Search Results

Search found 8953 results on 359 pages for 'human resources'.

Page 93/359 | < Previous Page | 89 90 91 92 93 94 95 96 97 98 99 100  | Next Page >

  • An Alphabet of Eponymous Aphorisms, Programming Paradigms, Software Sayings, Annoying Alliteration

    - by Brian Schroer
    Malcolm Anderson blogged about “Einstein’s Razor” yesterday, which reminded me of my favorite software development “law”, the name of which I can never remember. It took much Wikipedia-ing to find it (Hofstadter’s Law – see below), but along the way I compiled the following list: Amara’s Law: We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run. Brook’s Law: Adding manpower to a late software project makes it later. Clarke’s Third Law: Any sufficiently advanced technology is indistinguishable from magic. Law of Demeter: Each unit should only talk to its friends; don't talk to strangers. Einstein’s Razor: “Make things as simple as possible, but not simpler” is the popular paraphrase, but what he actually said was “It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience”, an overly complicated quote which is an obvious violation of Einstein’s Razor. (You can tell by looking at a picture of Einstein that the dude was hardly an expert on razors or other grooming apparati.) Finagle's Law of Dynamic Negatives: Anything that can go wrong, will—at the worst possible moment. - O'Toole's Corollary: The perversity of the Universe tends towards a maximum. Greenspun's Tenth Rule: Any sufficiently complicated C or Fortran program contains an ad hoc, informally-specified, bug-ridden, slow implementation of half of Common Lisp. (Morris’s Corollary: “…including Common Lisp”) Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law. Issawi’s Omelet Analogy: One cannot make an omelet without breaking eggs - but it is amazing how many eggs one can break without making a decent omelet. Jackson’s Rules of Optimization: Rule 1: Don't do it. Rule 2 (for experts only): Don't do it yet. Kaner’s Caveat: A program which perfectly meets a lousy specification is a lousy program. Liskov Substitution Principle (paraphrased): Functions that use pointers or references to base classes must be able to use objects of derived classes without knowing it Mason’s Maxim: Since human beings themselves are not fully debugged yet, there will be bugs in your code no matter what you do. Nils-Peter Nelson’s Nil I/O Rule: The fastest I/O is no I/O.    Occam's Razor: The simplest explanation is usually the correct one. Parkinson’s Law: Work expands so as to fill the time available for its completion. Quentin Tarantino’s Pie Principle: “…you want to go home have a drink and go and eat pie and talk about it.” (OK, he was talking about movies, not software, but I couldn’t find a “Q” quote about software. And wouldn’t it be cool to write a program so great that the users want to eat pie and talk about it?) Raymond’s Rule: Computer science education cannot make anybody an expert programmer any more than studying brushes and pigment can make somebody an expert painter.  Sowa's Law of Standards: Whenever a major organization develops a new system as an official standard for X, the primary result is the widespread adoption of some simpler system as a de facto standard for X. Turing’s Tenet: We shall do a much better programming job, provided we approach the task with a full appreciation of its tremendous difficulty, provided that we respect the intrinsic limitations of the human mind and approach the task as very humble programmers.  Udi Dahan’s Race Condition Rule: If you think you have a race condition, you don’t understand the domain well enough. These rules didn’t exist in the age of paper, there is no reason for them to exist in the age of computers. When you have race conditions, go back to the business and find out actual rules. Van Vleck’s Kvetching: We know about as much about software quality problems as they knew about the Black Plague in the 1600s. We've seen the victims' agonies and helped burn the corpses. We don't know what causes it; we don't really know if there is only one disease. We just suffer -- and keep pouring our sewage into our water supply. Wheeler’s Law: All problems in computer science can be solved by another level of indirection... Except for the problem of too many layers of indirection. Wheeler also said “Compatibility means deliberately repeating other people's mistakes.”. The Wrong Road Rule of Mr. X (anonymous): No matter how far down the wrong road you've gone, turn back. Yourdon’s Rule of Two Feet: If you think your management doesn't know what it's doing or that your organisation turns out low-quality software crap that embarrasses you, then leave. Zawinski's Law of Software Envelopment: Every program attempts to expand until it can read mail. Zawinski is also responsible for “Some people, when confronted with a problem, think 'I know, I'll use regular expressions.' Now they have two problems.” He once commented about X Windows widget toolkits: “Using these toolkits is like trying to make a bookshelf out of mashed potatoes.”

    Read the article

  • An Hour With Bill Buxton MIX10

    After spending a couple of hours with Rowan Simpson yesterday afternoon I found myself continually coming back to some of the things that Bill Buxton talked about in his hour Q&A at MIX10 in Las Vegas. Dont have Silverlight? Download the video in WMV, WMV (High) or MP4 format. At the more theoretical level, Bill discusses technology as a human prosthesis, but he favours metaphors that are as far away from technology as possible. The Seattle Public Library and software building....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Larry Ellison and Mark Hurd on Oracle Cloud

    - by arungupta
    Oracle Cloud provides Java and Database as Platform Services and Customer Relationship Management, Human Capital Management, and Social Network as Application Services. Watch a live webcast with Larry Ellison and Mark Hurd on announcements about Oracle Cloud. Date ? Wednesday, June 06, 2012 Time ? 1:00 p.m. PT – 2:30 p.m. PT Register here for the webinar. You can also attend the live event by registering here. Oracle Cloud is by invitation only at this time and you can register for access here.

    Read the article

  • Google I/O 2010 - Google Wave API design principles

    Google I/O 2010 - Google Wave API design principles Google I/O 2010 - Google Wave API design principles + anatomy of a great extension Wave 201 Pamela Fox, Michael Goderbauer (Hasso Plattner Institute) Google Wave is all about collaboration. The most successful extensions are user-friendly and collaborative. Wave robots should be as intuitive to communicate with as a human, and play well with other robots; Wave gadgets should extend the metaphors of the textual collaboration into the visual. In this talk, we'll discuss the design and privacy principles you should consider while building extensions, and show examples of extensions that demonstrate these principles. For all I/O 2010 sessions, please go to code.google.com/events/io/2010/sessions.html From: GoogleDevelopers Views: 6 0 ratings Time: 01:01:54 More in Science & Technology

    Read the article

  • New Article: The 12-Step Recovery Program from a SharePoint Error

    - by Sahil Malik
    SharePoint 2010 Training: more information Nice!! I had been waiting for this article to come online.In this article, I describe 12 steps that will let you sort out pretty much any SharePoint error there is. Here is a starting excerpt -- Hello, my name is Sahil, and I am a worsening SharePointoholic. SharePoint is built on ASP.NET 2.0 - pretty much like human beings are made up of carbon and water. There is a lot in SharePoint that isn’t in ASP.NET. Not only is SharePoint a complex ASP.NET 2.0 application, it also has numerous concepts for things such as profiles, role providers, authorization etc., that are different from ASP.NET…… Read the rest … Read full article ....

    Read the article

  • Spotlight on Claims: Serving Customers Under Extreme Conditions

    - by [email protected]
    Oracle Insurance's director of marketing for EMEA, John Sinclair, recently attended the CII Spotlight on Claims event in London. Bad weather and its implications for the insurance industry have become very topical as the frequency and diversity of natural disasters - including rains, wind and snow - has surged across Europe this winter. On England's wettest day on record, the county of Cumbria was flooded with 12 inches of rain within 24 hours. Freezing temperatures wreaked havoc on European travel, causing high speed TVG trains to break down and stranding hundreds of passengers under the English Chanel in a tunnel all night long without heat or electricity. A storm named Xynthia thrashed France and surrounding countries with hurricane force, flooding ports and killing 51 people. After the Spring Equinox, insurers may have thought the worst had past. Then came along Eyjafjallajökull, spewing out vast quantities of volcanic ash in what is turning out to be one of most costly natural disasters in history. Such extreme events challenge insurance companies' ability to service their customers just when customers need their help most. When you add economic downturn and competitive pressures to the mix, insurers are further stretched and required to continually learn and innovate to meet high customer expectations with reduced budgets. These and other issues were hot topics of discussion at the recent "Spotlight on Claims" seminar in London, focused on how weather is affecting claims and the insurance industry. The event was organized by the CII (Chartered Insurance Institute), a group with 90,000 members. CII has been at the forefront in setting professional standards for the insurance industry for over a century. Insurers came to the conference to hear how they could better serve their customers under extreme weather conditions, learn from the experience of their peers, and hear about technological breakthroughs in climate modeling, geographic intelligence and IT. Customer case studies at the conference highlighted the importance of effective and constant communication in handling the overflow of catastrophe related claims. First and foremost is the need to rapidly establish initial communication with claimants to build their confidence in a positive outcome. Ongoing communication then needs to be continued throughout the claims cycle to mange expectations and maintain ownership of the process from start to finish. Strong internal communication to support frontline staff was also deemed critical to successful crisis management, as was communication with the broader insurance ecosystem to tap into extended resources and business intelligence. Advances in technology - such web based systems to access policies and enter first notice of loss in the field - as well as customer-focused self-service portals and multichannel alerts, are instrumental in improving customer satisfaction and helping insurers to deal with the claims surge, which often can reach four or more times normal workloads. Dynamic models of the global climate system can now be used to better understand weather-related risks, and as these models mature it is hoped that they will soon become more accurate in predicting the timing of catastrophic events. Geographic intelligence is also being used within a claims environment to better assess loss reserves and detect fraud. Despite these advances in dealing with catastrophes and predicting their occurrence, there will never be a substitute for qualified front line staff to deal with customers. In light of pressures to streamline efficiency, there was debate as to whether outsourcing was the solution, or whether it was better to build on the people you have. In the final analysis, nearly everybody agreed that in the future insurance companies would have to work better and smarter to keep on top. An appeal was also made for greater collaboration amongst industry participants in dealing with the extreme conditions and systematic stress brought on by natural disasters. It was pointed out that the public oftentimes judged the industry as a whole rather than the individual carriers when it comes to freakish events, and that all would benefit at such times from the pooling of limited resources and professional skills rather than competing in silos for competitive advantage - especially the end customer. One case study that stood out was on how The Motorists Insurance Group was able to power through one of the most devastating catastrophes in recent years - Hurricane Ike. The keys to Motorists' success were superior people, processes and technology. They did a lot of upfront planning and invested in their people, creating a healthy team environment that delivered "max service" even when they were experiencing the same level of devastation as the rest of the population. Processes were rapidly adapted to meet the challenge of the catastrophe and continually adapted to Ike's specific conditions as they evolved. Technology was fundamental to the execution of their strategy, enabling them anywhere access, on the fly reassigning of resources and rapid training to augment the work force. You can learn more about the Motorists experience by watching this video. John Sinclair is marketing director for Oracle Insurance in EMEA. He has more than 20 years of experience in insurance and financial services.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Learn More about Fusion CRM at the Oracle Applications Virtual Tradeshow

    - by ruth.donohue
    Sales reps spend just 22% of their time selling. The remainder is spent on administrative activities. How can you improve this ratio so that you sales reps can focus on what really matters? Join Mark Woollen, VP of CRM Product Management, at the Oracle Applications Virtual Tradeshow this Thursday, February 3rd at 10:30 AM PST / 1:30 PM EST to learn how Fusion CRM can improve sales productivity. Register now and be sure to check out Brian Dayton's blog post "What's In It For You? The Oracle Applications Virtual Tradeshow" to learn more about other sessions that may be of interest in Customer Relationship Management, Master Data Management, Enterprise Performance Management, Financials, and Human Capital Management.

    Read the article

  • « Le tactile est une technologie de transition », mais vers quoi ? Un designer d'Apple trouve les interactions homme-machine trop pauvres

    « Le tactile est une technologie de transition » Mais vers quoi ? Un designer d'Apple pense que les interactions homme-machines actuelles sont trop pauvres « Pour moi, affirmer qu'un image sous une glace (NDT : Pictures Under Glass) est le futur des intéractions hommes machines (IHM) revient à dire que l'avenir de la photo est le noir et blanc. [Le tactile] est de manière évidente une technologie de transition. Et plus courtes sont les transitions, mieux c'est ». Voici comment Bret Victor, Human-Interface Operator chez Apple, résume sa pensée. Par « Picture Under Glass », il décrit le tactile actuel. Autrement dit les tablettes et autres smartphones dont les écrans sont lisse...

    Read the article

  • OpenWorld Session: Oracle Unified BPM Suite Development Best Practices

    - by Ajay Khanna
    Blog by David Read Earlier today,  Sushil Shukla, Yogeshwar Kuntawar, and I (David Read) delivered an OpenWorld  session that covered BPM development best practices.  It was well attended.  Last year we had a session that covered end-to-end lifecycle best practices for BPM.  This year we narrowed the focus to the development portion of the lifecycle.  We started with an overview of development process best practices, then focused on a few key design topics where we’ve seen common questions from customers and partners. Data Design Using EDN Multi-Instance Activity Using the Spring Component Human Task Integration We wrapped up with an overview of key concepts for effective error handling, including error handling within the process design, and using declarative fault policies. We hope you found the session useful, and as noted in the session, please be sure to try to attend Prasen’s session to see more details about approaches for testing Oracle Business Rules: CON8606  Oracle Business Rules Use Cases, 10/3/2012, 3:30PM  

    Read the article

  • Talent Management in Aerospace & Defense this Thursday, April 8th

    - by jay.richey
    While many industries struggle to recover from one of the most devastating recessions in history, the aerospace and defense industry plans for record growth. And key to that growth is better management of the workforce. A&D companies are currently faced with a multitude of workforce challenges including an aging and retiring workforce, knowledge gaps created as the workforce leaves, a surge in use of contingent workers, and antiquated work environments and practices that make it difficult to attract the next generation of workers. If you are in the DC area, register to attend the Oracle Aerospace and Defense Contractors Summit in Reston this Thursday, April 8th from 8am-5pm and hear Jay Richey, Oracle HCM Applications Product Marketing Director, discuss trends in the A&D talent space and smart strategies on retaining that talent. You will also hear Accenture discuss their recent survey results - Keys to Managing Human Capital within the A&D Enterprise. Register today at http://www.oracle.com/dm/10q3field/43453_ev_oracle_aerospace_apr10.html

    Read the article

  • Windows 8 Live Accounts and the actual Windows Account

    - by Rick Strahl
    As if Windows Security wasn't confusing enough, in Windows 8 we get thrown yet another curve ball with Windows Live accounts to logon. When I set up my Windows 8 machine I originally set it up with a 'real', non-live account that I always use on my Windows machines. I did this mainly so I have a matching account for resources around my home and intranet network so I could log on to network resources properly. At some point later I decided to set up Windows Live security just to see how changes things. Windows wants you to use Windows Live Windows 8 logins are required in order for the Windows RT account info to work. Not that I care - since installing Windows 8 I've maybe spent 10 minutes with Windows RT because - well it's pretty freaking sucky on the desktop. From shitty apps to mis-managed screen real estate I can't say that there's anything compelling there to date, but then I haven't looked that hard either. Anyway… I set up the Windows Live account to see if that changes things. It does - I do get all my live logins to work from Live Account so that Twitter and Facebook posts and pictures and calendars all show up on live tiles on the start screen and in the actual apps. That's nice-ish, but hardly that exciting given that all of the apps tied to those live tiles are average at best. And it would have been nice if all of this could be done without being forced into running with a Windows Live User Account - this all feels like strong-arming you into moving into Microsofts walled garden… and that's probably what it's meant to do. Who am I? The real problem to me though is that these Windows Live and raw Windows User accounts are a bit unpredictable especially when it comes to developer information about the account and which credentials to use. So for example Windows reports folder security like this: Notice it's showing my Windows Live account. Now if I go to Edit and try to add my Windows user account (rstrahl) it'll just automatically show up as the live account. On the other hand though the underlying system sees everything as my real Windows account. After I switched to a Windows Live login account and I have to login to Windows with my Live account, what do you suppose this returns?Console.WriteLine(Environment.UserName); It returns my raw Windows user account (rstrahl). All my permissions, all my actual settings and the desktop console altogether run under that account. If I look in TaskManager (or Process Explorer for me) I see: Everything running on the desktop shell with my login running under my Windows user account. I suppose it makes sense, but where is that association happening? When I switched to a Windows Live account, nowhere did I associate my real account with the Live account - it just happened. And looking through the account configuration dialogs I can't find any reference to the raw Windows account. Other than switching back I see no mention anywhere of the raw Windows account - everything refers to the Live account. Right then, clear as potato soup! So this is who you really are! The problem is that in some situations this schizophrenic account behavior gets a bit weird. Today I was running a local Web application in IIS that uses Windows Authentication - I tried to log-in with my real Windows account login because that's what I'm used to using with WINDOWS freaking Authentication through IIS. But… it failed. I checked my IIS settings, my apps login settings and I just could not for the life of me get into the site with my Windows username. That is until I finally realized that I should try using my Windows Live credentials instead. And that worked. So now in this Windows Authentication dialog I had to type in my Live ID and password, which is - just weird. Then in IIS if I look at a Trace page (or in my case my app's Status page) I see that the logged on account is - my Windows user account. What's really annoying about this is that in some places it uses the live account in other places it uses my Windows account. If I remote desktop into my Web server online - I have to use the local authentication dialog but I have to put in my real Windows credentials not the Live account. Oh yes, it's all so terribly intuitive and logical… So in summary, when you log on with a Live account you are actually mapped to an underlying Windows user. In any application if you check the user name it'll be the underlying user account (not sure what happens in a Windows RT app or even what mechanism is used there to get the user name info).  When logging on to local machine resource with user name and password you have to use your Live IDs even if the permissions on the resources are mapped to your underlying Windows account. Easy enough I suppose, but still not exactly intuitive behavior…© Rick Strahl, West Wind Technologies, 2005-2012Posted in Windows   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • 20 Windows Keyboard Shortcuts You Might Not Know

    - by Justin Garrison
    Mastering the keyboard will not only increase your navigation speed but it can also help with wrist fatigue. Here are some lesser known Windows shortcuts to help you become a keyboard ninja. Image by Remko van Dokkum Latest Features How-To Geek ETC The How-To Geek Guide to Learning Photoshop, Part 8: Filters Get the Complete Android Guide eBook for Only 99 Cents [Update: Expired] Improve Digital Photography by Calibrating Your Monitor The How-To Geek Guide to Learning Photoshop, Part 7: Design and Typography How to Choose What to Back Up on Your Linux Home Server How To Harmonize Your Dual-Boot Setup for Windows and Ubuntu Hang in There Scrat! – Ice Age Wallpaper How Do You Know When You’ve Passed Geek and Headed to Nerd? On The Tip – A Lamborghini Theme for Chrome and Iron What if Wile E. Coyote and the Road Runner were Human? [Video] Peaceful Winter Cabin Wallpaper Store Tabs for Later Viewing in Opera with Tab Vault

    Read the article

  • SPARC T4-4 Delivers World Record First Result on PeopleSoft Combined Benchmark

    - by Brian
    Oracle's SPARC T4-4 servers running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved World Record 18,000 concurrent users while executing a PeopleSoft Payroll batch job of 500,000 employees in 43.32 minutes and maintaining online users response time at < 2 seconds. This world record is the first to run online and batch workloads concurrently. This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier. The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment. The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 35% (online and batch) leaving significant headroom for additional processing across the three tiers. The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices. This is the first three tier mixed workload (online and batch) PeopleSoft benchmark also processing PeopleSoft payroll batch workload. Performance Landscape PeopleSoft HR Self-Service and Payroll Benchmark Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-2 (web) SPARC T4-4 (app) SPARC T4-2 (db) 18,000 0.944 0.503 43.32 64 Configuration Summary Application Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 512 GB memory 5 x 300 GB SAS internal disks 1 x 100 GB and 2 x 300 GB internal SSDs 2 x 10 Gbe HBA Oracle Solaris 11 11/11 PeopleTools 8.52 PeopleSoft HCM 9.1 Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031 Java Platform, Standard Edition Development Kit 6 Update 32 Database Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 256 GB memory 3 x 300 GB SAS internal disks Oracle Solaris 11 11/11 Oracle Database 11g Release 2 Web Tier Configuration: 1 x SPARC T4-2 server with 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 2 x 300 GB SAS internal disks 1 x 100 GB internal SSD Oracle Solaris 11 11/11 PeopleTools 8.52 Oracle WebLogic Server 10.3.4 Java Platform, Standard Edition Development Kit 6 Update 32 Storage Configuration: 1 x Sun Server X2-4 as a COMSTAR head for data 4 x Intel Xeon X7550, 2.0 GHz 128 GB memory 1 x Sun Storage F5100 Flash Array (80 flash modules) 1 x Sun Storage F5100 Flash Array (40 flash modules) 1 x Sun Fire X4275 as a COMSTAR head for redo logs 12 x 2 TB SAS disks with Niwot Raid controller Benchmark Description This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2. The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published. PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions. All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions. The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes. The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state. Key Points and Best Practices Two Oracle PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning. Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN SPARC T4-4 Server oracle.com OTN PeopleSoft Enterprise Human Capital Management oracle.com OTN PeopleSoft Enterprise Human Capital Management (Payroll) oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Oracle's PeopleSoft HR and Payroll combined benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 09/30/2012.

    Read the article

  • Top Reasons You Need A User Engagement Platform

    - by Michael Snow
    Guest post by: Amit Sircar, Senior Sales Consultant, Oracle Deliver complex enterprise functionality through a simple intuitive and unified User Interface (UI) The modern enterprise contains a wide range of applications that are used to manage the business and drive competitive advantages. Organizations respond by creating a complex structure that results in a functional and management grouping of users. Each of these groups of users requires access to multiple applications and information sources in order to perform their job functions. This leads to the lack of a unified view of enterprise information, inconsistent user interfaces and disjointed security. To be effective, portals must be designed from the end-user perspective, enabling the user to accomplish as many tasks as possible while visiting the fewest number of portals. This requires rethinking the way that portals are built, moving from a functional business unit perspective to a user-focused, process-oriented point of view. Oracle WebCenter provides the Common User Experience Architecture that allows organizations to seamlessly present a unified view of enterprise information tailored to a particular user’s role and preferences. This architecture provides the best practices, design patterns and delivery mechanism for myriad services, applications, and data sources.  In order to serve as a primary system of access, Oracle WebCenter also provides access to unstructured content and to other users via integrated search, service-oriented artifacts, content management, and collaboration tools. Provide a modern and engaging experience without modifying the core business application Web 2.0 technologies such as blogs, wikis, forums or social media sites are having a profound impact in the public internet.  These technologies can be leveraged by enterprises to add significant value to the business. Organizations need to integrate these technologies directly into their business applications while continuing to meet their security and governance needs. To deliver richer connections and become a more agile and intelligent business, WebCenter provides an enterprise portal platform that contains pre-integrated, standards-based Enterprise 2.0 services. These Enterprise 2.0 services can be easily accessed, integrated and utilized by users. By giving users the ability to use and integrate Enterprise 2.0 services such as tags, links, wikis, activities, blogs or social networking directly with their portals and applications, they are empowered to make richer connections, optimize their productivity, and ultimately increase the value of their applications. Foster a collaborative experience The organizational workplace has undergone a major change in the last decade. With increasing globalization and a distributed workforce, project teams may be physically separated by large distances. Online collaboration technologies are becoming a critical resource to enable virtual teams to share information and work together effectively. Oracle WebCenter delivers dynamic business communities with rich Services to empower teams to quickly and efficiently manage their information, applications, projects, and people without requiring IT assistance. It brings together the latest technology around Enterprise 2.0 and social computing, communities, personal productivity, and ad-hoc team interactions without any development effort. It enables the sharing and collaboration on team content, focusing an organization’s valuable resources on solving business problems, tapping into new ideas, and reducing time-to-market. Mobile Support The traditional workplace dynamics that required employees to access their work applications from their desktops have undergone a fundamental shift. Employees were used to primarily working from company offices and utilized an IT-issued computer for performing their job functions. With the introduction of flexible work hours and the growth of remote workers, more and more employees need the ability to remain productive even when they do not have access to a computer via the use of tablets and smartphones.  In addition, customers and citizens have come to expect 24x7 access to resources and websites from wherever they are located. Tablets and smartphones have empowered everyone to quickly access services they need anytime and from any place.  WebCenter provides out of the box capabilities to deliver the mobile experience in a seamless manner. Seeded device profiles and toolkits within WebCenter can be used to render the same web pages into multiple target devices such iPads, iPhones and android devices. Web designers can preview the portal using the built in simulator, make necessary updates and then deploy their UI design for the targeted device. Conclusion The competitive economy and resource constraints facing organizations today require them to find ways to make their applications, portals and Web sites more agile and intelligent and their knowledge workers more productive no matter where they are located. Organizations need to provide faster access to relevant information and resources, enhance existing applications and business processes with rich Enterprise 2.0 services, and seamlessly deliver content to mobile platforms. Oracle WebCenter successfully meets these challenges by providing the modern user experience platform for the enterprise and the Web.

    Read the article

  • Can the Birds and Pigs Really Be Friends in the End? [Angry Birds Video]

    - by Asian Angel
    After landing in the Pig King’s castle the Red Bird and one of the Pigs have a startling revelation as they talk. Who knew that they had so much in common?! Angry Birds Friendship [via Geeks are Sexy] Latest Features How-To Geek ETC Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines MyPaint is an Open-Source Graphics App for Digital Painters Can the Birds and Pigs Really Be Friends in the End? [Angry Birds Video] Add the 2D Version of the New Unity Interface to Ubuntu 10.10 and 11.04 MightyMintyBoost Is a 3-in-1 Gadget Charger Watson Ties Against Human Jeopardy Opponents Peaceful Tropical Cavern Wallpaper

    Read the article

  • are keywords in URLs good SEO or needlessly redundant?

    - by Blazemonger
    A coworker and I are locked in a debate over the value of SEO keywords in the URL of a page. She wants to change all the filenames of the HTML pages of a fencing company so they look like residential-home-chicago.html, contact-chicago-contractor.html, and so on. She is convinced that because Google highlights keywords in URLS in search results, that means that putting keywords here is more valuable. My position is that these do not improve SEO, since Google doesn't seem to give keywords in the URL any more weight than keywords in the body of the page, and might even give them less weight. In the meantime, they make it harder for me to find the pages I want when its time to edit them, and the site as a whole looks cheap and spammy. Google's own SEO guide suggests to me that yes, keywords in URLs are useful, but not superior, and that they are more useful for human readability than search engine rankings. I'm looking for authoritative sources that support either position, not blog articles from SEO optimization companies trying to promote themselves.

    Read the article

  • EBS Extensions for Endeca 12.2 V5 Now Available

    - by LuciaC-Oracle
    E-Business Suite Development has announced the availability of Oracle E-Business Suite Extensions for Oracle Endeca 12.2 V5 - see the announcement here.  This release adds the following new modules that can be used to extend Oracle E-Business Suite 12.2: Oracle Service Contracts Extensions for Oracle Endeca Oracle TeleService Extensions for Oracle Endeca Oracle Human Resources Extensions for Oracle Endeca Oracle Quality Extensions for Oracle Endeca. These new modules are in addition to those already previously available.  Availability of these new and updated V5 modules for 12.1 is planned. Where can I find more information? Subscribe to the YouTube channel for Oracle E-Business Suite to get the latest on Oracle E-Business Suite Extensions for Oracle Endeca. Bookmark the Information Center: Oracle E-Business Suite Extensions for Oracle Endeca (Doc ID 1486924.2) Read about how to install Oracle E-Business Suite Extensions for Oracle Endeca, Release 12.2 V5 (Doc ID 1614014.1).

    Read the article

  • HR Executive's Article on Oracle Fusion HCM

    - by jay.richey
    Curious about Fusion? Didn't make it to the HR Technology Conference in Chicago this past fall to hear Gretchen Alarcon and Bill Kutik discuss it in a candid one-on-one session? Human Resource Executive has posted the transcript of that session in an online article entitled "Fusion Unveiled". Gretchen, Vice President of Fusion HCM Applications Strategy, sat down with Bill to both discuss the mechanics of how Fusion was developed and how it works, and the benefits organizations will realize, along with a live demo of the software. Read more at http://www.hreonline.com/HRE/story.jsp?storyId=533326589 And learn more about Oracle Fusion Applications at http://www.oracle.com/fusion

    Read the article

  • GP11.1

    - by user13334066
    It's the Assen round of the 2011 motogp season, and Ducati have launched their GP11.1. The Ducati's front end woes were quite efficiently highlighted throughout the 2010 season, with both Casey and Nicky regularly visiting the gravel traps. Now the question is: was it really a front end issue. What's most probable is: the GP10 never had a front end issue. It was the rear that was out. So what did Stoner's team do? They came with setup changes that sorted out the rear end, while transferring the problem to the front. And Casey has this brilliant ability to push beyond the limits of a vague and erratic front end...and naturally the real problem lay hidden. Like Kevin Cameron said: in human nature, our strengths are our weaknesses. Casey's pure speed came at a lack of fine machinery feel, which ultimately took the Ducati in a wrong development direction.

    Read the article

  • 5 Things I Learned About the IT Labor Shortage

    - by Oracle Accelerate for Midsize Companies
    by Jim Lein | Sr. Principal Product Marketing Director | Oracle Midsize Programs | @JimLein Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} 5 Things I Learned About the IT Labor Shortage A gentle autumn breeze is nudging the last golden leaves off the aspen trees. It’s time to wrap up the series that I started back in April, “The Growing IT Labor Shortage: Are You Feeling It?” Even in a time of relatively high unemployment, labor shortages exist depending on many factors, including location, industry, IT requirements, and company size. According to Manpower Groups 2013 Talent Shortage Survey, 35% of hiring managers globally are having difficulty filling jobs. Their top three challenges in filling jobs are: 1. lack of technical competencies (hard skills) 2. Lack of available applicants 3. Lack of experience The same report listed Technicians as the most difficult position to fill in the United States For most companies, Human Capital and Talent Management have never been more strategic and they are striving for ways streamline processes, reduce turnover, and lower costs (see this Oracle whitepaper, “ Simplify Workforce Management and Increase Global Agility”). Everyone I spoke to—partner, customer, and Oracle experts—agreed that it can be extremely challenging to hire and retain IT talent in today’s labor market. And they generally agreed on the causes: a. IT is so pervasive that there are myriad moving parts requiring support and expertise, b. thus, it’s hard for university graduates to step in and contribute immediately without experience and specialization, c. big IT companies generally aren’t the talent incubators that they were in the freewheeling 90’s due to bottom line pressures that require hiring talent that can hit the ground running, and d. it’s often too expensive for resource-strapped midsize companies to invest the time and money required to get graduates up to speed. Here are my top lessons learned from my conversations with the experts. 1. A Better Title Would Have Been, “The Challenges of Finding and Retaining IT Talent That Matches Your Requirements” There are more applicants than jobs but it’s getting tougher and tougher to find individuals that perfectly fit each and every role. Top performing companies are increasingly looking to hire the “almost ready”, striving to keep their existing talent more engaged, and leveraging their employee’s social and professional networks to quickly narrow down candidate searches (here’s another whitepaper, “A Strategic Approach to Talent Management”). 2. Size Matters—But So Does Location Midsize companies must strive to build cultures that compete favorably with what large enterprises can offer, especially when they aren’t within commuting distance of IT talent strongholds. They can’t always match the compensation and benefits offered by large enterprises so it's paramount to offer candidates high quality of life and opportunities to build their resumes in alignment with their long term career aspirations. 3. Get By With a Little Help From Your Friends It doesn’t always make sense to invest time and money in training an employee on a task they will not perform frequently. Or get in a bidding war for talent with skills that are rare and in high demand. Many midsize companies are finding that it makes good economic sense to contract with partners for remote support rather than trying to divvy up each and every role amongst their lean staff. Internal staff can be assigned to roles that will have the highest positive impact on achieving organizational goals. 4. It’s Actually Both “What You Know” AND “Who You Know” If I was hiring someone today I would absolutely leverage the social and professional networks of my co-workers. Period. Most research shows that hiring in this manner is less expensive and time consuming AND produces better results. There is also some evidence that suggests new hires from employees’ networks have higher job performance and retention rates. 5. I Have New Respect for Recruiters and Hiring Managers My hats off to them—it’s not easy hiring and retaining top talent with today’s challenges. Check out the infographic, “A New Day: Taking HR from Chaos to Control”, on Oracle’s Human Capital Management solutions home page. You can also explore all of Oracle’s HCM solutions from that page based on your role. You can read all the posts in this series by clicking on the links in the right sidebar. Stay tuned…we’ll continue to post thought leadership on HCM and Talent Management topics.

    Read the article

  • Oracle Applications Day 2012 -Experience the Global Innovation of Management Applications

    - by antonella.buonagurio
    Il 10 ottobre a Milano e il 17 ottobre a Roma si sono svolti gli Oracle Applications Day, dedicati alla community di Clienti e Partner Oracle. Le due giornate hanno visto la partecipazione di più di 400 persone che hanno condiviso le loro esperienze e conoscenze in ambito applicativo. Durante la sessione plenaria sono state illustrate tutte le novità relative alle Oracle Applications ed in particolare le Oracle Fusion Applications mentre durante le 2 giornate più di 20 clienti hanno parlato di come utilizzano in modo strategico e con successo le soluzioni Oracle. 15 Business Partner grazie all'iniziativa "Partner Instant Workshop" hanno incontrato direttamente i clienti e discusso delle tematiche più calde del momento. Se non hai potuto partecipare all'evento oppure vuoi rivivere quei momenti qui sotto trovi la presentazione della plenaria mentre cliccando su ciascun titolo delle sessioni parallele puoi trovare le rispettive presentazioni. Innovation for Human Resources Performance Management Excellence Empower Applications with Technology (tenutasi solo a Milano) Applications for Public Sector (tenutasi solo a Roma) Next Generation Global Operations Customer Experience Revolution

    Read the article

  • Peaceful Tropical Cavern Wallpaper

    - by Asian Angel
    colorful-hand-painted [DesktopNexus] Latest Features How-To Geek ETC Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines MyPaint is an Open-Source Graphics App for Digital Painters Can the Birds and Pigs Really Be Friends in the End? [Angry Birds Video] Add the 2D Version of the New Unity Interface to Ubuntu 10.10 and 11.04 MightyMintyBoost Is a 3-in-1 Gadget Charger Watson Ties Against Human Jeopardy Opponents Peaceful Tropical Cavern Wallpaper

    Read the article

  • Top ten things that don't make sense in The Walking Dead

    - by iamjames
    For those of you that don't know, The Walking Dead is a popular American TV show on AMC about a group of people trying to survive in a zombie-filled world.Here's the top ten eleven things that don't make sense on the show (and have never been explained) 1)  They never visit stores.  No Walmarts, Kmarts, Targets, shopping malls, pawn shops, gas stations, etc.  You'd think that would be the first place you'd visit for supplies, but they never have.  Not once.  There was a tiny corner store they visited in a small town, and while many products were already gone they did find several useful items.  2)  They never raid houses.  Why not?  One would imagine that they would want to search houses for useful items, but they don't.3)  They don't use 2 way radios.  Modern 2-way radios have a 36-mile range.  That's probably best possible range, but even if the range is only 10% of that, 3.6 miles, that's still more than enough for most situations, for the occasional "hey zombies attacking can you give me a hand?" or "there's zombies walking by stay inside until they leave" or "remember to pick up milk at the store love mom".  And yes they would need batteries or recharging, but they have been using gas-powered generators on the show and I'm sure a car charger would work.4)  They use gas-guzzling vehicles.  Every vehicle they have is from the 80s or 90s except for the new Kia SUV there for product placement.  Why?  They should all be driving new small SUVs or hybrids.  Visit a dealership and steal more fuel-efficient vehicles, because while the Walmart's might be empty from people raiding them for supplies, I'm sure most people weren't thinking "Gee, I should go car shopping" when the infection hit5)  They drive a motorcycle.  Seriously?  Let's find the least protective vehicle and drive that.  And while motorcycles get reasonable gas mileage, 5 people in a SUV gets better gas mileage per person than 5 people all driving motorcycles so it doesn't make economical sense either.6)  They drive loud vehicles.  The motorcycle used is commonly referred to as a chopper and is about as loud as a motorcycle can get.  The zombies are attracted to loud noise, so wouldn't it make more sense to drive vehicles that makes less sound?  Because as soon as you stop the bike and get off you're surrounded by zombies that heard you coming.  And it's not just the bike, the ~1980s Chevy SUV in the show is also very loud.7)  They never run out of food.  Seems like that would be a almost daily struggle, keeping enough food available for about a dozen people, yet I've never seen them visit a grocery store or local convenience store to stock up.8)  They don't carry swords, machetes, clubs, etc.  Let's face it, biting is not a very effective means of attack.  It's good for animals because they have fangs and little else, but humans have been finding better ways of killing each other since forever.  So why doesn't everyone on the show carry a sword or machete or at least a baseball bat?  Anything is better than wasting valuable bullets all the time.  Sure, dozen zombies approaching?  Shoot them.  One zombie approaching?  Save the bullet, cut off it's head.  9)  They do not wear protective clothing.  Human teeth are not exactly the sharpest teeth in the animal kingdom.  The leather shoes your dog ripped to shreds within minutes would probably take you days to bite through.  So why do they walk around half-naked?  Yes I know it's hot in Atlanta, but you'd think they'd at least have some tough leather coats or something for protection.  Maybe put a few small vent holes in the fabric if it's really hot.  Or better:  make your own chainmail.  Chainmail was used for thousands of years for protection from swords and is still used by scuba divers for protection from sharks.  If swords and sharks can't puncture it, human teeth don't stand a chance.  10)  They don't build barricades or dig trenches around properties.  In Season 2 they stayed at a farm in the middle of no where.  While being far away from people is a great way to stay far away from zombies, it would still make sense to build some sort of defenses.  Hordes of zombies would knock down almost any fence, but what about a trench or moat?  Maybe something not too wide so it can be jumped over easily but a zombie would fall into because I haven't seen too many jumping zombies on the show.  11)  They don't live in a mall or tall office building.  A mall would be perfect.  They have large security gates designed to keep even hundreds of people from breaking in and offer lots of supplies and food.  They're usually hundreds of thousands of square feet and fully enclosed, one could probably live their entire life happily in a mall.  Tall office building with on-site cafeteria would be another good choice.  They also usually offer good security and office furniture could be pushed out of the windows to crush approaching zombies, and the cafeteria is usually stocked to provide food for hundreds or thousands of office workers so food wouldn't be a problem for a long time. So there you have it, eleven things that don't make sense in The Walking Dead.  Have any of your own you'd like to add or were one of these things covered in the show?  Let me know in the comments.

    Read the article

< Previous Page | 89 90 91 92 93 94 95 96 97 98 99 100  | Next Page >