Search Results

Search found 5729 results on 230 pages for 'compiler dependent'.

Page 94/230 | < Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >

  • How can a wix custom action dll call be made to use the debug runtime via a merge module?

    - by Benj
    I'm trying to create a debug build with a corresponding debug installer for our product. I'm new to Wix so please forgive any naivety contained herein. The debug Dlls in my project are dependent on both the VS2008 and the VS2008SP1 debug runtimes. I've created a merge module feature in wix to bundle those runtimes with my installer. <Include xmlns="http://schemas.microsoft.com/wix/2006/wi"> <!-- Include our 'variables' file --> <!--<?include variables.wxi ?>--> <!--<Fragment>--> <DirectoryRef Id="TARGETDIR"> <!-- Always install the 32 bit ATL/CRT libraries, but only install the 64 bit ones on a 64 bit build --> <Merge Id="AtlFiles_x86" SourceFile="$(env.CommonProgramFiles)\Merge Modules\Microsoft_VC90_ATL_x86.msm" DiskId="1" Language="1033"/> <Merge Id="AtlPolicy_x86" SourceFile="$(env.CommonProgramFiles)\Merge Modules\policy_9_0_Microsoft_VC90_ATL_x86.msm" DiskId="1" Language="1033"/> <Merge Id="CrtFiles_x86" SourceFile="$(env.CommonProgramFiles)\Merge Modules\Microsoft_VC90_DebugCRT_x86.msm" DiskId="1" Language="1033"/> <Merge Id="CrtPolicy_x86" SourceFile="$(env.CommonProgramFiles)\Merge Modules\policy_9_0_Microsoft_VC90_DebugCRT_x86.msm" DiskId="1" Language="1033"/> <Merge Id="MfcFiles_x86" SourceFile="$(env.CommonProgramFiles)\Merge Modules\Microsoft_VC90_DebugMFC_x86.msm" DiskId="1" Language="1033"/> <Merge Id="MfcPolicy_x86" SourceFile="$(env.CommonProgramFiles)\Merge Modules\policy_9_0_Microsoft_VC90_DebugMFC_x86.msm" DiskId="1" Language="1033"/> <!-- If this is a 64 bit build, install the relevant modules --> <?if $(env.Platform) = "x64" ?> <Merge Id="AtlFiles_x64" SourceFile="$(env.CommonProgramFiles)\Merge Modules\Microsoft_VC90_ATL_x86_x64.msm" DiskId="1" Language="1033"/> <Merge Id="AtlPolicy_x64" SourceFile="$(env.CommonProgramFiles)\Merge Modules\policy_9_0_Microsoft_VC90_ATL_x86_x64.msm" DiskId="1" Language="1033"/> <Merge Id="CrtFiles_x64" SourceFile="$(env.CommonProgramFiles)\Merge Modules\Microsoft_VC90_DebugCRT_x86_x64.msm" DiskId="1" Language="1033"/> <Merge Id="CrtPolicy_x64" SourceFile="$(env.CommonProgramFiles)\Merge Modules\policy_9_0_Microsoft_VC90_DebugCRT_x86_x64.msm" DiskId="1" Language="1033"/> <Merge Id="MfcFiles_x64" SourceFile="$(env.CommonProgramFiles)\Merge Modules\Microsoft_VC90_DebugMFC_x86_x64.msm" DiskId="1" Language="1033"/> <Merge Id="MfcPolicy_x64" SourceFile="$(env.CommonProgramFiles)\Merge Modules\policy_9_0_Microsoft_VC90_DebugMFC_x86_x64.msm" DiskId="1" Language="1033"/> <?endif?> </DirectoryRef> <Feature Id="MS2008_SP1_DbgRuntime" Title="VC2008 Debug Runtimes" AllowAdvertise="no" Display="hidden" Level="1"> <!-- 32 bit libraries --> <MergeRef Id="AtlFiles_x86"/> <MergeRef Id="AtlPolicy_x86"/> <MergeRef Id="CrtFiles_x86"/> <MergeRef Id="CrtPolicy_x86"/> <MergeRef Id="MfcFiles_x86"/> <MergeRef Id="MfcPolicy_x86"/> <!-- 64 bit libraries --> <?if $(env.Platform) = "x64" ?> <MergeRef Id="AtlFiles_x64"/> <MergeRef Id="AtlPolicy_x64"/> <MergeRef Id="CrtFiles_x64"/> <MergeRef Id="CrtPolicy_x64"/> <MergeRef Id="MfcFiles_x64"/> <MergeRef Id="MfcPolicy_x64"/> <?endif?> </Feature> <!--</Fragment>--> </Include> If I'm doing a debug build of the installer, I include that feature like so: <!-- The 'Feature' that contains the debug CRT/ATL libraries --> <?if $(var.Configuration) = "Debug"?> <?include ..\includes\MS2008_SP1_DbgRuntime.wxi?> <?endif?> The only problem is that my installer also includes a custom action which is also dependent on the debug runtime: <!-- Private key installer --> <Binary Id="InstallPrivateKey" SourceFile="..\InstallPrivateKey\win32\$(var.Configuration)\InstallPrivateKey.dll"></Binary> <CustomAction Id='InstallKey' BinaryKey='InstallPrivateKey' DllEntry='InstallPrivateKey'/> So how can I package the debug run time in such a way that the custom action also has access to it?

    Read the article

  • Problem detaching entire object graph in GAE-J with JDO

    - by tempy
    I am trying to load the full object graph for User, which contains a collection of decks, which then contains a collection of cards, as such: User: @PersistenceCapable(detachable = "true") @Inheritance(strategy = InheritanceStrategy.SUBCLASS_TABLE) @FetchGroup(name = "decks", members = { @Persistent(name = "_Decks") }) public abstract class User { @PrimaryKey @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) protected Key _ID; @Persistent protected String _UniqueIdentifier; @Persistent(mappedBy = "_Owner") @Element(dependent = "true") protected Set<Deck> _Decks; protected User() { } } Each Deck has a collection of Cards, as such: @PersistenceCapable(detachable = "true") @FetchGroup(name = "cards", members = { @Persistent(name = "_Cards") }) public class Deck { @PrimaryKey @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) private Key _ID; @Persistent String _Name; @Persistent(mappedBy = "_Parent") @Element(dependent = "true") private Set<Card> _Cards = new HashSet<Card>(); @Persistent private Set<String> _Tags = new HashSet<String>(); @Persistent private User _Owner; } And finally, each card: @PersistenceCapable public class Card { @PrimaryKey @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) private Key _ID; @Persistent private Text _Question; @Persistent private Text _Answer; @Persistent private Deck _Parent; } I am trying to retrieve and then detach the entire object graph. I can see in the debugger that it loads fine, but then when I get to detaching, I can't make anything beyond the User object load. (No Decks, no Cards). At first I tried without a transaction to simply "touch" all the fields on the attached object before detaching, but that didn't help. Then I tried adding everything to the default fetch group, but that just generated warnings about GAE not supporting joins. I tried setting the fetch plan's max fetch depth to -1, but that didn't do it. Finally, I tried using FetchGroups as you can see above, and then retrieving with the following code: PersistenceManager pm = _pmf.getPersistenceManager(); pm.setDetachAllOnCommit(true); pm.getFetchPlan().setGroup("decks"); pm.getFetchPlan().setGroup("cards"); Transaction tx = pm.currentTransaction(); Query query = null; try { tx.begin(); query = pm.newQuery(GoogleAccountsUser.class); //Subclass of User query.setFilter("_UniqueIdentifier == TheUser"); query.declareParameters("String TheUser"); List<User> results = (List<User>)query.execute(ID); //ID = Supplied parameter //TODO: Test for more than one result and throw if(results.size() == 0) { tx.commit(); return null; } else { User usr = (User)results.get(0); //usr = pm.detachCopy(usr); tx.commit(); return usr; } } finally { query.closeAll(); if (tx.isActive()) { tx.rollback(); } pm.close(); } This also doesn't work, and I'm running out of ideas...

    Read the article

  • Entity Association Mapping with Code First Part 1 : Mapping Complex Types

    - by mortezam
    Last week the CTP5 build of the new Entity Framework Code First has been released by data team at Microsoft. Entity Framework Code-First provides a pretty powerful code-centric way to work with the databases. When it comes to associations, it brings ultimate flexibility. I’m a big fan of the EF Code First approach and am planning to explain association mapping with code first in a series of blog posts and this one is dedicated to Complex Types. If you are new to Code First approach, you can find a great walkthrough here. In order to build a solid foundation for our discussion, we will start by learning about some of the core concepts around the relationship mapping.   What is Mapping?Mapping is the act of determining how objects and their relationships are persisted in permanent data storage, in our case, relational databases. What is Relationship mapping?A mapping that describes how to persist a relationship (association, aggregation, or composition) between two or more objects. Types of RelationshipsThere are two categories of object relationships that we need to be concerned with when mapping associations. The first category is based on multiplicity and it includes three types: One-to-one relationships: This is a relationship where the maximums of each of its multiplicities is one. One-to-many relationships: Also known as a many-to-one relationship, this occurs when the maximum of one multiplicity is one and the other is greater than one. Many-to-many relationships: This is a relationship where the maximum of both multiplicities is greater than one. The second category is based on directionality and it contains two types: Uni-directional relationships: when an object knows about the object(s) it is related to but the other object(s) do not know of the original object. To put this in EF terminology, when a navigation property exists only on one of the association ends and not on the both. Bi-directional relationships: When the objects on both end of the relationship know of each other (i.e. a navigation property defined on both ends). How Object Relationships Are Implemented in POCO domain models?When the multiplicity is one (e.g. 0..1 or 1) the relationship is implemented by defining a navigation property that reference the other object (e.g. an Address property on User class). When the multiplicity is many (e.g. 0..*, 1..*) the relationship is implemented via an ICollection of the type of other object. How Relational Database Relationships Are Implemented? Relationships in relational databases are maintained through the use of Foreign Keys. A foreign key is a data attribute(s) that appears in one table and must be the primary key or other candidate key in another table. With a one-to-one relationship the foreign key needs to be implemented by one of the tables. To implement a one-to-many relationship we implement a foreign key from the “one table” to the “many table”. We could also choose to implement a one-to-many relationship via an associative table (aka Join table), effectively making it a many-to-many relationship. Introducing the ModelNow, let's review the model that we are going to use in order to implement Complex Type with Code First. It's a simple object model which consist of two classes: User and Address. Each user could have one billing address. The Address information of a User is modeled as a separate class as you can see in the UML model below: In object-modeling terms, this association is a kind of aggregation—a part-of relationship. Aggregation is a strong form of association; it has some additional semantics with regard to the lifecycle of objects. In this case, we have an even stronger form, composition, where the lifecycle of the part is fully dependent upon the lifecycle of the whole. Fine-grained domain models The motivation behind this design was to achieve Fine-grained domain models. In crude terms, fine-grained means “more classes than tables”. For example, a user may have both a billing address and a home address. In the database, you may have a single User table with the columns BillingStreet, BillingCity, and BillingPostalCode along with HomeStreet, HomeCity, and HomePostalCode. There are good reasons to use this somewhat denormalized relational model (performance, for one). In our object model, we can use the same approach, representing the two addresses as six string-valued properties of the User class. But it’s much better to model this using an Address class, where User has the BillingAddress and HomeAddress properties. This object model achieves improved cohesion and greater code reuse and is more understandable. Complex Types: Splitting a Table Across Multiple Types Back to our model, there is no difference between this composition and other weaker styles of association when it comes to the actual C# implementation. But in the context of ORM, there is a big difference: A composed class is often a candidate Complex Type. But C# has no concept of composition—a class or property can’t be marked as a composition. The only difference is the object identifier: a complex type has no individual identity (i.e. no AddressId defined on Address class) which make sense because when it comes to the database everything is going to be saved into one single table. How to implement a Complex Types with Code First Code First has a concept of Complex Type Discovery that works based on a set of Conventions. The convention is that if Code First discovers a class where a primary key cannot be inferred, and no primary key is registered through Data Annotations or the fluent API, then the type will be automatically registered as a complex type. Complex type detection also requires that the type does not have properties that reference entity types (i.e. all the properties must be scalar types) and is not referenced from a collection property on another type. Here is the implementation: public class User{    public int UserId { get; set; }    public string FirstName { get; set; }    public string LastName { get; set; }    public string Username { get; set; }    public Address Address { get; set; }} public class Address {     public string Street { get; set; }     public string City { get; set; }            public string PostalCode { get; set; }        }public class EntityMappingContext : DbContext {     public DbSet<User> Users { get; set; }        } With code first, this is all of the code we need to write to create a complex type, we do not need to configure any additional database schema mapping information through Data Annotations or the fluent API. Database SchemaThe mapping result for this object model is as follows: Limitations of this mappingThere are two important limitations to classes mapped as Complex Types: Shared references is not possible: The Address Complex Type doesn’t have its own database identity (primary key) and so can’t be referred to by any object other than the containing instance of User (e.g. a Shipping class that also needs to reference the same User Address). No elegant way to represent a null reference There is no elegant way to represent a null reference to an Address. When reading from database, EF Code First always initialize Address object even if values in all mapped columns of the complex type are null. This means that if you store a complex type object with all null property values, EF Code First returns a initialized complex type when the owning entity object is retrieved from the database. SummaryIn this post we learned about fine-grained domain models which complex type is just one example of it. Fine-grained is fully supported by EF Code First and is known as the most important requirement for a rich domain model. Complex type is usually the simplest way to represent one-to-one relationships and because the lifecycle is almost always dependent in such a case, it’s either an aggregation or a composition in UML. In the next posts we will revisit the same domain model and will learn about other ways to map a one-to-one association that does not have the limitations of the complex types. References ADO.NET team blog Mapping Objects to Relational Databases Java Persistence with Hibernate

    Read the article

  • Excel-based Performance Reviews transformed into Web Application for Performance Management

    - by Webgui
    HR TMS provides enterprise talent management solutions for healthcare, retail and corporate customers, focusing on performance management, compensation management and succession planning. As the competency of nurses and other healthcare workers is critical, the government, via the Joint Commission (JCAHO), tightly monitors their performances. On a regular basis, accredited healthcare organizations are required to review employee performance using a complex set of position dependent job descriptions and competencies. Middlesex Hospital managed their performance reviews for 2500 employees manually with Excel spreadsheets. This was a labor intensive process that proved to be error prone and difficult to manage. Reviews were not always where they belonged and the job descriptions and competencies for healthcare workers were difficult to keep accurate and up to date. As a result, when the Joint Commission visited and requested to see specific review documentation, there was intense stress. Middlesex Hospital needed to automate their review process, pull in the position information from those spreadsheets and be able to deliver reviews online. Users needed to have online access to those reviews from a standard browser. Although the manual system had its issues, it did have the advantage of being very comprehensive and familiar to users. The decision was made to provide a web-based solution that leveraged the look and feel of those spreadsheets in order to insure user acceptance of the system and minimize the training needed. Read the full article here >

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Using C# 4.0’s DynamicObject as a Stored Procedure Wrapper

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Overview Ignoring the fashion, I still make a lot of use of DALs – typically when inheriting a codebase with an established database schema which is full of tried and trusted stored procedures. In the DAL a collection of base classes have all the scaffolding, so the usual pattern is to create a wrapper class for each stored procedure, giving typesafe access to parameter values and output. DAL calls then looks like instantiate wrapper-populate parameters-execute call:       using (var sp = new uspGetManagerEmployees())     {         sp.ManagerID = 16;         using (var reader = sp.Execute())         {             //map entities from the output         }     }   Or rolling it all into a fluent DAL call – which is nicer to read and implicitly disposes the resources:   This is fine, the wrapper classes are very simple to handwrite or generate. But as the codebase grows, you end up with a proliferation of very small wrapper classes: The wrappers don't add much other than encapsulating the stored procedure call and giving you typesafety for the parameters. With the dynamic extension in .NET 4.0 you have the option to build a single wrapper class, and get rid of the one-to-one stored procedure to wrapper class mapping. In the dynamic version, the call looks like this:       dynamic getUser = new DynamicSqlStoredProcedure("uspGetManagerEmployees", Database.AdventureWorks);     getUser.ManagerID = 16;       var employees = Fluently.Load<List<Employee>>()                             .With<EmployeeMap>()                             .From(getUser);   The important difference is that the ManagerId property doesn't exist in the DynamicSqlStoredProcedure class. Declaring the getUser object with the dynamic keyword allows you to dynamically add properties, and the DynamicSqlStoredProcedure class intercepts when properties are added and builds them as stored procedure parameters. When getUser.ManagerId = 16 is executed, the base class adds a parameter call (using the convention that parameter name is the property name prefixed by "@"), specifying the correct SQL Server data type (mapping it from the type of the value the property is set to), and setting the parameter value. Code Sample This is worked through in a sample project on github – Dynamic Stored Procedure Sample – which also includes a static version of the wrapper for comparison. (I'll upload this to the MSDN Code Gallery once my account has been resurrected). Points worth noting are: DynamicSP.Data – database-independent DAL that has all the data plumbing code. DynamicSP.Data.SqlServer – SQL Server DAL, thin layer on top of the generic DAL which adds SQL Server specific classes. Includes the DynamicSqlStoredProcedure base class. DynamicSqlStoredProcedure.TrySetMember. Invoked when a dynamic member is added. Assumes the property is a parameter named after the SP parameter name and infers the SqlDbType from the framework type. Adds a parameter to the internal stored procedure wrapper and sets its value. uspGetManagerEmployees – the static version of the wrapper. uspGetManagerEmployeesTest – test fixture which shows usage of the static and dynamic stored procedure wrappers. The sample uses stored procedures from the AdventureWorks database in the SQL Server 2008 Sample Databases. Discussion For this scenario, the dynamic option is very favourable. Assuming your DAL is itself wrapped by a higher layer, the stored procedure wrapper classes have very little reuse. Even if you're codegening the classes and test fixtures, it's still additional effort for very little value. The main consideration with dynamic classes is that the compiler ignores all the members you use, and evaluation only happens at runtime. In this case where scope is strictly limited that's not an issue – but you're relying on automated tests rather than the compiler to find errors, but that should just encourage better test coverage. Also you can codegen the dynamic calls at a higher level. Performance may be a consideration, as there is a first-time-use overhead when the dynamic members of an object are bound. For a single run, the dynamic wrapper took 0.2 seconds longer than the static wrapper. The framework does a good job of caching the effort though, so for 1,000 calls the dynamc version still only takes 0.2 seconds longer than the static: You don't get IntelliSense on dynamic objects, even for the declared members of the base class, and if you've been using class names as keys for configuration settings, you'll lose that option if you move to dynamics. The approach may make code more difficult to read, as you can't navigate through dynamic members, but you do still get full debugging support.     var employees = Fluently.Load<List<Employee>>()                             .With<EmployeeMap>()                             .From<uspGetManagerEmployees>                             (                                 i => i.ManagerID = 16,                                 x => x.Execute()                             );

    Read the article

  • Cant correctly install Lazarus

    - by user206316
    I have a little problem with installing and running Lazarus. I just upgrade ubuntu from 13.04 to 13.10. When i had 13.04, i could install lazarus without any problems, but in 13.10 lazarus magicaly dissapeared, and when i tried install it from ubuntu software center, it said something like in my software resources lazarus-ide-0.9.30.4 doesnt exist. After some research on net i tried delete all files from earlier installations, download deb packages from sourceforge and install them, but when i want to instal fpc-src, error shows up with output: (Reading database ... 100% (Reading database ... 239063 files and directories currently installed.) Unpacking fpc-src (from .../Stiahnut/Lazarus/fpc-src.deb) ... dpkg: error processing /home/richi/Stiahnut/Lazarus/fpc-src.deb (--install): trying to overwrite '/usr/share/fpcsrc/2.6.2/rtl/nativent/tthread.inc', which is also in package fpc-source-2.6.2 2.6.2-5 dpkg-deb (subprocess): decompressing archive member: internal gzip write error: Broken pipe dpkg-deb: error: subprocess <decompress> returned error exit status 2 dpkg-deb (subprocess): cannot copy archive member from '/home/richi/Stiahnut/Lazarus/fpc-src.deb' to decompressor pipe: failed to write (Broken pipe) when i started lazarus, it of course tell me that it cant find fpc compier and fpc sources. So, please, i really need program for school and i dont wanna reinstall os anymore or something like that :( (Ubuntu 13.10 64bit) P.S: im not skilled in linux so if u know some commands to fix it just write them for copy and paste :) P.P.S:Sorry for bad English, im Slovak xD P.P.P.S: Thank so much for any answers update: output from sudo dpkg -l | grep "^rc" richi@Richi-Ubuntu:~/lazarus1.0.12$ sudo dpkg -l | grep "^rc" rc account-plugin-generic-oauth 0.10bzr13.03.26-0ubuntu1.1 amd64 GNOME Control Center account plugin for single signon - generic OAuth rc appmenu-gtk:amd64 12.10.3daily13.04.03-0ubuntu1 amd64 Export GTK menus over DBus rc appmenu-gtk3:amd64 12.10.3daily13.04.03-0ubuntu1 amd64 Export GTK menus over DBus rc fp-compiler-2.6.0 2.6.0-9 amd64 Free Pascal - compiler rc fp-utils-2.6.0 2.6.0-9 amd64 Free Pascal - utilities rc lazarus-ide-0.9.30.4 0.9.30.4-4 amd64 IDE for Free Pascal - common IDE files rc lazarus-ide-1.0.10 1.0.10+dfsg-1 amd64 IDE for Free Pascal - common IDE files rc lcl-utils-0.9.30.4 0.9.30.4-4 amd64 Lazarus Components Library - command line build tools rc lcl-utils-1.0.10 1.0.10+dfsg-1 amd64 Lazarus Components Library - command line build tools rc libbamf3-1:amd64 0.4.0daily13.06.19~13.04-0ubuntu1 amd64 Window matching library - shared library rc libboost-filesystem1.49.0 1.49.0-4 amd64 filesystem operations (portable paths, iteration over directories, etc) in C++ rc libboost-signals1.49.0 1.49.0-4 amd64 managed signals and slots library for C++ rc libboost-system1.49.0 1.49.0-4 amd64 Operating system (e.g. diagnostics support) library rc libboost-thread1.49.0 1.49.0-4 amd64 portable C++ multi-threading rc libbrlapi0.5:amd64 4.4-8ubuntu4 amd64 braille display access via BRLTTY - shared library rc libcamel-1.2-40 3.6.4-0ubuntu1.1 amd64 Evolution MIME message handling library rc libcolumbus0-0 0.4.0daily13.04.16~13.04-0ubuntu1 amd64 error tolerant matching engine - shared library rc libdns95 1:9.9.2.dfsg.P1-2ubuntu2.1 amd64 DNS Shared Library used by BIND rc libdvbpsi7 0.2.2-1 amd64 library for MPEG TS and DVB PSI tables decoding and generating rc libebackend-1.2-5 3.6.4-0ubuntu1.1 amd64 Utility library for evolution data servers rc libedata-book-1.2-15 3.6.4-0ubuntu1.1 amd64 Backend library for evolution address books rc libedata-cal-1.2-18 3.6.4-0ubuntu1.1 amd64 Backend library for evolution calendars rc libgc1c3:amd64 1:7.2d-0ubuntu5 amd64 conservative garbage collector for C and C++ rc libgd2-xpm:amd64 2.0.36~rc1~dfsg-6.1ubuntu1 amd64 GD Graphics Library version 2 rc libgd2-xpm:i386 2.0.36~rc1~dfsg-6.1ubuntu1 i386 GD Graphics Library version 2 rc libgnome-desktop-3-4 3.6.3-0ubuntu1 amd64 Utility library for loading .desktop files - runtime files rc libgphoto2-2:amd64 2.4.14-2 amd64 gphoto2 digital camera library rc libgphoto2-2:i386 2.4.14-2 i386 gphoto2 digital camera library rc libgphoto2-port0:amd64 2.4.14-2 amd64 gphoto2 digital camera port library rc libgphoto2-port0:i386 2.4.14-2 i386 gphoto2 digital camera port library rc libgtksourceview-3.0-0:amd64 3.6.3-0ubuntu1 amd64 shared libraries for the GTK+ syntax highlighting widget rc libgweather-3-1 3.6.2-0ubuntu1 amd64 GWeather shared library rc libharfbuzz0:amd64 0.9.13-1 amd64 OpenType text shaping engine rc libibus-1.0-0:amd64 1.4.2-0ubuntu2 amd64 Intelligent Input Bus - shared library rc libical0 0.48-2 amd64 iCalendar library implementation in C (runtime) rc libimobiledevice3 1.1.4-1ubuntu6.2 amd64 Library for communicating with the iPhone and iPod Touch rc libisc92 1:9.9.2.dfsg.P1-2ubuntu2.1 amd64 ISC Shared Library used by BIND rc libkms1:amd64 2.4.46-1 amd64 Userspace interface to kernel DRM buffer management rc libllvm3.2:i386 1:3.2repack-7ubuntu1 i386 Low-Level Virtual Machine (LLVM), runtime library rc libmikmod2:amd64 3.1.12-5 amd64 Portable sound library rc libpackagekit-glib2-14:amd64 0.7.6-3ubuntu1 amd64 Library for accessing PackageKit using GLib rc libpoppler28:amd64 0.20.5-1ubuntu3 amd64 PDF rendering library rc libraw5:amd64 0.14.7-0ubuntu1.13.04.2 amd64 raw image decoder library rc librhythmbox-core6 2.98-0ubuntu5 amd64 support library for the rhythmbox music player rc libsdl-mixer1.2:amd64 1.2.12-7ubuntu1 amd64 Mixer library for Simple DirectMedia Layer 1.2, libraries rc libsnmp15 5.4.3~dfsg-2.7ubuntu1 amd64 SNMP (Simple Network Management Protocol) library rc libsyncdaemon-1.0-1 4.2.0-0ubuntu1 amd64 Ubuntu One synchronization daemon library rc libunity-core-6.0-5 7.0.0daily13.06.19~13.04-0ubuntu1 amd64 Core library for the Unity interface. rc libusb-0.1-4:i386 2:0.1.12-23.2ubuntu1 i386 userspace USB programming library rc libwayland0:amd64 1.0.5-0ubuntu1 amd64 wayland compositor infrastructure - shared libraries rc linux-image-3.8.0-19-generic 3.8.0-19.30 amd64 Linux kernel image for version 3.8.0 on 64 bit x86 SMP rc linux-image-3.8.0-31-generic 3.8.0-31.46 amd64 Linux kernel image for version 3.8.0 on 64 bit x86 SMP rc linux-image-extra-3.8.0-19-generic 3.8.0-19.30 amd64 Linux kernel image for version 3.8.0 on 64 bit x86 SMP rc linux-image-extra-3.8.0-31-generic 3.8.0-31.46 amd64 Linux kernel image for version 3.8.0 on 64 bit x86 SMP rc screen-resolution-extra 0.15ubuntu1 all Extension for the GNOME screen resolution applet rc unity-common 7.0.0daily13.06.19~13.04-0ubuntu1 all Common files for the Unity interface.

    Read the article

  • Faq and Best tips Regarding Learning Database ?

    - by AdityaGameProgrammer
    For a programmer with no prior exposure to databases What would be a good database to learn Oracle vs SQLserver vs MySQLvs PostgreSQL? I have come across lot of discussion MySQL and PostgreSQL and frankly I am confused on which to start with. Are these very different, in the sense if one had to switch, would the exposure to one be counter-productive to learning the other? Is working with databases heavily platform dependent? What exactly do people mean by Data base programming vs. administration? Do people chose databases based on the programming language used for the application developed? In general, Working with databases is it implicit that we work with some server? Does the choice of databases differ when it comes to game development? If so what factors does it differ by? What are the Best Tips that you have found to be useful when learning databases Edit: Some FAQ i had and found the same on SO What should every developer know about databases? Which database if learning from scratch in 2010? For a beginner, is there much difference between MySQL and PostgreSQL What RDBMS should I learn/use? (MySql/SQL Server/Oracle etc.) To what extent should a developer learn database? How are database programmers different from other programmers? what kind of database are used in games?

    Read the article

  • Python — Time complexity of built-in functions versus manually-built functions in finite fields

    - by stackuser
    Generally, I'm wondering about the advantages versus disadvantages of using the built-in arithmetic functions versus rolling your own in Python. Specifically, I'm taking in GF(2) finite field polynomials in string format, converting to base 2 values, performing arithmetic, then output back into polynomials as string format. So a small example of this is in multiplication: Rolling my own: def multiply(a,b): bitsa = reversed("{0:b}".format(a)) g = [(b<<i)*int(bit) for i,bit in enumerate(bitsa)] return reduce(lambda x,y: x+y,g) Versus the built-in: def multiply(a,b): # a,b are GF(2) polynomials in binary form .... return a*b #returns product of 2 polynomials in gf2 Currently, operations like multiplicative inverse (with for example 20 bit exponents) take a long time to run in my program as it's using all of Python's built-in mathematical operations like // floor division and % modulus, etc. as opposed to making my own division, remainder, etc. I'm wondering how much of a gain in efficiency and performance I can get by building these manually (as shown above). I realize the gains are dependent on how well the manual versions are built, that's not the question. I'd like to find out 'basically' how much advantage there is over the built-in's. So for instance, if multiplication (as in the example above) is well-suited for base 10 (decimal) arithmetic but has to jump through more hoops to change bases to binary and then even more hoops in operating (so it's lower efficiency), that's what I'm wondering. Like, I'm wondering if it's possible to bring the time down significantly by building them myself in ways that maybe some professionals here have already come across.

    Read the article

  • What is ODBC?

    According to Microsoft, ODBC is a specification for a database API.  This API is database and operating system agnostic due to the fact that the primary goal of the ODBC API is to be language-independent. Additionally, the open functions of the API are created by the manufactures of DBMS-specific drivers. Developers can use these exposed functions from within their own custom applications so that they can communicate with DBMS through the language-independent drivers. ODBC Advantages Multiple ODBC drivers for each DBSM Example Oracle’s ODBC Driver Merant’s Oracle Driver Microsoft’s Oracle Driver ODBC Drivers are constantly updated for the latest data types ODBC allows for more control when querying ODBC allows for Isolation Levels ODBC Disadvantages ODBC Requires DSN ODBC is the proxy between an application and a database ODBC is dependent on third party drivers ODBC Transaction Isolation Levels are related to and limited by the transaction management capabilities of the data source. Transaction isolation levels:  READ UNCOMMITTED Data is allowed to be read prior to the committing of a transaction.  READ COMMITTED Data is only accessible after a transaction has completed  REPEATABLE READ The same data value is read during the entire transaction  SERIALIZABLE Transactions have no effect on other transactions

    Read the article

  • Mono and GTK#, installing problem with gtk#

    - by user207785
    I've been trying and trying to install gtk# into mono, but I can't seem to install gtk# I've downloaded the tarball, used ./configure, and I get this: Configuration summary Installation prefix = /usr/local C# compiler: /usr/bin/mcs -define:GTK_SHARP_2_6 -define:GTK_SHARP_2_8 -define:GTK_SHARP_2_10 -define:GTK_SHARP_2_12 Optional assemblies included in the build: glade-sharp.dll: no gtk-dotnet.dll: yes Mono.Cairo.dll: using system assembly NOTE: if any of the above say 'no' you may install the corresponding development packages for them, rerun autogen.sh to include them in the build. Documentation build enabled: yes WARNING: The install prefix is different than the monodoc prefix. Monodoc will not be able to load the documentation. Now what? I've been ./autogen.sh - ing like crazy and its not working! Please help! I just want to program in c# with a visual window builder like in c# visual studio...

    Read the article

  • How can Swift be so much faster than Objective-C in these comparisons?

    - by Yellow
    Apple launched its new programming language Swift at WWDC14. In the presentation, they made some performance comparisons between Objective-C and Python. The following is a picture of one of their slides, of a comparison of those three languages performing some complex object sort: There was an even more incredible graph about a performance comparison using the RC4 encryption algorithm. Obviously this is a marketing talk, and they didn't go into detail on how this was implemented in each. I leaves me wondering though: How can a new programming language be so much faster? Are the Objective-C results caused by a bad compiler or is there something less efficient in Objective-C than Swift? How would you explain a 40% performance increase? I understand that garbage collection/automated reference control might produce some additional overhead, but this much?

    Read the article

  • Is there a way to track data structure dependencies from the database, through the tiers, all the way out to a web page?

    - by Sean Mickey
    When we design applications, we generally end up with the same tiered sets of data structures: A persistent data structure that is described using DDL and implemented as RDBMS tables and columns. A set of domain objects that consist primarily of data structures, usually combined with business-rule level logic, that are implemented in a programming language such as Java. A set of service layer interfaces that directly support use case implementations (which use the domain data structures as parameters), implemented as EJBs or something equivalent in another programming language. UI screens that allow users to C reate, R etrieve, U pdate, and (maybe) D elete all manner of data structures and graphs of data structures, with numerous screens and with multiple UI widgets, all structured to support the same data structures. But if you want to change the data structures in any of these tiers, it always seems extremely difficult to assess the impact(s) the change will have across the application. UML can help, but tracing through diagram after diagram is not a real solution to this problem. The best I have ever seen was a homespun data tracking spreadsheet document that listed all of the data structures and walked the relationships from tier-to-tier. Is there a tool or accepted approach that makes it easy to identify a data structure in any tier and easily obtain a list of all dependent: database table and column data structures domain object data structures service layer interface methods and parameter data structures screen & UI component data structures

    Read the article

  • Can't install TeamViewer on Ubuntu 12.04

    - by Roel
    I have a Dell Inspiron 6400 laptop. I was a Windows user but I want to start using Ubuntu from now on. Everything goes well except installation of the teamviewer. I have downloaded the file from the official website. There, it says that just double click on the *.deb file and it will install it automatically. Well, it gives an error: Failed to remove essential system package, You requested to remove a package which is an essential part of your system. Then I tried the second way of installation, which is on the terminal. I types as suggested: sudo dpkg -i teamviewer_linux.deb. It started installing but later on failed. HEre is the copy of the screen. Preparing to replace teamviewer7:i386 7.0.9377 (using teamviewer_linux.deb) ... Unpacking replacement teamviewer7:i386 ... dpkg: dependency problems prevent configuration of teamviewer7:i386: teamviewer7:i386 depends on bash (>= 3.0). teamviewer7:i386 depends on libc6 (>= 2.7). teamviewer7:i386 depends on libasound2. teamviewer7:i386 depends on zlib1g. teamviewer7:i386 depends on libxext6. dpkg: error processing teamviewer7:i386 (--install): dependency problems - leaving unconfigured Errors were encountered while processing: teamviewer7:i386 I have already checked these dependent files in Synaptic and they are all installed. What am I doing wrong?

    Read the article

  • Start Debugging in Visual Studio

    - by Daniel Moth
    Every developer is familiar with hitting F5 and debugging their application, which starts their app with the Visual Studio debugger attached from the start (instead of attaching later). This is one way to achieve step 1 of the Live Debugging process. Hitting F5, F11, Ctrl+F10 and the other ways to start the process under the debugger is covered in this MSDN "How To". The way you configure the debugging experience, before you hit F5, is by selecting the "Project" and then the "Properties" menu (Alt+F7 on my keyboard bindings). Dependent on your project type there are different options, but if you browse to the Debug (or Debugging) node in the properties page you'll have a way to select local or remote machine debugging, what debug engines to use, command line arguments to use during debugging etc. Currently the .NET and C++ project systems are different, but one would hope that one day they would be unified to use the same mechanism and UI (I don't work on that product team so I have no knowledge of whether that is a goal or if it will ever happen). Personally I like the C++ one better, here is what it looks like (and it is described on this MSDN page): If you were following along in the "Attach to Process" blog post, the equivalent to the "Select Code Type" dialog is the "Debugger Type" dropdown: that is how you change the debug engine. Some of the debugger properties options appear on the standard toolbar in VS. With Visual Studio 11, the Debug Type option has been added to the toolbar If you don't see that in your installation, customize the toolbar to show it - VS 11 tends to be conservative in what you see by default, especially for the non-C++ Visual Studio profiles. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • What's a good way to organize samplers for HLSL?

    - by Rei Miyasaka
    According to MSDN, I can have 4096 samplers per context. That's a lot, considering there's only a handful of common sampler states. That tempts me to initialize an array containing a whole bunch of common sampler states, assign them to every device context I use, and then in the pixel shaders refer to them by index using : register(s[n]) where n is the index in the array. If I want more samplers for whatever reason, I can just add them on after the last slot. Does this work? If not, when should I set the samplers? Should it be done when by the mesh renderer? The texture renderer? Or alongside PSSetShader? Edit: That trick I wrote above doesn't work (at least not yet), as the compiler gives me this error message when I try to use the same register twice: error X4500: overlapping register semantics not yet implemented 's0' So how do people usually organize samplers, then?

    Read the article

  • Google I/O 2010 - Opening up Closure Library

    Google I/O 2010 - Opening up Closure Library Google I/O 2010 - Opening up Closure Library Tech Talks Nathan Naze Closure Library is the open-source JavaScript library behind some of Google's big web apps like Gmail and Google Docs. This session will tour the broad library, its object-oriented design, and its namespaced organization. We'll explain how it works and how to integrate it in your setup, both for development and optimized for a live application using Closure Compiler. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 116 0 ratings Time: 01:00:38 More in Science & Technology

    Read the article

  • What kinds of low level knowledge matter?

    - by Peter Smith
    I realize that this question is similar to Low level programming - what's in it for me, but the answers didn't really address my question well. Part from just an understanding, how exactly does your low level knowledge translate into faster and better programs? There's the obvious lack of garbage collection, but what else is an advantage? Do you really outperform your optimizing compiler? Do you pack your data structures in as tight as possible and be concerned about alignment? There's extra freedom naturally, but does that really translate into a faster program?

    Read the article

  • The way I think about Diagnostic tools

    - by Daniel Moth
    Every software has issues, or as we like to call them "bugs". That is not a discussion point, just a mere fact. It follows that an important skill for developers is to be able to diagnose issues in their code. Of course we need to advance our tools and techniques so we can prevent bugs getting into the code (e.g. unit testing), but beyond designing great software, diagnosing bugs is an equally important skill. To diagnose issues, the most important assets are good techniques, skill, experience, and maybe talent. What also helps is having good diagnostic tools and what helps further is knowing all the features that they offer and how to use them. The following classification is how I like to think of diagnostics. Note that like with any attempt to bucketize anything, you run into overlapping areas and blurry lines. Nevertheless, I will continue sharing my generalizations ;-) It is important to identify at the outset if you are dealing with a performance or a correctness issue. If you have a performance issue, use a profiler. I hear people saying "I am using the debugger to debug a performance issue", and that is fine, but do know that a dedicated profiler is the tool for that job. Just because you don't need them all the time and typically they cost more plus you are not as familiar with them as you are with the debugger, doesn't mean you shouldn't invest in one and instead try to exclusively use the wrong tool for the job. Visual Studio has a profiler and a concurrency visualizer (for profiling multi-threaded apps). If you have a correctness issue, then you have several options - that's next :-) This is how I think of identifying a correctness issue Do you want a tool to find the issue for you at design time? The compiler is such a tool - it gives you an exact list of errors. Compilers now also offer warnings, which is their way of saying "this may be an error, but I am not smart enough to know for sure". There are also static analysis tools, which go a step further than the compiler in identifying issues in your code, sometimes with the aid of code annotations and other times just by pointing them at your raw source. An example is FxCop and much more in Visual Studio 11 Code Analysis. Do you want a tool to find the issue for you with code execution? Just like static tools, there are also dynamic analysis tools that instead of statically analyzing your code, they analyze what your code does dynamically at runtime. Whether you have to setup some unit tests to invoke your code at runtime, or have to manually run your app (and interact with it) under the tool, or have to use a script to execute your binary under the tool… that varies. The result is still a list of issues for you to address after the analysis is complete or a pause of the execution when the first issue is encountered. If a code path was not taken, no analysis for it will exist, obviously. An example is the GPU Race detection tool that I'll be talking about on the C++ AMP team blog. Another example is the MSR concurrency CHESS tool. Do you want you to find the issue at design time using a tool? Perform a code walkthrough on your own or with colleagues. There are code review tools that go beyond just diffing sources, and they help you with that aspect too. For example, there is a new one in Visual Studio 11 and searching with my favorite search engine yielded this article based on the Developer Preview. Do you want you to find the issue with code execution? Use a debugger - let’s break this down further next. This is how I think of debugging: There is post mortem debugging. That means your code has executed and you did something in order to examine what happened during its execution. This can vary from manual printf and other tracing statements to trace events (e.g. ETW) to taking dumps. In all cases, you are left with some artifact that you examine after the fact (after code execution) to discern what took place hoping it will help you find the bug. Learn how to debug dump files in Visual Studio. There is live debugging. I will elaborate on this in a separate post, but this is where you inspect the state of your program during its execution, and try to find what the problem is. More from me in a separate post on live debugging. There is a hybrid of live plus post-mortem debugging. This is for example what tools like IntelliTrace offer. If you are a tools vendor interested in the diagnostics space, it helps to understand where in the above classification your tool excels, where its primary strength is, so you can market it as such. Then it helps to see which of the other areas above your tool touches on, and how you can make it even better there. Finally, see what areas your tool doesn't help at all with, and evaluate whether it should or continue to stay clear. Even though the classification helps us think about this space, the reality is that the best tools are either extremely excellent in only one of this areas, or more often very good across a number of them. Another approach is to offer a toolset covering all areas, with appropriate integration and hand off points from one to the other. Anyway, with that brain dump out of the way, in follow-up posts I will dive into live debugging, and specifically live debugging in Visual Studio - stay tuned if that interests you. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • SQL SERVER – 2011 – SEQUENCE is not IDENTITY

    - by pinaldave
    Yesterday I posted blog post on the subject SQL SERVER – 2011 – Introduction to SEQUENCE – Simple Example of SEQUENCE and I received comment where user was not clear about difference between SEQUENCE and IDENTITY. The reality is that SEQUENCE not like IDENTITY. There is very clear difference between them. Identity is about single column. Sequence is always incrementing and it is not dependent on any table. Here is the quick example of the same. USE AdventureWorks2008R2 GO CREATE SEQUENCE [Seq] AS [int] START WITH 1 INCREMENT BY 1 MAXVALUE 20000 GO -- Run five times SELECT NEXT VALUE FOR Seq AS SeqNumber; SELECT NEXT VALUE FOR Seq AS SeqNumber; SELECT NEXT VALUE FOR Seq AS SeqNumber; SELECT NEXT VALUE FOR Seq AS SeqNumber; SELECT NEXT VALUE FOR Seq AS SeqNumber; GO -- Clean Up DROP SEQUENCE [Seq] GO Here is the resultset. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Item 2, Scott Myers Effective C++ question

    - by user619818
    In Item2 on page 16, (Prefer consts, enums, and inlines to #defines), Scott says: 'Also, though good compilers won't set aside storage for const objects of integer types'. I don't understand this. If I define a const object, eg const int myval = 5; then surely the compiler must set aside some memory (of int size) to store the value 5? Or is const data stored in some special way? This is more a question of computer storage I suppose. Basically, how does the computer store const objects so that no storage is set aside?

    Read the article

  • GPLv2 - Multiple AI chess engines to bypass GPL

    - by Dogbert
    I have gone through a number of GPL-related questions, the most recent being this one: http://stackoverflow.com/questions/3248823/legal-question-about-the-gpl-license-net-dlls/3249001#3249001 I'm trying to see how this would work, so bear with me. I have a simple GUI interface for a game of Chess. It essentially can send/receive commands to/from an external chess engine (ie: Tong, Fruit, etc). The application/GUI is similar in nature to XBoard ( http://www.gnu.org/software/xboard/ ), but was independently designed. After going through a number of threads on this topic, it seems that the FSF considers dynamically linking against a GPLv2 library as a derivative work, and that by doing so, the GPLv2 extends to my proprietary code, and I must release the source to my entire project. Other legal precedents indicate the opposite, and that dynamic linking doesn't cause the "viral" effect of the GPL to propagate to my proprietary code. Since there is no official consensus that can give a "hard-and-fast" answer to the dynamic linking question, would this be an acceptable alternative: I build my chess GUI so that it sends/receives the chess engine AI logic as text commands from an external interface library that I write The interface library I wrote itself is then released under the GPL The interface library is only used to communicate via a generic text pipe to external command-line chess engines The chess engine itself would be built as a command-line utility rather than as a library of any sort, and just sends strings in the Universal Chess Interface of Chess Engine Communication Protocol ( http://en.wikipedia.org/wiki/Chess_Engine_Communication_Protocol ) format. The one "gotcha" is that the interface library should not be specific to one single GPL'ed chess engine, otherwise the entire GUI would be "entirely dependent" on it. So, I just make my interface library so that it is able to connect to any command-line chess engine that uses a specific format, rather than just one unique engine. I could then include pre-built command-line-app versions of any of the chess engines I'm using. Would that sort of approach allow me to do the following: NOT release the source for my UI Release the source of the interface library I built (if necessary) Use one or more chess engines and bundle them as external command-line utilities that ship with a binary version of my UI Thank you.

    Read the article

  • Can it be harmful to grant jackd realtime priority?

    - by SuperElectric
    I am apt-get installing Ardour, a sound mixing program, just to try it out. Installing Ardour also installs JACK, a dependency. As part of the JACK installation script, I get the following dialog: If you want to run jackd with realtime priorities, the user starting jackd needs realtime permissions. Accept this option to create the file /etc/security/limits.d/audio.conf, granting realtime priority and memlock privileges to the audio group. Running jackd with realtime priority minimizes latency, but may lead to complete system lock-ups by requesting all the available physical system memory, which is unacceptable in multi-user environments. Enable realtime process priority? I'm installing on my laptop, which never has multiple simultaneous users. I still have concerns: is JACK something that'll be used by the system itself to play any sound (i.e. will it replace ALSA)? If so, does that mean that if I enable realtime priority for JACK, I'll run a slight risk of freezing the machine whenever any sound is played? Or is JACK only going to be used by Ardour for now (until I install some other JACK-dependent program)? Thanks, -- Matt

    Read the article

  • How to Upgrade Oracle JDK and remove old JDK settings

    - by obysr
    i searched and not found how to upgrade oracle jdk in here. I'm not satisfied with OpenJDK7 because it doesn't come with Java Compiler. I has installed and configured Sun Java SDK 6 and i want to upgrade to Oracle JDK 7. I searched ppas from launchpad an wubp8 but it didn't work. How should I do to upgrade Sun JDK 6 to Oracle JDK 7 and also clearly remove all Sun JDK 6 settings? I'm very grateful for your answers. Sorry for my english

    Read the article

  • SOLVED - 'srcDomainMulti' is not declared. It may be inaccessible due to its protection level

    When converting a project from C# to VB I ran into this compiler error which stopped me in my tracks for about 15 minutes. Just when I gave up and decided to rebuild the page by hand inspiration hit and I found my solution... The scenario I had just put the finishing touches to a domain whois tool and I was ready to convert it over to a VB project. I'm not a very strong VB.net coder but the project required the final deliverable in VB so I opted to make it all in C# first and then convert it over...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >