Search Results

Search found 14719 results on 589 pages for 'optimization level'.

Page 91/589 | < Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >

  • Difference between Logarithmic and Uniform cost criteria

    - by Marthin
    I'v got some problem to understand the difference between Logarithmic(Lcc) and Uniform(Ucc) cost criteria and also how to use it in calculations. Could someone please explain the difference between the two and perhaps show how to calculate the complexity for a problem like A+B*C (Yes this is part of an assignment =) ) Thx for any help! /Marthin

    Read the article

  • What does ER_WARN_FIELD_RESOLVED mean?

    - by VolkerK
    When SHOW WARNINGS after a EXPLAIN EXTENDED shows a Note 1276 Field or reference 'test.foo.bar' of SELECT #2 was resolved in SELECT #1 what exactly does that mean and what impact does it have? In my case it prevents mysql from using what seems to be a perfectly good index. But it's not about fixing that specific query (as it is an irrelevant test). I found http://dev.mysql.com/doc/refman/5.0/en/error-messages-server.html butError: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED) Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d isn't much of an explaination.

    Read the article

  • Speeding up inner joins between a large table and a small table

    - by Zaid
    This may be a silly question, but it may shed some light on how joins work internally. Let's say I have a large table L and a small table S (100K rows vs. 100 rows). Would there be any difference in terms of speed between the following two options?: OPTION 1: OPTION 2: --------- --------- SELECT * SELECT * FROM L INNER JOIN S FROM S INNER JOIN L ON L.id = S.id; ON L.id = S.id; Notice that the only difference is the order in which the tables are joined. I realize performance may vary between different SQL languages. If so, how would MySQL compare to Access?

    Read the article

  • Does replacing statements by expressions using the C++ comma operator could allow more compiler opti

    - by Gabriel Cuvillier
    The C++ comma operator is used to chain individual expressions, yielding the value of the last executed expression as the result. For example the skeleton code (6 statements, 6 expressions): step1; step2; if (condition) step3; return step4; else return step5; May be rewritten to: (1 statement, 6 expressions) return step1, step2, condition? step3, step4 : step5; I noticed that it is not possible to perform step-by-step debugging of such code, as the expression chain seems to be executed as a whole. Does it means that the compiler is able to perform special optimizations which are not possible with the traditional statement approach (specially if the steps are const or inline)? Note: I'm not talking about the coding style merit of that way of expressing sequence of expressions! Just about the possible optimisations allowed by replacing statements by expressions.

    Read the article

  • An image from byte to optimized web page presentation

    - by blgnklc
    I get the data of the stored image on database as byte[] array; then I convert it to System.Drawing.Image like the code shown below; public System.Drawing.Image CreateImage(byte[] bytes) { System.IO.MemoryStream memoryStream = new System.IO.MemoryStream(bytes); System.Drawing.Image image = System.Drawing.Image.FromStream(memoryStream); return image; } (*) On the other hand I am planning to show a list of images on asp.net pages as the client scrolls downs the page. The more user gets down and down on the page he/she does see the more photos. So it means fast page loads and rich user experience. (you may see what I mean on www.mashable.com, just take care the new loads of the photos as you scroll down.) Moreover, the returned imgae object from the method above, how can i show it in a loop dynamically using the (*) conditions above. Regards bk

    Read the article

  • Does the <script> tag position in HTML affects performance of the webpage?

    - by Rahul Joshi
    If the script tag is above or below the body in a HTML page, does it matter for the performance of a website? And what if used in between like this: <body> ..blah..blah.. <script language="JavaScript" src="JS_File_100_KiloBytes"> function f1() { .. some logic reqd. for manipulating contents in a webpage } </script> ... some text here too ... </body> Or is this better?: <script language="JavaScript" src="JS_File_100_KiloBytes"> function f1() { .. some logic reqd. for manipulating contents in a webpage } </script> <body> ..blah..blah.. ..call above functions on some events like onclick,onfocus,etc.. </body> Or this one?: <body> ..blah..blah.. ..call above functions on some events like onclick,onfocus,etc.. <script language="JavaScript" src="JS_File_100_KiloBytes"> function f1() { .. some logic reqd. for manipulating contents in a webpage } </script> </body> Need not tell everything is again in the <html> tag!! How does it affect performance of webpage while loading? Does it really? Which one is the best, either out of these 3 or some other which you know? And one more thing, I googled a bit on this, from which I went here: Best Practices for Speeding Up Your Web Site and it suggests put scripts at the bottom, but traditionally many people put it in <head> tag which is above the <body> tag. I know it's NOT a rule but many prefer it that way. If you don't believe it, just view source of this page! And tell me what's the better style for best performance.

    Read the article

  • Optimize a MySQL count each duplicate Query

    - by Onema
    I have the following query That gets the city name, city id, the region name, and a count of duplicate names for that record: SELECT Country_CA.City AS currentCity, Country_CA.CityID, globe_region.region_name, ( SELECT count(Country_CA.City) FROM Country_CA WHERE City LIKE currentCity ) as counter FROM Country_CA LEFT JOIN globe_region ON globe_region.region_id = Country_CA.RegionID AND globe_region.country_code = Country_CA.CountryCode ORDER BY City This example is for Canada, and the cities will be displayed on a dropdown list. There are a few towns in Canada, and in other countries, that have the same names. Therefore I want to know if there is more than one town with the same name region name will be appended to the town name. Region names are found in the globe_region table. Country_CA and globe_region look similar to this (I have changed a few things for visualization purposes) CREATE TABLE IF NOT EXISTS `Country_CA` ( `City` varchar(75) NOT NULL DEFAULT '', `RegionID` varchar(10) NOT NULL DEFAULT '', `CountryCode` varchar(10) NOT NULL DEFAULT '', `CityID` int(11) NOT NULL DEFAULT '0', PRIMARY KEY (`City`,`RegionID`), KEY `CityID` (`CityID`) ) ENGINE=MyISAM DEFAULT CHARSET=utf8; AND CREATE TABLE IF NOT EXISTS `globe_region` ( `country_code` char(2) COLLATE utf8_unicode_ci NOT NULL, `region_code` char(2) COLLATE utf8_unicode_ci NOT NULL, `region_name` varchar(50) COLLATE utf8_unicode_ci NOT NULL, PRIMARY KEY (`country_code`,`region_code`) ) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci; The query on the top does exactly what I want it to do, but It takes way too long to generate a list for 5000 records. I would like to know if there is a way to optimize the sub-query in order to obtain the same results faster. the results should look like this City CityID region_name counter sheraton 2349269 British Columbia 1 sherbrooke 2349270 Quebec 2 sherbrooke 2349271 Nova Scotia 2 shere 2349273 British Columbia 1 sherridon 2349274 Manitoba 1

    Read the article

  • "Anagram solver" based on statistics rather than a dictionary/table?

    - by James M.
    My problem is conceptually similar to solving anagrams, except I can't just use a dictionary lookup. I am trying to find plausible words rather than real words. I have created an N-gram model (for now, N=2) based on the letters in a bunch of text. Now, given a random sequence of letters, I would like to permute them into the most likely sequence according to the transition probabilities. I thought I would need the Viterbi algorithm when I started this, but as I look deeper, the Viterbi algorithm optimizes a sequence of hidden random variables based on the observed output. I am trying to optimize the output sequence. Is there a well-known algorithm for this that I can read about? Or am I on the right track with Viterbi and I'm just not seeing how to apply it?

    Read the article

  • Is opening too many datacontexts bad?

    - by ryudice
    I've been checking my application with linq 2 sql profiler, and I noticed that it opens a lot of datacontexts, most of them are opened by the linq datasource I used, since my repositories use only the instance stored in Request.Items, is it bad to open too many datacontext? and how can I make my linqdatasource to use the datacontext that I store in Request.Items for the duration of the request? thanks for any help!

    Read the article

  • how to speed up the code??

    - by kaushik
    in my program i have a method which requires about 4 files to be open each time it is called,as i require to take some data.all this data from the file i have been storing in list for manupalation. I approximatily need to call this method about 10,000 times.which is making my program very slow? any method for handling this files in a better ways and is storing the whole data in list time consuming what is better alternatives for list? I can give some code,but my previous question was closed as that only confused everyone as it is a part of big program and need to be explained completely to understand,so i am not giving any code,please suggest ways thinking this as a general question... thanks in advance

    Read the article

  • Data Access from single table in sql server 2005 is too slow

    - by Muhammad Kashif Nadeem
    Following is the script of table. Accessing data from this table is too slow. SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO CREATE TABLE [dbo].[Emails]( [id] [int] IDENTITY(1,1) NOT NULL, [datecreated] [datetime] NULL CONSTRAINT [DF_Emails_datecreated] DEFAULT (getdate()), [UID] [nvarchar](250) COLLATE Latin1_General_CI_AS NULL, [From] [nvarchar](100) COLLATE Latin1_General_CI_AS NULL, [To] [nvarchar](100) COLLATE Latin1_General_CI_AS NULL, [Subject] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [Body] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [HTML] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [AttachmentCount] [int] NULL, [Dated] [datetime] NULL ) ON [PRIMARY] Following query takes 50 seconds to fetch data. select id, datecreated, UID, [From], [To], Subject, AttachmentCount, Dated from emails If I include Body and Html in select then time is event worse. indexes are on: id unique clustered From Non unique non clustered To Non unique non clustered Tabls has currently 180000+ records. There might be 100,000 records each month so this will become more slow as time will pass. Does splitting data into two table will solve the problem? What other indexes should be there?

    Read the article

  • Rewriting a for loop in pure NumPy to decrease execution time

    - by Statto
    I recently asked about trying to optimise a Python loop for a scientific application, and received an excellent, smart way of recoding it within NumPy which reduced execution time by a factor of around 100 for me! However, calculation of the B value is actually nested within a few other loops, because it is evaluated at a regular grid of positions. Is there a similarly smart NumPy rewrite to shave time off this procedure? I suspect the performance gain for this part would be less marked, and the disadvantages would presumably be that it would not be possible to report back to the user on the progress of the calculation, that the results could not be written to the output file until the end of the calculation, and possibly that doing this in one enormous step would have memory implications? Is it possible to circumvent any of these? import numpy as np import time def reshape_vector(v): b = np.empty((3,1)) for i in range(3): b[i][0] = v[i] return b def unit_vectors(r): return r / np.sqrt((r*r).sum(0)) def calculate_dipole(mu, r_i, mom_i): relative = mu - r_i r_unit = unit_vectors(relative) A = 1e-7 num = A*(3*np.sum(mom_i*r_unit, 0)*r_unit - mom_i) den = np.sqrt(np.sum(relative*relative, 0))**3 B = np.sum(num/den, 1) return B N = 20000 # number of dipoles r_i = np.random.random((3,N)) # positions of dipoles mom_i = np.random.random((3,N)) # moments of dipoles a = np.random.random((3,3)) # three basis vectors for this crystal n = [10,10,10] # points at which to evaluate sum gamma_mu = 135.5 # a constant t_start = time.clock() for i in range(n[0]): r_frac_x = np.float(i)/np.float(n[0]) r_test_x = r_frac_x * a[0] for j in range(n[1]): r_frac_y = np.float(j)/np.float(n[1]) r_test_y = r_frac_y * a[1] for k in range(n[2]): r_frac_z = np.float(k)/np.float(n[2]) r_test = r_test_x +r_test_y + r_frac_z * a[2] r_test_fast = reshape_vector(r_test) B = calculate_dipole(r_test_fast, r_i, mom_i) omega = gamma_mu*np.sqrt(np.dot(B,B)) # write r_test, B and omega to a file frac_done = np.float(i+1)/(n[0]+1) t_elapsed = (time.clock()-t_start) t_remain = (1-frac_done)*t_elapsed/frac_done print frac_done*100,'% done in',t_elapsed/60.,'minutes...approximately',t_remain/60.,'minutes remaining'

    Read the article

  • Find point which sum of distances to set of other points is minimal

    - by Pawel Markowski
    I have one set (X) of points (not very big let's say 1-20 points) and the second (Y), much larger set of points. I need to choose some point from Y which sum of distances to all points from X is minimal. I came up with an idea that I would treat X as a vertices of a polygon and find centroid of this polygon, and then I will choose a point from Y nearest to the centroid. But I'm not sure whether centroid minimizes sum of its distances to the vertices of polygon, so I'm not sure whether this is a good way? Is there any algorithm for solving this problem? Points are defined by geographical coordinates.

    Read the article

  • Trying to reduce the speed overhead of an almost-but-not-quite-int number class

    - by Fumiyo Eda
    I have implemented a C++ class which behaves very similarly to the standard int type. The difference is that it has an additional concept of "epsilon" which represents some tiny value that is much less than 1, but greater than 0. One way to think of it is as a very wide fixed point number with 32 MSBs (the integer parts), 32 LSBs (the epsilon parts) and a huge sea of zeros in between. The following class works, but introduces a ~2x speed penalty in the overall program. (The program includes code that has nothing to do with this class, so the actual speed penalty of this class is probably much greater than 2x.) I can't paste the code that is using this class, but I can say the following: +, -, +=, <, > and >= are the only heavily used operators. Use of setEpsilon() and getInt() is extremely rare. * is also rare, and does not even need to consider the epsilon values at all. Here is the class: #include <limits> struct int32Uepsilon { typedef int32Uepsilon Self; int32Uepsilon () { _value = 0; _eps = 0; } int32Uepsilon (const int &i) { _value = i; _eps = 0; } void setEpsilon() { _eps = 1; } Self operator+(const Self &rhs) const { Self result = *this; result._value += rhs._value; result._eps += rhs._eps; return result; } Self operator-(const Self &rhs) const { Self result = *this; result._value -= rhs._value; result._eps -= rhs._eps; return result; } Self operator-( ) const { Self result = *this; result._value = -result._value; result._eps = -result._eps; return result; } Self operator*(const Self &rhs) const { return this->getInt() * rhs.getInt(); } // XXX: discards epsilon bool operator<(const Self &rhs) const { return (_value < rhs._value) || (_value == rhs._value && _eps < rhs._eps); } bool operator>(const Self &rhs) const { return (_value > rhs._value) || (_value == rhs._value && _eps > rhs._eps); } bool operator>=(const Self &rhs) const { return (_value >= rhs._value) || (_value == rhs._value && _eps >= rhs._eps); } Self &operator+=(const Self &rhs) { this->_value += rhs._value; this->_eps += rhs._eps; return *this; } Self &operator-=(const Self &rhs) { this->_value -= rhs._value; this->_eps -= rhs._eps; return *this; } int getInt() const { return(_value); } private: int _value; int _eps; }; namespace std { template<> struct numeric_limits<int32Uepsilon> { static const bool is_signed = true; static int max() { return 2147483647; } } }; The code above works, but it is quite slow. Does anyone have any ideas on how to improve performance? There are a few hints/details I can give that might be helpful: 32 bits are definitely insufficient to hold both _value and _eps. In practice, up to 24 ~ 28 bits of _value are used and up to 20 bits of _eps are used. I could not measure a significant performance difference between using int32_t and int64_t, so memory overhead itself is probably not the problem here. Saturating addition/subtraction on _eps would be cool, but isn't really necessary. Note that the signs of _value and _eps are not necessarily the same! This broke my first attempt at speeding this class up. Inline assembly is no problem, so long as it works with GCC on a Core i7 system running Linux!

    Read the article

  • Long-running Database Query

    - by JamesMLV
    I have a long-running SQL Server 2005 query that I have been hoping to optimize. When I look at the actual execution plan, it says a Clustered Index Seek has 66% of the cost. Execuation Plan Snippit: <RelOp AvgRowSize="31" EstimateCPU="0.0113754" EstimateIO="0.0609028" EstimateRebinds="0" EstimateRewinds="0" EstimateRows="10198.5" LogicalOp="Clustered Index Seek" NodeId="16" Parallel="false" PhysicalOp="Clustered Index Seek" EstimatedTotalSubtreeCost="0.0722782"> <OutputList> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="quoteDate" /> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="price" /> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="tenure" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="1067" ActualEndOfScans="1" ActualExecutions="1" /> </RunTimeInformation> <IndexScan Ordered="true" ScanDirection="FORWARD" ForcedIndex="false" NoExpandHint="false"> <DefinedValues> <DefinedValue> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="quoteDate" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="price" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="tenure" /> </DefinedValue> </DefinedValues> <Object Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Index="[_dta_index_Indices_14_320720195__K5_K2_K1_3]" Alias="[I]" /> <SeekPredicates> <SeekPredicate> <Prefix ScanType="EQ"> <RangeColumns> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="HedgeProduct" ComputedColumn="true" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="(1)"> <Const ConstValue="(1)" /> </ScalarOperator> </RangeExpressions> </Prefix> <StartRange ScanType="GE"> <RangeColumns> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="tenure" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="[@StartMonth]"> <Identifier> <ColumnReference Column="@StartMonth" /> </Identifier> </ScalarOperator> </RangeExpressions> </StartRange> <EndRange ScanType="LE"> <RangeColumns> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="tenure" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="[@EndMonth]"> <Identifier> <ColumnReference Column="@EndMonth" /> </Identifier> </ScalarOperator> </RangeExpressions> </EndRange> </SeekPredicate> </SeekPredicates> </IndexScan> </RelOp> From this, does anyone see an obvious problem that would be causing this to take so long? Here is the query: (SELECT quotedate, tenure, price, ActualVolume, HedgePortfolioValue, Price AS UnhedgedPrice, ((ActualVolume*Price - HedgePortfolioValue)/ActualVolume) AS HedgedPrice FROM ( SELECT [quoteDate] ,[price] , tenure ,isnull(wf_1.[Risks].[HedgePortValueAsOfDate2](1,tenureMonth,quotedate,price),0) as HedgePortfolioValue ,[TotalOperatingGasVolume] as ActualVolume FROM [wf_1].[dbo].[Indices] I inner join ( SELECT DISTINCT tenureMonth FROM [wf_1].[Risks].[KnowRiskTrades] WHERE HedgeProduct = 1 AND portfolio <> 'Natural Gas Hedge Transactions' ) B ON I.tenure=B.tenureMonth inner join ( SELECT [Month],[TotalOperatingGasVolume] FROM [wf_1].[Risks].[ActualGasVolumes] ) C ON C.[Month]=B.tenureMonth WHERE HedgeProduct = 1 AND quoteDate>=dateadd(day, -3*365, tenureMonth) AND quoteDate<=dateadd(day,-3,tenureMonth) )A )

    Read the article

  • Is it better to echo javascript in raw format with php, or echo a script include that has been minif

    - by Scarface
    Hey guys quick question, I am currently echoing a lot of javascript that is based conditionally on login status and other variables. I was wondering if it would be better to simply echo the script include like <script type="text/javascript" src="javascript/openlogin.js"></script> that has been run through a minifying program and been gzipped or to echo the full script in raw format. The latter suggestion is messier to me but it reduces http requests while the latter would probably be smaller but take more cpu? Just wondering what some other people think. Thanks in advance for any advice.

    Read the article

  • Can I use Duff's Device on an array in C?

    - by Ben Fossen
    I have a loop here and I want to make it run faster. I am passing in a large array. I recently heard of Duff's Device can it be applied to this for loop? any ideas? for (i = 0; i < dim; i++) { for (j = 0; j < dim; j++) { dst[RIDX(dim-1-j, i, dim)] = src[RIDX(i, j, dim)]; } }

    Read the article

  • Is SQL DATEDIFF(year, ..., ...) an Expensive Computation?

    - by rlb.usa
    I'm trying to optimize up some horrendously complicated SQL queries because it takes too long to finish. In my queries, I have dynamically created SQL statements with lots of the same functions, so I created a temporary table where each function is only called once instead of many, many times - this cut my execution time by 3/4. So my question is, can I expect to see much of a difference if say, 1,000 datediff computations are narrowed to 100?

    Read the article

  • Code runs 6 times slower with 2 threads than with 1

    - by Edward Bird
    So I have written some code to experiment with threads and do some testing. The code should create some numbers and then find the mean of those numbers. I think it is just easier to show you what I have so far. I was expecting with two threads that the code would run about 2 times as fast. Measuring it with a stopwatch I think it runs about 6 times slower! void findmean(std::vector<double>*, std::size_t, std::size_t, double*); int main(int argn, char** argv) { // Program entry point std::cout << "Generating data..." << std::endl; // Create a vector containing many variables std::vector<double> data; for(uint32_t i = 1; i <= 1024 * 1024 * 128; i ++) data.push_back(i); // Calculate mean using 1 core double mean = 0; std::cout << "Calculating mean, 1 Thread..." << std::endl; findmean(&data, 0, data.size(), &mean); mean /= (double)data.size(); // Print result std::cout << " Mean=" << mean << std::endl; // Repeat, using two threads std::vector<std::thread> thread; std::vector<double> result; result.push_back(0.0); result.push_back(0.0); std::cout << "Calculating mean, 2 Threads..." << std::endl; // Run threads uint32_t halfsize = data.size() / 2; uint32_t A = 0; uint32_t B, C, D; // Split the data into two blocks if(data.size() % 2 == 0) { B = C = D = halfsize; } else if(data.size() % 2 == 1) { B = C = halfsize; D = hsz + 1; } // Run with two threads thread.push_back(std::thread(findmean, &data, A, B, &(result[0]))); thread.push_back(std::thread(findmean, &data, C, D , &(result[1]))); // Join threads thread[0].join(); thread[1].join(); // Calculate result mean = result[0] + result[1]; mean /= (double)data.size(); // Print result std::cout << " Mean=" << mean << std::endl; // Return return EXIT_SUCCESS; } void findmean(std::vector<double>* datavec, std::size_t start, std::size_t length, double* result) { for(uint32_t i = 0; i < length; i ++) { *result += (*datavec).at(start + i); } } I don't think this code is exactly wonderful, if you could suggest ways of improving it then I would be grateful for that also.

    Read the article

  • Mysql - help me optimize this query (improved question)

    - by sandeepan-nath
    About the system: - There are tutors who create classes and packs - A tags based search approach is being followed.Tag relations are created when new tutors register and when tutors create packs (this makes tutors and packs searcheable). For details please check the section How tags work in this system? below. Following is the concerned query SELECT SUM(DISTINCT( t.tag LIKE "%Dictatorship%" )) AS key_1_total_matches, SUM(DISTINCT( t.tag LIKE "%democracy%" )) AS key_2_total_matches, COUNT(DISTINCT( od.id_od )) AS tutor_popularity, CASE WHEN ( IF(( wc.id_wc > 0 ), ( wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date > '2010-06-01 22:00:56' AND wccp.status = 1 AND ( wccp.country_code = 'IE' OR wccp.country_code IN ( 'INT' ) ) ), 0) ) THEN 1 ELSE 0 END AS 'classes_published', CASE WHEN ( IF(( lp.id_lp > 0 ), ( lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND ( lpcp.country_code = 'IE' OR lpcp.country_code IN ( 'INT' ) ) ), 0) ) THEN 1 ELSE 0 END AS 'packs_published', td . *, u . * FROM tutor_details AS td JOIN users AS u ON u.id_user = td.id_user LEFT JOIN learning_packs_tag_relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN learning_packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN learning_packs_categories AS lpc ON lpc.id_lp_cat = lp.id_lp_cat LEFT JOIN learning_packs_categories AS lpcp ON lpcp.id_lp_cat = lpc.id_parent LEFT JOIN learning_pack_content AS lpct ON ( lp.id_lp = lpct.id_lp ) LEFT JOIN webclasses_tag_relations AS wtagrels ON td.id_tutor = wtagrels.id_tutor LEFT JOIN webclasses AS wc ON wtagrels.id_wc = wc.id_wc LEFT JOIN learning_packs_categories AS wcc ON wcc.id_lp_cat = wc.id_wp_cat LEFT JOIN learning_packs_categories AS wccp ON wccp.id_lp_cat = wcc.id_parent LEFT JOIN order_details AS od ON td.id_tutor = od.id_author LEFT JOIN orders AS o ON od.id_order = o.id_order LEFT JOIN tutors_tag_relations AS ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN tags AS t ON ( t.id_tag = ttagrels.id_tag ) OR ( t.id_tag = lptagrels.id_tag ) OR ( t.id_tag = wtagrels.id_tag ) WHERE ( u.country = 'IE' OR u.country IN ( 'INT' ) ) AND CASE WHEN ( ( t.id_tag = lptagrels.id_tag ) AND ( lp.id_lp 0 ) ) THEN lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND ( lpcp.country_code = 'IE' OR lpcp.country_code IN ( 'INT' ) ) ELSE 1 END AND CASE WHEN ( ( t.id_tag = wtagrels.id_tag ) AND ( wc.id_wc 0 ) ) THEN wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND ( wccp.country_code = 'IE' OR wccp.country_code IN ( 'INT' ) ) ELSE 1 END AND CASE WHEN ( od.id_od 0 ) THEN od.id_author = td.id_tutor AND o.order_status = 'paid' AND CASE WHEN ( od.id_wc 0 ) THEN od.can_attend_class = 1 ELSE 1 END ELSE 1 END GROUP BY td.id_tutor HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 ORDER BY tutor_popularity DESC, u.surname ASC, u.name ASC LIMIT 0, 20 The problem The results returned by the above query are correct (AND logic working as per expectation), but the time taken by the query rises alarmingly for heavier data and for the current data I have it is like 25 seconds as against normal query timings of the order of 0.005 - 0.0002 seconds, which makes it totally unusable. It is possible that some of the delay is being caused because all the possible fields have not yet been indexed. The tag field of tags table is indexed. Is there something faulty with the query? What can be the reason behind 20+ seconds of execution time? How tags work in this system? When a tutor registers, tags are entered and tag relations are created with respect to tutor's details like name, surname etc. When a Tutors create packs, again tags are entered and tag relations are created with respect to pack's details like pack name, description etc. tag relations for tutors stored in tutors_tag_relations and those for packs stored in learning_packs_tag_relations. All individual tags are stored in tags table. The explain query output:- Please see this screenshot - http://www.test.examvillage.com/Explain_query.jpg

    Read the article

  • How to optimize an database suggestion engine

    - by Dimitar Vouldjeff
    Hi, I`m making an online engine for item-to-item recommending movies. I have made some researches and I think that the best way to implement that is using pearson correlation and make a table with item1, item2 and correlation fields, but the problem is that after each rate of item I have to regenerate the correlation for in the worst case N records (where N is the number of items). Another think that I read is the following article, but I haven`t thought a way to implement it. So what is your suggestion to optimize this process? Or any other suggestions? Thanks.

    Read the article

  • when is java faster than c++ (or when is JIT faster then precompiled)?

    - by kostja
    I have heard that under certain circumstances, Java programs or rather parts of java programs are able to be executed faster than the "same" code in C++ (or other precompiled code) due to JIT optimizations. This is due to the compiler being able to determine the scope of some variables, avoid some conditionals and pull similar tricks at runtime. Could you give an (or better - some) example, where this applies? And maybe outline the exact conditions under which the compiler is able to optimize the bytecode beyond what is possible with precompiled code? NOTE : This question is not about comparing Java to C++. Its about the possibilities of JIT compiling. Please no flaming. I am also not aware of any duplicates. Please point them out if you are.

    Read the article

  • Alternate User select interface in django admin to reduce page size on large site?

    - by David Eyk
    I have a Django-based site with roughly 300,000 User objects. Admin pages for objects with a ForeignKey field to User take a very long time to load as the resulting form is about 6MB in size. Of course, the resulting dropdown isn't particularly useful, either. Are there any off-the-shelf replacements for handling this case? I've been googling for a snippet or a blog entry, but haven't found anything yet. I'd like to have a smaller download size and a more usable interface.

    Read the article

< Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >