oracle Enterprise Manager 12c Cloud Control Performance Pages: Falling in Love Again Moscone West - 3014 Hands-on Labs Tues 2 Oct, 2012 Time Title Location 10:15 AM - 12:45 PM Managing the Cloud with Oracle Enterprise Manager 12c Marriott Marquis - Salon 5/6 1:15 PM - 2:15 PM Database Performance Tuning Hands-on Lab Marriott Marquis - Salon 5/6 Scene and Be Heard Theater Session Tues 2 Oct, 2012 Time Title Location 10:30 AM - 10:50 AM Start Small, Grow Big: Hands-On Oracle Private Cloud—A Step-by-Step Guide Moscone South Exhibition Hall - Booth 2407 12:30 PM - 12:50 PM Blue Medora’s Oracle Enterprise Manager Plug-in for VMware vSphere Monitoring Moscone South Exhibition Hall - Booth 2407 Demos Demo Location Application and Infrastructure Testing Moscone West - W-092 Automatic Application and SQL Tuning Moscone South, Left - S-042 Automatic Fault Diagnostics Moscone South, Left - S-036 Automatic Performance Diagnostics Moscone South, Left - S-033 Complete Care for Oracle Using My Oracle Support Moscone South, Left - S-031 Complete Cloud Lifecycle Management Moscone North, Upper Lobby - N-019 Complete Database Lifecycle Management Moscone South, Left - S-030 Comprehensive Infrastructure as a Service via Oracle Enterprise Manager Moscone South, Left - S-045 Data Masking and Data Subsetting Moscone South, Left - S-034 Database Testing with Oracle Real Application Testing Moscone South, Left - S-041 Identity Management Monitoring with Oracle Enterprise Manager Moscone South, Right - S-212 Mission-Critical, SPARC-Powered Infrastructure as a Service Moscone South, Center - S-157 Oracle E-Business Suite, Siebel, JD Edwards, and PeopleSoft Management Moscone West - W-084 Oracle Enterprise Manager Cloud Control 12c Overview Moscone South, Left - S-039 Oracle Enterprise Manager: Complete Data Center Management Moscone South, Left - S-040 Oracle Exadata Management Moscone South, Center - Oracle Exalogic Management Moscone South, Center - Oracle Fusion Applications Management Moscone West - W-018 Oracle Real User Experience Insight Moscone South, Right - S-226 Oracle WebLogic Server Management and Java Diagnostics Moscone South, Right - S-206 Platform as a Service Using Oracle Enterprise Manager Moscone North, Upper Lobby - N-020 SOA Management Moscone South, Right - S-225 Self-Service Application Testing on Private and Public Clouds Moscone West - W-110 Oracle OpenWorld Music Festival New this year is Oracle’s first annual Oracle OpenWorld Musical Festival, featuring some of today's breakthrough musicians from around the country and the world. It's five nights of back-to-back performances in the heart of San Francisco—free to registered attendees. See the lineup Not Heading to OpenWorld—Watch it Live! Stay Connected: Twitter | Facebook | YouTube | Linkedin | Newsletter Download the Oracle Enterprise Manager Cloud Control12c Mobile app

    Read the article

  • Oracle and Partners release CAMP specification for PaaS Management

    - by macoracle
    Cloud Application Management for Platforms The public release of the Cloud Application Management for Platforms (CAMP) specification, an initial draft of what is expected to become an industry standard self service interface specification for Platform as a Service (PaaS) management, represents a significant milestone in cloud standards development. Created by several players in the emerging cloud industry, including Oracle, the specification is being submitted to the OASIS standards organization (draft charter) where it will be finalized in an open development process. CAMP is targeted at application developers and deployers for self service management of their application on a Platform-as-a-Service cloud. It is closely aligned with the application development process where applications are typically developed in an Application Development Environment (ADE) and then deployed into a private or public platform cloud. CAMP standardizes the model behind an application’s dependencies on platform components and provides a standardized format for moving applications between the ADE and the cloud, and if and when desirable, between clouds. Once an application is deployed, CAMP provides users with a standardized self service interface to the PaaS offering, allowing the cloud consumer to manage the lifecycle of the application on that platform and the use of the underlying platform services. The CAMP interface includes a RESTful binding of the CAMP model onto the standard HTTP protocol, using JSON as the encoding for the model resources. The model for CAMP includes resources that represent the Application, its Components and any Platform Components that they depend on. It's important PaaS Cloud consumers understand that for a PaaS cloud, these are the abstractions that the user would prefer to work with, not Virtual Machines and the various resources such as compute power, storage and networking. PaaS cloud consumers would also not like to become system administrators for the infrastructure that is hosting their applications and component services. CAMP works on this more abstract level, and yet still accommodates platforms that are built using an underlying infrastructure cloud. With CAMP, it is up to the cloud provider whether or not this underlying infrastructure is exposed to the consumer. One major challenge addressed by the CAMP specification is that of ensuring that application deployment on a new platform is as seamless and error free as possible. This becomes even more difficult when the application may have been developed for a different platform and is now moving to a new one. In CAMP this is accomplished by matching the requirements of the application and its components to the specific capabilities of the underlying platform. This needs to be done regardless of whether there are existing pools of virtualized platform resources (such as a database pool) which are provisioned(on the basis of a schema for example), or whether the platform component is really just a set of virtual machines drawn from an infrastructure pool. The interoperability between platform clouds that CAMP offers means that a CAMP client such as an ADE can target multiple clouds with a single common interface. Applications can even be spread across multiple platform clouds and then managed without needing to create a specialized adapter to manage the components running in each cloud. The development of CAMP has been an effort by a small set of companies, but there are significant advantages to this approach. For example, the way that each of these companies creates their platforms is different enough, to ensure that CAMP can cover a wide range of actual deployments. CAMP is now entering the next phase of development under the guidance of an open standards organization, OASIS, which will likely broaden it’s capabilities. We hope is to keep it concise and minimal, however, to ease implementation and adoption. Over time there will be many different types of platform components that applications can use and which need management. CAMP at this point only includes one example of this (in an appendix) – DataBase as a Service. I am looking forward to the start of the CAMP Technical Committee in OASIS and will do my best to ensure a successful development process. Hope to see you there.

    Read the article

  • What's up with LDoms: Part 9 - Direct IO

    - by Stefan Hinker
    In the last article of this series, we discussed the most general of all physical IO options available for LDoms, root domains.  Now, let's have a short look at the next level of granularity: Virtualizing individual PCIe slots.  In the LDoms terminology, this feature is called "Direct IO" or DIO.  It is very similar to root domains, but instead of reassigning ownership of a complete root complex, it only moves a single PCIe slot or endpoint device to a different domain.  Let's look again at hardware available to mars in the original configuration: root@sun:~# ldm ls-io NAME TYPE BUS DOMAIN STATUS ---- ---- --- ------ ------ pci_0 BUS pci_0 primary pci_1 BUS pci_1 primary pci_2 BUS pci_2 primary pci_3 BUS pci_3 primary /SYS/MB/PCIE1 PCIE pci_0 primary EMP /SYS/MB/SASHBA0 PCIE pci_0 primary OCC /SYS/MB/NET0 PCIE pci_0 primary OCC /SYS/MB/PCIE5 PCIE pci_1 primary EMP /SYS/MB/PCIE6 PCIE pci_1 primary EMP /SYS/MB/PCIE7 PCIE pci_1 primary EMP /SYS/MB/PCIE2 PCIE pci_2 primary EMP /SYS/MB/PCIE3 PCIE pci_2 primary OCC /SYS/MB/PCIE4 PCIE pci_2 primary EMP /SYS/MB/PCIE8 PCIE pci_3 primary EMP /SYS/MB/SASHBA1 PCIE pci_3 primary OCC /SYS/MB/NET2 PCIE pci_3 primary OCC /SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary /SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary /SYS/MB/NET2/IOVNET.PF0 PF pci_3 primary /SYS/MB/NET2/IOVNET.PF1 PF pci_3 primary All of the "PCIE" type devices are available for SDIO, with a few limitations.  If the device is a slot, the card in that slot must support the DIO feature.  The documentation lists all such cards.  Moving a slot to a different domain works just like moving a PCI root complex.  Again, this is not a dynamic process and includes reboots of the affected domains.  The resulting configuration is nicely shown in a diagram in the Admin Guide: There are several important things to note and consider here: The domain receiving the slot/endpoint device turns into an IO domain in LDoms terminology, because it now owns some physical IO hardware. Solaris will create nodes for this hardware under /devices.  This includes entries for the virtual PCI root complex (pci_0 in the diagram) and anything between it and the actual endpoint device.  It is very important to understand that all of this PCIe infrastructure is virtual only!  Only the actual endpoint devices are true physical hardware. There is an implicit dependency between the guest owning the endpoint device and the root domain owning the real PCIe infrastructure: Only if the root domain is up and running, will the guest domain have access to the endpoint device. The root domain is still responsible for resetting and configuring the PCIe infrastructure (root complex, PCIe level configurations, error handling etc.) because it owns this part of the physical infrastructure. This also means that if the root domain needs to reset the PCIe root complex for any reason (typically a reboot of the root domain) it will reset and thus disrupt the operation of the endpoint device owned by the guest domain.  The result in the guest is not predictable.  I recommend to configure the resulting behaviour of the guest using domain dependencies as described in the Admin Guide in Chapter "Configuring Domain Dependencies". Please consult the Admin Guide in Section "Creating an I/O Domain by Assigning PCIe Endpoint Devices" for all the details! As you can see, there are several restrictions for this feature.  It was introduced in LDoms 2.0, mainly to allow the configuration of guest domains that need access to tape devices.  Today, with the higher number of PCIe root complexes and the availability of SR-IOV, the need to use this feature is declining.  I personally do not recommend to use it, mainly because of the drawbacks of the depencies on the root domain and because it can be replaced with SR-IOV (although then with similar limitations). This was a rather short entry, more for completeness.  I believe that DIO can usually be replaced by SR-IOV, which is much more flexible.  I will cover SR-IOV in the next section of this blog series.

    Read the article

  • How to Use Steam In-Home Streaming

    - by Chris Hoffman
    Steam’s In-Home Streaming is now available to everyone, allowing you to stream PC games from one PC to another PC on the same local network. Use your gaming PC to power your laptops and home theater system. This feature doesn’t allow you to stream games over the Internet, only the same local network. Even if you tricked Steam, you probably wouldn’t get good streaming performance over the Internet. Why Stream? When you use Steam In-Home streaming, one PC sends its video and audio to another PC. The other PC views the video and audio like it’s watching a movie, sending back mouse, keyboard, and controller input to the other PC. This allows you to have a fast gaming PC power your gaming experience on slower PCs. For example, you could play graphically demanding games on a laptop in another room of your house, even if that laptop has slower integrated graphics. You could connect a slower PC to your television and use your gaming PC without hauling it into a different room in your house. Streaming also enables cross-platform compatibility. You could have a Windows gaming PC and stream games to a Mac or Linux system. This will be Valve’s official solution for compatibility with old Windows-only games on the Linux (Steam OS) Steam Machines arriving later this year. NVIDIA offers their own game streaming solution, but it requires certain NVIDIA graphics hardware and can only stream to an NVIDIA Shield device. How to Get Started In-Home Streaming is simple to use and doesn’t require any complex configuration — or any configuration, really. First, log into the Steam program on a Windows PC. This should ideally be a powerful gaming PC with a powerful CPU and fast graphics hardware. Install the games you want to stream if you haven’t already — you’ll be streaming from your PC, not from Valve’s servers. (Valve will eventually allow you to stream games from Mac OS X, Linux, and Steam OS systems, but that feature isn’t yet available. You can still stream games to these other operating systems.) Next, log into Steam on another computer on the same network with the same Steam username. Both computers have to be on the same subnet of the same local network. You’ll see the games installed on your other PC in the Steam client’s library. Click the Stream button to start streaming a game from your other PC. The game will launch on your host PC, and it will send its audio and video to the PC in front of you. Your input on the client will be sent back to the server. Be sure to update Steam on both computers if you don’t see this feature. Use the Steam > Check for Updates option within Steam and install the latest update. Updating to the latest graphics drivers for your computer’s hardware is always a good idea, too. Improving Performance Here’s what Valve recommends for good streaming performance: Host PC: A quad-core CPU for the computer running the game, minimum. The computer needs enough processor power to run the game, compress the video and audio, and send it over the network with low latency. Streaming Client: A GPU that supports hardware-accelerated H.264 decoding on the client PC. This hardware is included on all recent laptops and PCs. Ifyou have an older PC or netbook, it may not be able to decode the video stream quickly enough. Network Hardware: A wired network connection is ideal. You may have success with wireless N or AC networks with good signals, but this isn’t guaranteed. Game Settings: While streaming a game, visit the game’s setting screen and lower the resolution or turn off VSync to speed things up. In-Home Steaming Settings: On the host PC, click Steam > Settings and select In-Home Streaming to view the In-Home Streaming settings. You can modify your streaming settings to improve performance and reduce latency. Feel free to experiment with the options here and see how they affect performance — they should be self-explanatory. Check Valve’s In-Home Streaming documentation for troubleshooting information. You can also try streaming non-Steam games. Click Games > Add a Non-Steam Game to My Library on your host PC and add a PC game you have installed elsewhere on your system. You can then try streaming it from your client PC. Valve says this “may work but is not officially supported.” Image Credit: Robert Couse-Baker on Flickr, Milestoned on Flickr

    Read the article

  • VADs (Value Added Distributors) Oracle em Portugal

    - by Paulo Folgado
    Com a recente incorporação da Sun na Oracle, e o consequente acolhimento no seu canal de revenda dos distribuidores de Hardware (designados até então pela Sun por CDP - Channel Development Provider), a Oracle aproveitou para fazer, a nível global, uma reformulação do seu canal de distribuição.Essa reformulação pretendeu alcançar vários objectivos: Uniformizar as condições comerciais e de processos entre os CDPs Sun agora incorporados e os VAD Oracle já existentes Reduzir o número total de VADs a nível global Dar preferência a VADs com operações internacionais, em detrimento das operações puramente locais num só país Conceder a cada um dos VADs seleccionados a distribuição de todas as linhas de produtos Oracle, incluindo Software e Hardware.Assim, em resultado dessa reformulação, temos o prazer de anunciar que a Oracle Portugal passa a operar com os dois seguintes VADs: Cada um destes VADs passa a distribuir indistintamente, como acima foi referido, as linhas de produtos Software e Hardware. Para mais detalhes sobre as 2 empresas e os respectivos contactos, favor consultar em: http://blogs.oracle.com/opnportugal/vad/vad.html. Estamos certos que esta reformulação virá contribuir para uma ainda maior dinamização do ecosistema de parceiros da Oracle Portugal.

    Read the article

  • Why should we use low level languages if a high level one like python can do almost everything? [closed]

    - by killown
    I know python is not suitable for things like microcontrolers, make drivers etc, but besides that, you can do everything using python, companys get stuck with speed optimizations for real hard time system but does forget other factors which one you can just upgrade your hardware for speed proposes in order to get your python program fit in it, if you think how much cust can the company have to maintain a system written in C, the comparison is like that: for example: 10 programmers to mantain a system written in c and just one programmer to mantain a system written in python, with python you can buy some better hardware to fit your python program, I think that low level languages tend to get more cost, since programmers aren't so cheaply than a hardware upgrade, then, this is my point, why should a system be written in c instead of python?

    Read the article

  • lubuntu - Sound card detected but no sound

    - by CookieMonster
    I installed Lubuntu 12.10 on my old laptop (Sharp Mebius PC-MR80J), but sound does not work. Here are things I tried. aplay -l does not output anything. When I run alsamixer, I see only one bar that says "Beep". I installed pavucontrol, pulseaudio, pulseaudio-utils and libgtk-3-0 and checked output devices, but I only see "Dummy ouput" and there is no hardware output devices. cat /proc/asound/cards returns the following. 0 [Intel ]: HDA-Intel - HDA Intel HDA Intel at 0xfeb38000 irq 40 cat /proc/asound/devices outputs the following. 1: : sequencer 2: [ 0- 1]: hardware dependent 3: [ 0- 0]: hardware dependent 4: [ 0] : control 33: : timer The laptop was running Windows XP before and sound (both input and outpu) was working. What can I do now?

    Read the article

  • Should integer divide by zero halt execution?

    - by Pyrolistical
    I know that modern languages handle integer divide by zero as an error just like the hardware does, but what if we could design a whole new language? Ignoring existing hardware, what should a programming language does when an integer divide by zero occurs? Should it return a NaN of type integer? Or should it mirror IEEE 754 float and return +/- Infinity? Or is the existing design choice correct, and an error should be thrown? Is there a language that handles integer divide by zero nicely? EDIT When I said ignore existing hardware, I mean don't assume integer is represented as 32 bits, it can be represented in anyway you can to imagine.

    Read the article

  • Windows 8 fresh install and 12.10 dual boot

    - by Sir Linuxalot
    I have a question concerning Windows 8 and dual booting with Ubuntu 12.10. I've researched answers here, but haven't seen a question that resembles mine exactly: Ubuntu install and dual Boot with Windows 8 UEFI UEFI hardware and dual booting with windows Ubuntu 12.10 wont boot Specifically, I'm pondering installing a fresh install of Windows 8 (for game purposes), and a fresh install of 12.10 and dual booting them. I'm not sure if UEFI is hardware specific or software specific, and I'm worried if I try to implement the dual boot I'm going to run into UEFI issues and have to go through the grief of getting things up and running by following a long and tedious procedure. Can I, starting with Windows 8, then install 12.10 without too much hassle? My current hardware config is: Microstar Motherboard 7514 with an Intel Core 2 Duo processor. The drive I'm thinking of using is a Western Digital TB drive, new out of the box. As always, any help would be appreciated. Thanks.

    Read the article

  • Need multiple sound outputs to multiple speakers

    - by Usman Sajeel Haider
    How do I play 3 different music tracks at the same time on my computer, such that song1 is played in speaker1, song2 in speaker2... Is this possible programatically? What additional hardware will I need? Do I need 3 seperate sound cards? Given that the hardware is in place, how would I "route" the sound output for a particular song to a particular speaker. Alternatively, is there a special hardware that can handle multiple inputs and outputs? Appreciate your expert opinions.

    Read the article

  • How do you repair an "input/output error" in an NTFS partition?

    - by Calixte
    I replaced a buggy Windows Vista installation with Ubuntu. All works fine except that the mais harddrive where I had all my files are now inaccessible. Here is the eror message I get: Error mounting: mount exited with exit code 13: ntfs_attr_pread_i: ntfs_pread failed: Input/output error Failed to read NTFS $Bitmap: Input/output error NTFS is either inconsistent, or there is a hardware fault, or it's a SoftRAID/FakeRAID hardware. In the first case run chkdsk /f on Windows then reboot into Windows twice. The usage of the /f parameter is very important! If the device is a SoftRAID/FakeRAID then first activate it and mount a different device under the /dev/mapper/ directory, (e.g. /dev/mapper/nvidia_eahaabcc1). Please see the 'dmraid' documentation for more details Is it necessarily a hardware problem? If not, is there a way to repair the HD from Ubuntu?

    Read the article

  • Ubuntu 12.04 on MBPro, Early 2011, options

    - by sthysel
    I have a 2.2 GHz i7, 4GB MacBook Pro 8.3, AMD Radeon HD 6750M 1024 MB, Early 2011. As far as I see I have two options, running Ubuntu on this hardware: VMWare/Virtualbox and Ubuntu in a VM, I already ordered a 16G RAM upgrade for this. Wipe OSX and go Ubuntu native, with 16G RAM, yay ! I'm kinda leaning towards option 2 as I tend to spend 90% of my time in dev VM's at work anyway. All my other machines at home, and most at work are Ubuntu/Linux as well. I have a Mac mini on standby for the odd Itunes backup/sync. If I don't have to keep OSX around, I would like to get rid of it altogether. Ubuntu support on Mac hardware seems to be a hit and miss affair as far as I can tell. Does anyone have good success running a recent version of Ubuntu on this hardware ? Thanks

    Read the article

  • Windows Azure VMs - New "Stopped" VM Options Provide Cost-effective Flexibility for On-Demand Workloads

    - by KeithMayer
    Originally posted on: http://geekswithblogs.net/KeithMayer/archive/2013/06/22/windows-azure-vms---new-stopped-vm-options-provide-cost-effective.aspxDidn’t make it to TechEd this year? Don’t worry!  This month, we’ll be releasing a new article series that highlights the Best of TechEd announcements and technical information for IT Pros.  Today’s article focuses on a new, much-heralded enhancement to Windows Azure Infrastructure Services to make it more cost-effective for spinning VMs up and down on-demand on the Windows Azure cloud platform. NEW! VMs that are shutdown from the Windows Azure Management Portal will no longer continue to accumulate compute charges while stopped! Previous to this enhancement being available, the Azure platform maintained fabric resource reservations for VMs, even in a shutdown state, to ensure consistent resource availability when starting those VMs in the future.  And, this meant that VMs had to be exported and completely deprovisioned when not in use to avoid compute charges. In this article, I'll provide more details on the scenarios that this enhancement best fits, and I'll also review the new options and considerations that we now have for performing safe shutdowns of Windows Azure VMs. Which scenarios does the new enhancement best fit? Being able to easily shutdown VMs from the Windows Azure Management Portal without continued compute charges is a great enhancement for certain cloud use cases, such as: On-demand dev/test/lab environments - Freely start and stop lab VMs so that they are only accumulating compute charges when being actively used.  "Bursting" load-balanced web applications - Provision a number of load-balanced VMs, but keep the minimum number of VMs running to support "normal" loads. Easily start-up the remaining VMs only when needed to support peak loads. Disaster Recovery - Start-up "cold" VMs when needed to recover from disaster scenarios. BUT ... there is a consideration to keep in mind when using the Windows Azure Management Portal to shutdown VMs: although performing a VM shutdown via the Windows Azure Management Portal causes that VM to no longer accumulate compute charges, it also deallocates the VM from fabric resources to which it was previously assigned.  These fabric resources include compute resources such as virtual CPU cores and memory, as well as network resources, such as IP addresses.  This means that when the VM is later started after being shutdown from the portal, the VM could be assigned a different IP address or placed on a different compute node within the fabric. In some cases, you may want to shutdown VMs using the old approach, where fabric resource assignments are maintained while the VM is in a shutdown state.  Specifically, you may wish to do this when temporarily shutting down or restarting a "7x24" VM as part of a maintenance activity.  Good news - you can still revert back to the old VM shutdown behavior when necessary by using the alternate VM shutdown approaches listed below.  Let's walk through each approach for performing a VM Shutdown action on Windows Azure so that we can understand the benefits and considerations of each... How many ways can I shutdown a VM? In Windows Azure Infrastructure Services, there's three general ways that can be used to safely shutdown VMs: Shutdown VM via Windows Azure Management Portal Shutdown Guest Operating System inside the VM Stop VM via Windows PowerShell using Windows Azure PowerShell Module Although each of these options performs a safe shutdown of the guest operation system and the VM itself, each option handles the VM shutdown end state differently. Shutdown VM via Windows Azure Management Portal When clicking the Shutdown button at the bottom of the Virtual Machines page in the Windows Azure Management Portal, the VM is safely shutdown and "deallocated" from fabric resources.  Shutdown button on Virtual Machines page in Windows Azure Management Portal  When the shutdown process completes, the VM will be shown on the Virtual Machines page with a "Stopped ( Deallocated )" status as shown in the figure below. Virtual Machine in a "Stopped (Deallocated)" Status "Deallocated" means that the VM configuration is no longer being actively associated with fabric resources, such as virtual CPUs, memory and networks. In this state, the VM will not continue to allocate compute charges, but since fabric resources are deallocated, the VM could receive a different internal IP address ( called "Dynamic IPs" or "DIPs" in Windows Azure ) the next time it is started.  TIP: If you are leveraging this shutdown option and consistency of DIPs is important to applications running inside your VMs, you should consider using virtual networks with your VMs.  Virtual networks permit you to assign a specific IP Address Space for use with VMs that are assigned to that virtual network.  As long as you start VMs in the same order in which they were originally provisioned, each VM should be reassigned the same DIP that it was previously using. What about consistency of External IP Addresses? Great question! External IP addresses ( called "Virtual IPs" or "VIPs" in Windows Azure ) are associated with the cloud service in which one or more Windows Azure VMs are running.  As long as at least 1 VM inside a cloud service remains in a "Running" state, the VIP assigned to a cloud service will be preserved.  If all VMs inside a cloud service are in a "Stopped ( Deallocated )" status, then the cloud service may receive a different VIP when VMs are next restarted. TIP: If consistency of VIPs is important for the cloud services in which you are running VMs, consider keeping one VM inside each cloud service in the alternate VM shutdown state listed below to preserve the VIP associated with the cloud service. Shutdown Guest Operating System inside the VM When performing a Guest OS shutdown or restart ( ie., a shutdown or restart operation initiated from the Guest OS running inside the VM ), the VM configuration will not be deallocated from fabric resources. In the figure below, the VM has been shutdown from within the Guest OS and is shown with a "Stopped" VM status rather than the "Stopped ( Deallocated )" VM status that was shown in the previous figure. Note that it may require a few minutes for the Windows Azure Management Portal to reflect that the VM is in a "Stopped" state in this scenario, because we are performing an OS shutdown inside the VM rather than through an Azure management endpoint. Virtual Machine in a "Stopped" Status VMs shown in a "Stopped" status will continue to accumulate compute charges, because fabric resources are still being reserved for these VMs.  However, this also means that DIPs and VIPs are preserved for VMs in this state, so you don't have to worry about VMs and cloud services getting different IP addresses when they are started in the future. Stop VM via Windows PowerShell In the latest version of the Windows Azure PowerShell Module, a new -StayProvisioned parameter has been added to the Stop-AzureVM cmdlet. This new parameter provides the flexibility to choose the VM configuration end result when stopping VMs using PowerShell: When running the Stop-AzureVM cmdlet without the -StayProvisioned parameter specified, the VM will be safely stopped and deallocated; that is, the VM will be left in a "Stopped ( Deallocated )" status just like the end result when a VM Shutdown operation is performed via the Windows Azure Management Portal.  When running the Stop-AzureVM cmdlet with the -StayProvisioned parameter specified, the VM will be safely stopped but fabric resource reservations will be preserved; that is the VM will be left in a "Stopped" status just like the end result when performing a Guest OS shutdown operation. So, with PowerShell, you can choose how Windows Azure should handle VM configuration and fabric resource reservations when stopping VMs on a case-by-case basis. TIP: It's important to note that the -StayProvisioned parameter is only available in the latest version of the Windows Azure PowerShell Module.  So, if you've previously downloaded this module, be sure to download and install the latest version to get this new functionality. Want to Learn More about Windows Azure Infrastructure Services? To learn more about Windows Azure Infrastructure Services, be sure to check-out these additional FREE resources: Become our next "Early Expert"! Complete the Early Experts "Cloud Quest" and build a multi-VM lab network in the cloud for FREE!  Build some cool scenarios! Check out our list of over 20+ Step-by-Step Lab Guides based on key scenarios that IT Pros are implementing on Windows Azure Infrastructure Services TODAY!  Looking forward to seeing you in the Cloud! - Keith Build Your Lab! Download Windows Server 2012 Don’t Have a Lab? Build Your Lab in the Cloud with Windows Azure Virtual Machines Want to Get Certified? Join our Windows Server 2012 "Early Experts" Study Group

    Read the article

  • The Application Architecture Domain

    - by Michael Glas
    I have been spending a lot of time thinking about Application Architecture in the context of EA. More specifically, as an Enterprise Architect, what do I need to consider when looking at/defining/designing the Application Architecture Domain?There are several definitions of Application Architecture. TOGAF says “The objective here [in Application Architecture] is to define the major kinds of application system necessary to process the data and support the business”. FEA says the Application Architecture “Defines the applications needed to manage the data and support the business functions”.I agree with these definitions. They reflect what the Application Architecture domain does. However, they need to be decomposed to be practical.I find it useful to define a set of views into the Application Architecture domain. These views reflect what an EA needs to consider when working with/in the Applications Architecture domain. These viewpoints are, at a high level:Capability View: This view reflects how applications alignment with business capabilities. It is a super set of the following views when viewed in aggregate. By looking at the Application Architecture domain in terms of the business capabilities it supports, you get a good perspective on how those applications are directly supporting the business.Technology View: The technology view reflects the underlying technology that makes up the applications. Based on the number of rationalization activities I have seen (more specifically application rationalization), the phrase “complexity equals cost” drives the importance of the technology view, especially when attempting to reduce that complexity through standardization type activities. Some of the technology components to be considered are: Software: The application itself as well as the software the application relies on to function (web servers, application servers). Infrastructure: The underlying hardware and network components required by the application and supporting application software. Development: How the application is created and maintained. This encompasses development components that are part of the application itself (i.e. customizable functions), as well as bolt on development through web services, API’s, etc. The maintenance process itself also falls under this view. Integration: The interfaces that the application provides for integration as well as the integrations to other applications and data sources the application requires to function. Type: Reflects the kind of application (mash-up, 3 tiered, etc). (Note: functional type [CRM, HCM, etc.] are reflected under the capability view). Organization View: Organizations are comprised of people and those people use applications to do their jobs. Trying to define the application architecture domain without taking the organization that will use/fund/change it into consideration is like trying to design a car without thinking about who will drive it (i.e. you may end up building a formula 1 car for a family of 5 that is really looking for a minivan). This view reflects the people aspect of the application. It includes: Ownership: Who ‘owns’ the application? This will usually reflect primary funding and utilization but not always. Funding: Who funds both the acquisition/creation as well as the on-going maintenance (funding to create/change/operate)? Change: Who can/does request changes to the application and what process to the follow? Utilization: Who uses the application, how often do they use it, and how do they use it? Support: Which organization is responsible for the on-going support of the application? Information View: Whether or not you subscribe to the view that “information drives the enterprise”, it is a fact that information is critical. The management, creation, and organization of that information are primary functions of enterprise applications. This view reflects how the applications are tied to information (or at a higher level – how the Application Architecture domain relates to the Information Architecture domain). It includes: Access: The application is the mechanism by which end users access information. This could be through a primary application (i.e. CRM application), or through an information access type application (a BI application as an example). Creation: Applications create data in order to provide information to end-users. (I.e. an application creates an order to be used by an end-user as part of the fulfillment process). Consumption: Describes the data required by applications to function (i.e. a product id is required by a purchasing application to create an order. Application Service View: Organizations today are striving to be more agile. As an EA, I need to provide an architecture that supports this agility. One of the primary ways to achieve the required agility in the application architecture domain is through the use of ‘services’ (think SOA, web services, etc.). Whether it is through building applications from the ground up utilizing services, service enabling an existing application, or buying applications that are already ‘service enabled’, compartmentalizing application functions for re-use helps enable flexibility in the use of those applications in support of the required business agility. The applications service view consists of: Services: Here, I refer to the generic definition of a service “a set of related software functionalities that can be reused for different purposes, together with the policies that should control its usage”. Functions: The activities within an application that are not available / applicable for re-use. This view is helpful when identifying duplication functions between applications that are not service enabled. Delivery Model View: It is hard to talk about EA today without hearing the terms ‘cloud’ or shared services.  Organizations are looking at the ways their applications are delivered for several reasons, to reduce cost (both CAPEX and OPEX), to improve agility (time to market as an example), etc.  From an EA perspective, where/how an application is deployed has impacts on the overall enterprise architecture. From integration concerns to SLA requirements to security and compliance issues, the Enterprise Architect needs to factor in how applications are delivered when designing the Enterprise Architecture. This view reflects how applications are delivered to end-users. The delivery model view consists of different types of delivery mechanisms/deployment options for applications: Traditional: Reflects non-cloud type delivery options. The most prevalent consists of an application running on dedicated hardware (usually specific to an environment) for a single consumer. Private Cloud: The application runs on infrastructure provisioned for exclusive use by a single organization comprising multiple consumers. Public Cloud: The application runs on infrastructure provisioned for open use by the general public. Hybrid: The application is deployed on two or more distinct cloud infrastructures (private, community, or public) that remain unique entities, but are bound together by standardized or proprietary technology that enables data and application portability. While by no means comprehensive, I find that applying these views to the application domain gives a good understanding of what an EA needs to consider when effecting changes to the Application Architecture domain.Finally, the application architecture domain is one of several architecture domains that an EA must consider when developing an overall Enterprise Architecture. The Oracle Enterprise Architecture Framework defines four Primary domains: Business Architecture, Application Architecture, Information Architecture, and Technology Architecture. Each domain links to the others either directly or indirectly at some point. Oracle links them at a high level as follows:Business Capabilities and/or Business Processes (Business Architecture), links to the Applications that enable the capability/process (Applications Architecture – COTS, Custom), links to the Information Assets managed/maintained by the Applications (Information Architecture), links to the technology infrastructure upon which all this runs (Technology Architecture - integration, security, BI/DW, DB infrastructure, deployment model). There are however, times when the EA needs to narrow focus to a particular domain for some period of time. These views help me to do just that.

    Read the article

  • Fraud Detection with the SQL Server Suite Part 2

    - by Dejan Sarka
    This is the second part of the fraud detection whitepaper. You can find the first part in my previous blog post about this topic. My Approach to Data Mining Projects It is impossible to evaluate the time and money needed for a complete fraud detection infrastructure in advance. Personally, I do not know the customer’s data in advance. I don’t know whether there is already an existing infrastructure, like a data warehouse, in place, or whether we would need to build one from scratch. Therefore, I always suggest to start with a proof-of-concept (POC) project. A POC takes something between 5 and 10 working days, and involves personnel from the customer’s site – either employees or outsourced consultants. The team should include a subject matter expert (SME) and at least one information technology (IT) expert. The SME must be familiar with both the domain in question as well as the meaning of data at hand, while the IT expert should be familiar with the structure of data, how to access it, and have some programming (preferably Transact-SQL) knowledge. With more than one IT expert the most time consuming work, namely data preparation and overview, can be completed sooner. I assume that the relevant data is already extracted and available at the very beginning of the POC project. If a customer wants to have their people involved in the project directly and requests the transfer of knowledge, the project begins with training. I strongly advise this approach as it offers the establishment of a common background for all people involved, the understanding of how the algorithms work and the understanding of how the results should be interpreted, a way of becoming familiar with the SQL Server suite, and more. Once the data has been extracted, the customer’s SME (i.e. the analyst), and the IT expert assigned to the project will learn how to prepare the data in an efficient manner. Together with me, knowledge and expertise allow us to focus immediately on the most interesting attributes and identify any additional, calculated, ones soon after. By employing our programming knowledge, we can, for example, prepare tens of derived variables, detect outliers, identify the relationships between pairs of input variables, and more, in only two or three days, depending on the quantity and the quality of input data. I favor the customer’s decision of assigning additional personnel to the project. For example, I actually prefer to work with two teams simultaneously. I demonstrate and explain the subject matter by applying techniques directly on the data managed by each team, and then both teams continue to work on the data overview and data preparation under our supervision. I explain to the teams what kind of results we expect, the reasons why they are needed, and how to achieve them. Afterwards we review and explain the results, and continue with new instructions, until we resolve all known problems. Simultaneously with the data preparation the data overview is performed. The logic behind this task is the same – again I show to the teams involved the expected results, how to achieve them and what they mean. This is also done in multiple cycles as is the case with data preparation, because, quite frankly, both tasks are completely interleaved. A specific objective of the data overview is of principal importance – it is represented by a simple star schema and a simple OLAP cube that will first of all simplify data discovery and interpretation of the results, and will also prove useful in the following tasks. The presence of the customer’s SME is the key to resolving possible issues with the actual meaning of the data. We can always replace the IT part of the team with another database developer; however, we cannot conduct this kind of a project without the customer’s SME. After the data preparation and when the data overview is available, we begin the scientific part of the project. I assist the team in developing a variety of models, and in interpreting the results. The results are presented graphically, in an intuitive way. While it is possible to interpret the results on the fly, a much more appropriate alternative is possible if the initial training was also performed, because it allows the customer’s personnel to interpret the results by themselves, with only some guidance from me. The models are evaluated immediately by using several different techniques. One of the techniques includes evaluation over time, where we use an OLAP cube. After evaluating the models, we select the most appropriate model to be deployed for a production test; this allows the team to understand the deployment process. There are many possibilities of deploying data mining models into production; at the POC stage, we select the one that can be completed quickly. Typically, this means that we add the mining model as an additional dimension to an existing DW or OLAP cube, or to the OLAP cube developed during the data overview phase. Finally, we spend some time presenting the results of the POC project to the stakeholders and managers. Even from a POC, the customer will receive lots of benefits, all at the sole risk of spending money and time for a single 5 to 10 day project: The customer learns the basic patterns of frauds and fraud detection The customer learns how to do the entire cycle with their own people, only relying on me for the most complex problems The customer’s analysts learn how to perform much more in-depth analyses than they ever thought possible The customer’s IT experts learn how to perform data extraction and preparation much more efficiently than they did before All of the attendees of this training learn how to use their own creativity to implement further improvements of the process and procedures, even after the solution has been deployed to production The POC output for a smaller company or for a subsidiary of a larger company can actually be considered a finished, production-ready solution It is possible to utilize the results of the POC project at subsidiary level, as a finished POC project for the entire enterprise Typically, the project results in several important “side effects” Improved data quality Improved employee job satisfaction, as they are able to proactively contribute to the central knowledge about fraud patterns in the organization Because eventually more minds get to be involved in the enterprise, the company should expect more and better fraud detection patterns After the POC project is completed as described above, the actual project would not need months of engagement from my side. This is possible due to our preference to transfer the knowledge onto the customer’s employees: typically, the customer will use the results of the POC project for some time, and only engage me again to complete the project, or to ask for additional expertise if the complexity of the problem increases significantly. I usually expect to perform the following tasks: Establish the final infrastructure to measure the efficiency of the deployed models Deploy the models in additional scenarios Through reports By including Data Mining Extensions (DMX) queries in OLTP applications to support real-time early warnings Include data mining models as dimensions in OLAP cubes, if this was not done already during the POC project Create smart ETL applications that divert suspicious data for immediate or later inspection I would also offer to investigate how the outcome could be transferred automatically to the central system; for instance, if the POC project was performed in a subsidiary whereas a central system is available as well Of course, for the actual project, I would repeat the data and model preparation as needed It is virtually impossible to tell in advance how much time the deployment would take, before we decide together with customer what exactly the deployment process should cover. Without considering the deployment part, and with the POC project conducted as suggested above (including the transfer of knowledge), the actual project should still only take additional 5 to 10 days. The approximate timeline for the POC project is, as follows: 1-2 days of training 2-3 days for data preparation and data overview 2 days for creating and evaluating the models 1 day for initial preparation of the continuous learning infrastructure 1 day for presentation of the results and discussion of further actions Quite frequently I receive the following question: are we going to find the best possible model during the POC project, or during the actual project? My answer is always quite simple: I do not know. Maybe, if we would spend just one hour more for data preparation, or create just one more model, we could get better patterns and predictions. However, we simply must stop somewhere, and the best possible way to do this, according to my experience, is to restrict the time spent on the project in advance, after an agreement with the customer. You must also never forget that, because we build the complete learning infrastructure and transfer the knowledge, the customer will be capable of doing further investigations independently and improve the models and predictions over time without the need for a constant engagement with me.

    Read the article

  • Beyond Cloud Technology, Enabling A More Agile and Responsive Organization

    - by sxkumar
    This is the second part of the blog “Clouds, Clouds Everywhere But not a Drop of Rain”. In the first part,  I was sharing with you how a broad-based transformation makes cloud more than a technology initiative, I will describe in this section how it requires people (organizational) and process changes as well, and these changes are as critical as is the choice of right tools and technology. People: Most IT organizations have a fairly complex organizational structure. There are different groups, managing different pieces of the puzzle, and yet, they don't always work together. Provisioning a new application therefore may require a request to float endlessly through system administrators, DBAs and middleware admin worlds – resulting in long delays and constant finger pointing.  Cloud users expect end-to-end automation - which requires these silos to be greatly simplified, if not completely eliminated.  Most customers I talk to acknowledge this problem but are quick to admit that such a transformation is hard. As hard as it may be, I am afraid that the status quo is no longer an option. Sticking to an organizational structure that was created ages back will not only impede cloud adoption,  it also risks making the IT skills increasingly irrelevant in a world that is rapidly moving towards converged applications and infrastructure.   Process: Most IT organizations today operate with a mindset that they must fully "control" access to any and all types of IT services. This in turn leads to people clinging on to outdated manual approval processes .  While requiring approvals for scarce resources makes sense, insisting that every single request must be manually approved defeats the very purpose of cloud. Not only this causes delays, thereby at least partially negating the agility benefits, it also results in gross inefficiency. In a cloud environment, self-service access should be governed by policies, quotas that the administrators can define upfront . For a cloud initiative to be successful, IT organizations MUST be ready to empower users by giving them real control rather than insisting on brokering every single interaction between users and the cloud resources. Technology: From a technology perspective, cloud is about consolidation, standardization and automation. A consolidated and standardized infrastructure helps increase utilization and reduces cost. Additionally, it  enables a much higher degree of automation - thereby providing users the required agility while minimizing operational costs.  Obviously, automation is the key to cloud. Unfortunately it hasn’t received as much attention within enterprises as it should have.  Many organizations are just now waking up to the criticality of automation and it still often gets relegated to back burner in favor of other "high priority" projects. However, it is important to understand that without the right type and level of automation, cloud will remain a distant dream for most enterprises. This in turn makes the choice of the cloud management software extremely critical.  For a cloud management software to be effective in an enterprise environment, it must meet the following qualifications: Broad and Deep Solution It should offer a broad and deep solution to enable the kind of broad-based transformation we are talking about.  Its footprint must cover physical and virtual systems, as well as infrastructure, database and application tiers. Too many enterprises choose to equate cloud with virtualization. While virtualization is a critical component of a cloud solution, it is just a component and not the whole solution. Similarly, too many people tend to equate cloud with Infrastructure-as-a-Service (IaaS). While it is perfectly reasonable to treat IaaS as a starting point, it is important to realize that it is just the first stepping stone - and on its own it can only provide limited business benefits. It is actually the higher level services, such as (application) platform and business applications, that will bring about a more meaningful transformation to your enterprise. Run and Manage Efficiently Your Mission Critical Applications It should not only be able to run your mission critical applications, it should do so better than before.  For enterprises, applications and data are the critical business assets  As such, if you are building a cloud platform that cannot run your ERP application, it isn't truly a "enterprise cloud".  Also, be wary of  vendors who try to sell you the idea that your applications must be written in a certain way to be able to run on the cloud. That is nothing but a bogus, self-serving argument. For the cloud to be meaningful to enterprises, it should adopt to your applications - and not the other way around.  Automated, Integrated Set of Cloud Management Capabilities At the root of many of the problems plaguing enterprise IT today is complexity. A complex maze of tools and technology, coupled with archaic  processes, results in an environment which is inflexible, inefficient and simply too hard to manage. Management tool consolidation, therefore, is key to the success of your cloud as tool proliferation adds to complexity, encourages compartmentalization and defeats the very purpose that you are building the cloud for. Decision makers ought to be extra cautious about vendors trying to sell them a "suite" of disparate and loosely integrated products as a cloud solution.  An effective enterprise cloud management solution needs to provide a tightly integrated set of capabilities for all aspects of cloud lifecycle management. A simple question to ask: will your environment be more or less complex after you implement your cloud? More often than not, the answer will surprise you.  At Oracle, we have understood these challenges and have been working hard to create cloud solutions that are relevant and meaningful for enterprises.  And we have been doing it for much longer than you may think. Oracle was one of the very first enterprise software companies to make our products available on the Amazon Cloud. As far back as in 2007, we created new cloud solutions such as Cloud Database Backup that are helping customers like Amazon save millions every year.  Our cloud solution portfolio is also the broadest and most deep in the industry  - covering public, private, hybrid, Infrastructure, platform and applications clouds. It is no coincidence therefore that the Oracle Cloud today offers the most comprehensive set of public cloud services in the industry.  And to a large part, this has been made possible thanks to our years on investment in creating cloud enabling technologies. I will dedicated the third and final part of the blog “Clouds, Clouds Everywhere But not a Drop of Rain” to Oracle Cloud Technologies Building Blocks and how they mapped into our vision of Enterprise Cloud. Stay Tuned.

    Read the article

  • Romanian parter Omnilogic Delivers “No Limits” Scalability, Performance, Security, and Affordability through Next-Generation, Enterprise-Grade Engineered Systems

    - by swalker
    Omnilogic SRL is a leading technology and information systems provider in Romania and central and Eastern Europe. An Oracle Value-Added Distributor Partner, Omnilogic resells Oracle software, hardware, and engineered systems to Oracle Partner Network members and provides specialized training, support, and testing facilities. Independent software vendors (ISVs) also use Omnilogic’s demonstration and testing facilities to upgrade the performance and efficiency of their solutions and those of their customers by migrating them from competitor technologies to Oracle platforms. Omnilogic also has a dedicated offering for ISV solutions, based on Oracle technology in a hosting service provider model. Omnilogic wanted to help Oracle Partners and ISVs migrate solutions to Oracle Exadata and sell Oracle Exadata to end-customers. It installed Oracle Exadata Database Machine X2-2 Quarter Rack at its data center to create a demonstration and testing environment. Demonstrations proved that Oracle Exadata achieved processing speeds up to 100 times faster than competitor systems, cut typical back-up times from 6 hours to 20 minutes, and stored 10 times more data. Oracle Partners and ISVs learned that migrating solutions to Oracle Exadata’s preconfigured, pre-integrated hardware and software can be completed rapidly, at low cost, without business disruption, and with reduced ongoing operating costs. Challenges A word from Omnilogic “Oracle Exadata is the new killer application—the smartest solution on the market. There is no competition.” – Sorin Dragomir, Chief Operating Officer, Omnilogic SRL Enable Oracle Partners in Romania and central and eastern Europe to achieve Oracle Exadata Ready status by providing facilities to test and optimize existing applications and build real-life proofs of concept (POCs) for new solutions on Oracle Exadata Database Machine Provide technical support and demonstration facilities for ISVs migrating their customers’ solutions from competitor technologies to Oracle Exadata to maximize performance, scalability, and security; optimize hardware and datacenter space; cut maintenance costs; and improve return on investment Demonstrate power of Oracle Exadata’s high-performance, high-capacity engineered systems for customer-facing businesses, such as government organizations, telecommunications, banking and insurance, and utility companies, which typically require continuous availability to support very large data volumes Showcase Oracle Exadata’s unchallenged online transaction processing (OLTP) capabilities that cut application run times to provide unrivalled query turnaround and user response speeds while significantly reducing back-up times and eliminating risk of unplanned outages Capitalize on providing a world-class training and demonstration environment for Oracle Exadata to accelerate sales with Oracle Partners Solutions Created a testing environment to enable Oracle Partners and ISVs to test their own solutions and those of their customers on Oracle Exadata running on Oracle Enterprise Linux or Oracle Solaris Express to benchmark performance prior to migration Leveraged expertise on Oracle Exadata to offer Oracle Exadata training, migration, support seminars and to showcase live demonstrations for Oracle Partners Proved how Oracle Exadata’s pre-engineered systems, that come assembled, configured, and ready to run, reduce deployment time and cost, minimize risk, and help customers achieve the full performance potential immediately after go live Increased processing speeds 10-fold and with zero data loss for a telecommunications provider’s client-facing customer relationship management solution Achieved performance improvements of between 6 and 100 times faster for financial and utility company applications currently running on IBM, Microsoft, or SAP HANA platforms Showed how daily closure procedures carried out overnight by banks, insurance companies, and other financial institutions to analyze each day’s business, can typically be cut from around six hours to 20 minutes, some 18 times faster, when running on Oracle Exadata Simulated concurrent back-ups while running applications under normal working conditions to prove that Oracle Exadata-based solutions can be backed up during business hours without causing bottlenecks or impacting the end-user experience Demonstrated that Oracle Exadata’s built-in analytics, data mining and OLTP capabilities make it the highest-performance, lowest-cost choice for large data warehousing operations Showed how Oracle Exadata’s columnar compression and intelligent storage architecture allows 10 times more data to be stored than on competitor platforms Demonstrated how Oracle Exadata cuts hardware requirements significantly by consolidating workloads on to fewer servers which delivers greater power efficiency and lower operating costs that competing systems from IBM and other manufacturers Proved to ISVs that migrating solutions to Oracle Exadata’s preconfigured, pre-integrated hardware and software can be completed rapidly, at low cost, and with minimal business disruption Demonstrated how storage servers, database servers, and network switches can be added incrementally and inexpensively to the Oracle Exadata platform to support business expansion On track to grow revenues by 10% in year one and by 15% annually thereafter through increased business generated from Oracle Partners and ISVs

    Read the article

  • Exalytics and Oracle Business Intelligence Enterprise Edition (OBIEE) Partner Workshop

    - by mseika
    Workshop Description Oracle Fusion Middleware 11g is the #1 application infrastructure foundation. It enables enterprises to create and run agile and intelligent business applications and maximize IT efficiency by exploiting modern hardware and software architectures. Oracle Exalytics Business Intelligence Machine is the world’s first engineered system specifically designed to deliver high performance analysis, modeling and planning. Built using industry-standard hardware, market-leading business intelligence software and in-memory database technology, Oracle Exalytics is an optimized system that delivers unmatched speed, visualizations and scalability for Business Intelligence and Enterprise Performance Management applications. This FREE hands-on, partner workshop highlights both the hardware and software components that are engineered to work together to deliver Oracle Exalytics - an optimized version of the industry-leading Oracle TimesTen In-Memory Database with analytic extensions, a highly scalable Oracle server designed specifically for in-memory business intelligence, and Oracle’s proven Business Intelligence Foundation with enhanced visualization capabilities and performance optimizations. This workshop will provide hands-on experience with Oracle's latest engineered system. Topics covered will include TimesTen In-Memory Database and the new Summary Advisor for Exalytics, the technical details (including mobile features) of the latest release of visualization enhancements for OBI-EE, and technical updates on Essbase. After taking this course, you will be well prepared to architect, build, demo, and implement an end-to-end Exalytics solution. You will also be able to extend your current analytical and enterprise performance management application implementations with numerous Oracle technologies specifically enhanced to take advantage of the compute capacity and in-memory capabilities of Oracle Exalytics.If you are a BI or Data Warehouse Architect, developer or consultant, you don’t want to miss this 3-day workshop. Register Now! Presentations Exalytics Architectural Overview Upgrade and Lifecycle Management Times Ten for Exalytics Summary Advisor Utility Essbase and EPM System on Exalytics Dashboard and Analysis Interactions OBIEE 11.1.1.6 Features and Advanced Topics Lab OutlineThe labs showcase Oracle Exalytics core components and functionality and provide expertise of Oracle Business Intelligence 11.1.1.6 new features and updates from prior releases. The hands-on activities are based on an Oracle VirtualBox image with software and training samples pre-installed. Lab Environment Setup Creating and Working with Oracle TimesTen In-Memory Database Running Summary Advisor Utility Working with Exalytics Visualization Features – Dashboard and Analysis Interactions Audience Oracle Partners BI and EPM Application Developers and Implementers System Integrators and Solution Consultants Data Warehouse Developers Enterprise Architects Prerequisites Experience and understanding of OBIEE 11g is required Previous attendance of Oracle Business Intelligence Foundation Suite Workshop or BIEE 11gIntroduction Workshop is highly recommended Good understanding of data warehousing and data modeling for reporting and analysis purpose Strong experience with database technologies preferred Equipment RequirementsThis workshop requires attendees to provide their own laptops for this class.Attendee laptops must meet the following minimum hardware/software requirements: Hardware Minimum 8GB RAM 60 GB free space (includes staging) USB 2.0 port (at least one available) It is strongly recommended that you bring a mouse. You will be working in a development environment and using the mouse heavily. Software One of the following operating systems: 64-bit Windows host/laptop OS 64-bit host/laptop OS with a Windows VM (XP, Server, or Win 7, BIC2g, etc.) Internet Explorer 7.x/8.x or Firefox 3.5.x WINRAR or 7ziputility to unzip workshop files: Download-able from http://www.win-rar.com/download.html Download-able from http://www.7zip.com/ Oracle VirtualBox 4.0.2 or higher Downloadable from http://www.virtualbox.org/wiki/Downloads CPU virtualization mode needs to be enabled. We will provide guidance on the day of the workshop. Attendees will be given a VirtualBox image containing a pre-installed Oracle Exalytics environment. Schedule This workshop is 3 days. - Times vary by country!9:00am: Sign-in and technical setup 9:30am: Workshop starts 5:00pm: Workshop ends Oracle Exalytics and Business Intelligence (OBIEE) Workshop December 11-13, 2012: Oracle BVP, Birmingham, UK Register Here. Questions? Send email to: [email protected] Oracle Platform Technologies Enablement Services

    Read the article

  • Appropriate design / technologies to handle dynamic string formatting?

    - by Mark W
    recently I was tasked with implementing a way of adding support for versioning of hardware packet specifications to one of our libraries. First a bit of information about the project. We have a hardware library which has classes for each of the various commands we support sending to our hardware. These hardware modules are essentially just lights with a few buttons, and a 2 or 4 digit display. The packets typically follow the format {SOH}AADD{ETX}, where AA is our sentinel action code, and DD is the device ID. These packet specs are different from one command to the next obviously, and the different firmware versions we have support different specifications. For example, on version 1 an action code of 14 may have a spec of {SOH}AADDTEXT{ETX} which would be AA = 14 literal, DD = device ID, TEXT = literal text to display on the device. Then we come out with a revision with adds an extended byte(s) onto the end of the packet like this {SOH}AADDTEXTE{ETX}. Assume the TEXT field is fixed width for this example. We have now added a new field onto the end which could be used to say specify the color or flash rate of the text/buttons. Currently this java library only supports one version of the commands, the latest. In our hardware library we would have a class for this command, say a DisplayTextArgs.java. That class would have fields for the device ID, the text, and the extended byte. The command class would expose a method which generates the string ("{SOH}AADDTEXTE{ETX}") using the value from the class. In practice we would create the Args class as needed, populate the fields, call the method to get our packet string, then ship that down across the CAN. Some of our other commands specification can vary for the same command, on the same version, depending on some runtime state. For example, another command for version 1 may be {SOH}AA{ETX}, where this action code clears all of the modules behind a specific controller device of their text. We may overload this packet to have option fields with multiple meanings like {SOH}AAOC{ETX} where OC is literal text, which tells the controller to only clear text on a specific module type, and to leave the others alone, or the spec could also have an option format of {SOH}AADD{ETX} to clear the text off a a specific device. Currently, in the method which generates the packet string, we would evaluate fields on the args class to determine which spec we will be using when formatting the packet. For this example, it would be along the lines of: if m_DeviceID != null then use {SOH}AADD{ETX} else if m_ClearOCs == true then use {SOH}AAOC{EXT} else use {SOH}AA{ETX} I had considered using XML, or a database to store String.format format strings, which were linked to firmware version numbers in some table. We would load them up at startup, and pass in the version number of the hardwares firmware we are currently using (I can query the devices for their firmware version, but the version is not included in all packets as part of the spec). This breaks down pretty quickly because of the dynamic nature of how we select which version of the command to use. I then considered using a rule engine to possibly build out expressions which could be interpreted at runtume, to evaluate the args class's state, and from that select the appropriate format string to use, but my brief look at rule engines for java scared me away with its complexity. While it seems like it might be a viable solution, it seems overly complex. So this is why I am here. I wouldn't say design is my strongest skill, and im having trouble figuring out the best way to approach this problem. I probably wont be able to radically change the args classes, but if the trade off was good enough, I may be able to convince my boss that the change is appropriate. What I would like from the community is some feedback on some best practices / design methodologies / API or other resources which I could use to accomplish: Logic to determine which set of commands to use for a given firmware version Of those command, which version of each command to use (based on the args classes state) Keep the rules logic decoupled from the application so as to avoid needing releases for every firmware version Be simple enough so I don't need weeks of study and trial and error to implement effectively.

    Read the article

  • When should one use the following: Amazon EC2, Google App Engine, Microsoft Azure and Salesforce.com

    - by vicky21
    I am asking this in very general sense. Both from cloud provider and cloud consumer's perspective. Also the question is not for any specific kind of application (in fact the intention is to know which type of applications/domains can fit into which of the cloud slab -SaaS PaaS IaaS). My understanding so far is: IaaS: Raw Hardware (Processors, Networks, Storage). PaaS: OS, System Softwares, Development Framework, Virtual Machines. SaaS: Software Applications. It would be great if Stackoverflower's can share their understanding and experiences of cloud computing concept. EDIT: Ok, I will put it in more specific way - Amazon EC2: You don't have control over hardware layer. But you can take your choice of OS image, Dev Framework (.NET, J2EE, LAMP) and Application and put it on EC2 hardware. Can you deploy an applications built with Google App Engine or Azure on EC2? Google App Engine: You don't have control over hardware and OS and you get a specific Dev Framework to build your application. Can you take any existing Java or Python application and port it to GAE? Or vice versa, can applications that were built on GAE be taken out of GAE and ported to any Application Server like Websphere or Weblogic? Azure: You don't have control over hardware and OS and you get a specific Dev Framework to build your application. Can you take any existing .NET application and port it to Azure? Or vice versa, can applications that were built on Azure be taken out of Azure and ported to any Application Server like Biztalk?

    Read the article

  • SQL Join to only the maximum row puzzle

    - by Billy ONeal
    Given the following example data: Users +--------------------------------------------------+ | ID | First Name | Last Name | Network Identifier | +--------------------------------------------------+ | 1 | Billy | O'Neal | bro4 | +----+------------+-----------+--------------------+ | 2 | John | Skeet | jsk1 | +----+------------+-----------+--------------------+ Hardware +----+-------------------+---------------+ | ID | Hardware Name | Serial Number | +----+-------------------+---------------+ | 1 | Latitude E6500 | 5555555 | +----+-------------------+---------------+ | 2 | Latitude E6200 | 2222222 | +----+-------------------+---------------+ HardwareAssignments +---------+-------------+-------------+ | User ID | Hardware ID | Assigned On | +---------+-------------+-------------+ | 1 | 1 | April 1 | +---------+-------------+-------------+ | 1 | 2 | April 10 | +---------+-------------+-------------+ | 2 | 2 | April 1 | +---------+-------------+-------------+ | 2 | 1 | April 11 | +---------+-------------+-------------+ I'd like to write a SQL query which would give the following result: +--------------------+------------+-----------+----------------+---------------+-------------+ | Network Identifier | First Name | Last Name | Hardware Name | Serial Number | Assigned On | +--------------------+------------+-----------+----------------+---------------+-------------+ | bro4 | Billy | O'Neal | Latitude E6200 | 2222222 | April 10 | +--------------------+------------+-----------+----------------+---------------+-------------+ | jsk1 | John | Skeet | Latitude E6500 | 5555555 | April 11 | +--------------------+------------+-----------+----------------+---------------+-------------+ My trouble is that the maximum "Assigned On" date for each user needs to be selected for each individual user and used for the actual join ... Is there a clever way accomplish this in SQL?

    Read the article

  • Is there a way to watch all COM activity on a computer?

    - by Fake Name
    I'm trying to deal with a piece of specialized hardware, that presents it's interface as a COM object, using win32com in Python. However, the documentation for how to actually set up the hardware through the COM object is sparse (it requires a significant amount of initialization), and entirely oriented at using a bunch of pre-built libraries for Visual Studio, which are not accessible through python. That said, is there any way to watch all local COM activity, so I can sort through the activity logs to try and figure out how the existing demo programs properly initialize the hardware, and replicate the behavior in my python script? Ideally, there would be something in the vein of wireshark for doing this. Note: I have very little (read: basically no) experience using COM, as my focus is mostly embedded hardware (and a little python dev on the side). However, I'm stuck with this particular device.

    Read the article

  • running a parallel port controlling program through php.

    - by prateek
    I have a program that is interacting with hardware via parallel port programming. i had compiled it and using its object file to interact with the hardware (a simple led). when i execute it directly on the shell it serves the purpose of glowing the LED but when i execute it using shell_exec() in php the command is executed but unable to interact with the hardware. i am totally confused.. .

    Read the article

< Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >