Search Results

Search found 7740 results on 310 pages for 'split sound'.

Page 94/310 | < Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >

  • C# Implicit array declaration

    - by The.Anti.9
    Basically, I want to be able to use string.Split(char[]) without actually defining a char array as a separate variable. I know in other languages you could do like string.split([' ', '\n']); or something like that. How would I do this in C#?

    Read the article

  • Adobe Flash and mp3 licence

    - by Dovyski
    When I publish a Flash file that contains any sound (such as a WAV file), I can choose the sound compression method (MP3, raw, ADPCM, etc.). My question is about the mp3 compression and it's licence. Flash gives me the option to compress a WAV file as mp3, but is the licence to use the mp3 format included? I have paid for a Flash licence, does it give the right to use mp3 in my SWF files freely or do I have to pay royalties to someone else?

    Read the article

  • How do I link ASP.NET membership/role users to tables in db?

    - by SnapConfig.com
    I am going to use forms authentication but I want to be able to link the asp.net users to some tables in the db for example If I have a class and students (as roles) I'll have a class students table. I'm planning to put in a Users table containing a simple int userid and ASP.NET username in there and put userid wherever I want to link the users. Does that sound good? any other options of modeling this? it does sound a bit convoluted?

    Read the article

  • Webcam capture with c# and convert to avi

    - by Spidfire
    Im trying to make a program that captures a video from the webcam and sound from the microphone but im getting stuck at the part where ive try to make a movie out of still images ive heard you need to use directshow but it doesnt jet work for me Does someone know a good piece of example code that captures video and sound and can encode it to a file (divx or something like that) ? or some suggestions where to look so i can build it myself (if a other programming language is better for this im happy to know it early. )

    Read the article

  • Parsing line with delimiter in Python

    - by neversaint
    I have lines of data which I want to parse. The data looks like this: a score=216 expect=1.05e-06 a score=180 expect=0.0394 What I want to do is to have a subroutine that parse them and return 2 values (score and expect) for each line. However this function of mine doesn't seem to work: def scoreEvalFromMaf(mafLines): for word in mafLines[0]: if word.startswith("score="): theScore = word.split('=')[1] theEval = word.split('=')[2] return [theScore, theEval] raise Exception("encountered an alignment without a score") Please advice what's the right way to do it?

    Read the article

  • Is it possible to capture audio output and apply effects to it?

    - by Ciaran
    Using .NET and DirectSound I want to be able to take all output sound that is coming from my audio device and apply effects to it. I've had a quick look at the docs on MSDN and there doesn't seem to be any explanation as to how to do something like this. I've read elsewhere that you'd be better off writing a driver to sit in front of your real audio driver and have that do whatever you want with the sound. Any ideas anyone to push me in the right direction?

    Read the article

  • Device drivers and Windows

    - by b-gen-jack-o-neill
    Hi, I am trying to complete the picture of how the PC and the OS interacts together. And I am at point, where I am little out of guess when it comes to device drivers. Please, don´t write things like its too complicated, or you don´t need to know when using high programming laguage and winapi functions. I want to know, it´s for study purposes. So, the very basic structure of how OS and PC (by PC I mean of course HW) is how I see it is that all other than direct CPU commands, which can CPU do on itself (arithmetic operation, its registers access and memory access) must pass thru OS. Mainly becouse from ring level 3 you cannot use in and out intructions which are used for acesing other HW. I know that there is MMIO,but it must be set by port comunication first. It was not like this all the time. Even I am bit young to remember MSDOS, I know you could access HW directly, becouse there ws no limitation, no ring mode. So you could to write string to diplay use wheather DOS function, or directly acess video card memory and write it by yourself. But as OS developed, there is no longer this possibility. But it is fine, since OS now handles all the HW comunication, and frankly it more convinient and much more safe (I would say the only option) in multitasking environment. So nowdays you instead of using int instructions to use BIOS mapped function or DOS function you call dll which internally than handles everything you don´t need to know about. I understand this. I also undrstand that device drivers is the piece of code that runs in ring level 0, so it can do all the HW interactions. But what I don´t understand is connection between OS and device driver. Let´s take a example - I want to make a sound card make a sound. So I call windows API to acess sound card, but what happens than? Does windows call device drivers to do so? But if it does call device driver, does it mean, that all device drivers which can be called by winAPI function, must have routines named in some specific way? I mean, when I have new sound card, must its drivers have functions named same as the old one? So Windows can actually call the same function from its perspective? But if Windows have predefined sets of functions requored by device drivers, that it cannot use new drivers that doesent existed before last version of OS came out. Please, help me understand this mess. I am really getting mad. Thanks.

    Read the article

  • Splitting a file before upload?

    - by Yevgeniy Brikman
    On a webpage, is it possible to split large files into chunks before the file is uploaded to the server? For example, split a 10MB file into 1MB chunks, and upload one chunk at a time while showing a progress bar? It sounds like JavaScript doesn't have any file manipulation abilities, but what about Flash and Java applets? This would need to work in IE6+, Firefox and Chrome. Update: forgot to mention that (a) we are using Grails and (b) this needs to run over https.

    Read the article

  • Is there a better way to write this URL Manipulation in Python?

    - by dnolen
    I'm curious if there's a simpler way to remove a particular parameter from a url. What I came up with is the following. This seems a bit verbose. Libraries to use or a more pythonic version appreciated. parsed = urlparse(url) if parsed.query != "": params = dict([s.split("=") for s in parsed.query.split("&")]) if params.get("page"): del params["page"] url = urlunparse((parsed.scheme, None, parsed.path, None, urlencode(params.items()), parsed.fragment,)) parsed = urlparse(url)

    Read the article

  • How to quickly parse a list of strings

    - by math
    If I want to split a list of words separated by a delimiter character, I can use >>> 'abc,foo,bar'.split(',') ['abc', 'foo', 'bar'] But how to easily and quickly do the same thing if I also want to handle quoted-strings which can contain the delimiter character ? In: 'abc,"a string, with a comma","another, one"' Out: ['abc', 'a string, with a comma', 'another, one'] Related question: How can i parse a comma delimited string into a list (caveat)?

    Read the article

  • Play an AudioBufferSourceNode twice?

    - by alltom
    Should I be able to use the same AudioBufferSourceNode to play a sound multiple times? For some reason, calling noteGrainOn a second time doesn't play audio, even with an intervening noteOff. This code only plays the sound once: var node = audioContext.createBufferSource() node.buffer = audioBuffer node.connect(audioContext.destination) var now = audioContext.currentTime node.noteGrainOn(now, 0, 2) node.noteOff(now + 2) node.noteGrainOn(now + 3, 0, 2) node.noteOff(now + 5)

    Read the article

  • How make a loop using JQUERY?

    - by learner
    Hi I have a comma separated string. I split that string and assigned it to elements var. How can I loop that elements var? $(document).ready(function(){ var element = $('#imageIds').val().split(","); // how to loop this elements using jquery });

    Read the article

  • which delimeter to use while spliting String

    - by London
    I need to split this line string in each line, I need to get the third word(film name) but as you see the delimeter is one big blank character in some cases its small like before the numbers at the end or its big as in front of numbers at front. I tried using string split with(" ") regex, and also \t but get the out of the bounds error. 400115305 Lionel_Atwill The_Song_of_Songs_(1933_film) 7587 400115309 Brian_Aherne A_Night_to_Remember_(1943_film) 7952 Did anyone have the same problem?

    Read the article

  • Python: How can I read in the characters from a line in a file and convert them to floats and strs, depending on if they are numbers or letters?

    - by user1467577
    I have a file that looks like: 1 1 C C 1.9873 2.347 3.88776 1 2 C Si 4.887 9.009 1.21 I would like to read in the contents of the file, line-by-line. When I only had numbers on the lines I used: for line in readlines(file): data = map(float, line.split) But this only works when all the elements of line.split are numbers. How can I make it store the letters as strings and the numbers as floats?

    Read the article

  • Get current URL in Python

    - by Alex
    How would i get the current URL with Python, I need to grab the current URL so i can check it for query strings e.g requested_url = "URL_HERE" url = urlparse(requested_url) if url[4]: params = dict([part.split('=') for part in url[4].split('&')]) also this is running in Google App Engine

    Read the article

  • Cisco ASA (Client VPN) to LAN - through second VPN to second LAN

    - by user50855
    We have 2 site that is linked by an IPSEC VPN to remote Cisco ASAs: Site 1 1.5Mb T1 Connection Cisco(1) 2841 Site 2 1.5Mb T1 Connection Cisco 2841 In addition: Site 1 has a 2nd WAN 3Mb bonded T1 Connection Cisco 5510 that connects to same LAN as Cisco(1) 2841. Basically, Remote Access (VPN) users connecting through Cisco ASA 5510 needs access to a service at the end of Site 2. This is due to the way the service is sold - Cisco 2841 routers are not under our management and it is setup to allow connection from local LAN VLAN 1 IP address 10.20.0.0/24. My idea is to have all traffic from Remote Users through Cisco ASA destined for Site 2 to go via the VPN between Site 1 and Site 2. The end result being all traffic that hits Site 2 has come via Site 1. I'm struggling to find a great deal of information on how this is setup. So, firstly, can anyone confirm that what I'm trying to achieve is possible? Secondly, can anyone help me to correct the configuration bellow or point me in the direction of an example of such a configuration? Many Thanks. interface Ethernet0/0 nameif outside security-level 0 ip address 7.7.7.19 255.255.255.240 interface Ethernet0/1 nameif inside security-level 100 ip address 10.20.0.249 255.255.255.0 object-group network group-inside-vpnclient description All inside networks accessible to vpn clients network-object 10.20.0.0 255.255.255.0 network-object 10.20.1.0 255.255.255.0 object-group network group-adp-network description ADP IP Address or network accessible to vpn clients network-object 207.207.207.173 255.255.255.255 access-list outside_access_in extended permit icmp any any echo-reply access-list outside_access_in extended permit icmp any any source-quench access-list outside_access_in extended permit icmp any any unreachable access-list outside_access_in extended permit icmp any any time-exceeded access-list outside_access_in extended permit tcp any host 7.7.7.20 eq smtp access-list outside_access_in extended permit tcp any host 7.7.7.20 eq https access-list outside_access_in extended permit tcp any host 7.7.7.20 eq pop3 access-list outside_access_in extended permit tcp any host 7.7.7.20 eq www access-list outside_access_in extended permit tcp any host 7.7.7.21 eq www access-list outside_access_in extended permit tcp any host 7.7.7.21 eq https access-list outside_access_in extended permit tcp any host 7.7.7.21 eq 5721 access-list acl-vpnclient extended permit ip object-group group-inside-vpnclient any access-list acl-vpnclient extended permit ip object-group group-inside-vpnclient object-group group-adp-network access-list acl-vpnclient extended permit ip object-group group-adp-network object-group group-inside-vpnclient access-list PinesFLVPNTunnel_splitTunnelAcl standard permit 10.20.0.0 255.255.255.0 access-list inside_nat0_outbound_1 extended permit ip 10.20.0.0 255.255.255.0 10.20.1.0 255.255.255.0 access-list inside_nat0_outbound_1 extended permit ip 10.20.0.0 255.255.255.0 host 207.207.207.173 access-list inside_nat0_outbound_1 extended permit ip 10.20.1.0 255.255.255.0 host 207.207.207.173 ip local pool VPNPool 10.20.1.100-10.20.1.200 mask 255.255.255.0 route outside 0.0.0.0 0.0.0.0 7.7.7.17 1 route inside 207.207.207.173 255.255.255.255 10.20.0.3 1 crypto ipsec transform-set ESP-3DES-SHA esp-3des esp-sha-hmac crypto ipsec security-association lifetime seconds 28800 crypto ipsec security-association lifetime kilobytes 4608000 crypto dynamic-map outside_dyn_map 20 set transform-set ESP-3DES-SHA crypto dynamic-map outside_dyn_map 20 set security-association lifetime seconds 288000 crypto dynamic-map outside_dyn_map 20 set security-association lifetime kilobytes 4608000 crypto dynamic-map outside_dyn_map 20 set reverse-route crypto map outside_map 20 ipsec-isakmp dynamic outside_dyn_map crypto map outside_map interface outside crypto map outside_dyn_map 20 match address acl-vpnclient crypto map outside_dyn_map 20 set security-association lifetime seconds 28800 crypto map outside_dyn_map 20 set security-association lifetime kilobytes 4608000 crypto isakmp identity address crypto isakmp enable outside crypto isakmp policy 20 authentication pre-share encryption 3des hash sha group 2 lifetime 86400 group-policy YeahRightflVPNTunnel internal group-policy YeahRightflVPNTunnel attributes wins-server value 10.20.0.9 dns-server value 10.20.0.9 vpn-tunnel-protocol IPSec password-storage disable pfs disable split-tunnel-policy tunnelspecified split-tunnel-network-list value acl-vpnclient default-domain value YeahRight.com group-policy YeahRightFLVPNTunnel internal group-policy YeahRightFLVPNTunnel attributes wins-server value 10.20.0.9 dns-server value 10.20.0.9 10.20.0.7 vpn-tunnel-protocol IPSec split-tunnel-policy tunnelspecified split-tunnel-network-list value YeahRightFLVPNTunnel_splitTunnelAcl default-domain value yeahright.com tunnel-group YeahRightFLVPN type remote-access tunnel-group YeahRightFLVPN general-attributes address-pool VPNPool tunnel-group YeahRightFLVPNTunnel type remote-access tunnel-group YeahRightFLVPNTunnel general-attributes address-pool VPNPool authentication-server-group WinRadius default-group-policy YeahRightFLVPNTunnel tunnel-group YeahRightFLVPNTunnel ipsec-attributes pre-shared-key *

    Read the article

  • ASA 5505 stops local internet when connected to VPN

    - by g18c
    Hi I have a Cisco ASA router running firmware 8.2(5) which hosts an internal LAN on 192.168.30.0/24. I have used the VPN Wizard to setup L2TP access and I can connect in fine from a Windows box and can ping hosts behind the VPN router. However, when connected to the VPN I can no longer ping out to my internet or browse web pages. I would like to be able to access the VPN, and also browse the internet at the same time - I understand this is called split tunneling (have ticked the setting in the wizard but to no effect) and if so how do I do this? Alternatively, if split tunneling is a pain to setup, then making the connected VPN client have internet access from the ASA WAN IP would be OK. Thanks, Chris names ! interface Ethernet0/0 switchport access vlan 2 ! interface Ethernet0/1 ! interface Vlan1 nameif inside security-level 100 ip address 192.168.30.1 255.255.255.0 ! interface Vlan2 nameif outside security-level 0 ip address 208.74.158.58 255.255.255.252 ! ftp mode passive access-list inside_nat0_outbound extended permit ip any 10.10.10.0 255.255.255.128 access-list inside_nat0_outbound extended permit ip 192.168.30.0 255.255.255.0 192.168.30.192 255.255.255.192 access-list DefaultRAGroup_splitTunnelAcl standard permit 192.168.30.0 255.255.255.0 access-list DefaultRAGroup_splitTunnelAcl_1 standard permit 192.168.30.0 255.255.255.0 pager lines 24 logging asdm informational mtu inside 1500 mtu outside 1500 ip local pool LANVPNPOOL 192.168.30.220-192.168.30.249 mask 255.255.255.0 icmp unreachable rate-limit 1 burst-size 1 no asdm history enable arp timeout 14400 global (outside) 1 interface nat (inside) 0 access-list inside_nat0_outbound nat (inside) 1 192.168.30.0 255.255.255.0 route outside 0.0.0.0 0.0.0.0 208.74.158.57 1 timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute timeout tcp-proxy-reassembly 0:01:00 timeout floating-conn 0:00:00 dynamic-access-policy-record DfltAccessPolicy http server enable http 192.168.30.0 255.255.255.0 inside snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec transform-set ESP-AES-256-MD5 esp-aes-256 esp-md5-hmac crypto ipsec transform-set ESP-DES-SHA esp-des esp-sha-hmac crypto ipsec transform-set ESP-3DES-SHA esp-3des esp-sha-hmac crypto ipsec transform-set ESP-DES-MD5 esp-des esp-md5-hmac crypto ipsec transform-set ESP-AES-192-MD5 esp-aes-192 esp-md5-hmac crypto ipsec transform-set ESP-3DES-MD5 esp-3des esp-md5-hmac crypto ipsec transform-set ESP-AES-256-SHA esp-aes-256 esp-sha-hmac crypto ipsec transform-set ESP-AES-128-SHA esp-aes esp-sha-hmac crypto ipsec transform-set ESP-AES-192-SHA esp-aes-192 esp-sha-hmac crypto ipsec transform-set ESP-AES-128-MD5 esp-aes esp-md5-hmac crypto ipsec transform-set TRANS_ESP_3DES_SHA esp-3des esp-sha-hmac crypto ipsec transform-set TRANS_ESP_3DES_SHA mode transport crypto ipsec security-association lifetime seconds 28800 crypto ipsec security-association lifetime kilobytes 4608000 crypto dynamic-map SYSTEM_DEFAULT_CRYPTO_MAP 65535 set transform-set ESP-AES-128-SHA ESP-AES-128-MD5 ESP-AES-192-SHA ESP-AES-192-MD5 ESP-AES-256-SHA ESP-AES-256-MD5 ESP-3DES-SHA ESP-3DES-MD5 ESP-DES-SHA ESP-DES-MD5 TRANS_ESP_3DES_SHA crypto map outside_map 65535 ipsec-isakmp dynamic SYSTEM_DEFAULT_CRYPTO_MAP crypto map outside_map interface outside crypto isakmp enable outside crypto isakmp policy 10 authentication pre-share encryption 3des hash sha group 2 lifetime 86400 telnet timeout 5 ssh timeout 5 console timeout 0 dhcpd auto_config outside ! threat-detection basic-threat threat-detection statistics access-list no threat-detection statistics tcp-intercept webvpn group-policy DefaultRAGroup internal group-policy DefaultRAGroup attributes dns-server value 192.168.30.3 vpn-tunnel-protocol l2tp-ipsec split-tunnel-policy tunnelspecified split-tunnel-network-list value DefaultRAGroup_splitTunnelAcl_1 username user password Cj7W5X7wERleAewO8ENYtg== nt-encrypted privilege 0 tunnel-group DefaultRAGroup general-attributes address-pool LANVPNPOOL default-group-policy DefaultRAGroup tunnel-group DefaultRAGroup ipsec-attributes pre-shared-key ***** tunnel-group DefaultRAGroup ppp-attributes no authentication chap authentication ms-chap-v2 ! class-map inspection_default match default-inspection-traffic ! ! policy-map type inspect dns preset_dns_map parameters message-length maximum client auto message-length maximum 512 policy-map global_policy class inspection_default inspect dns preset_dns_map inspect ftp inspect h323 h225 inspect h323 ras inspect rsh inspect rtsp inspect esmtp inspect sqlnet inspect skinny inspect sunrpc inspect xdmcp inspect sip inspect netbios inspect tftp inspect ip-options ! service-policy global_policy global prompt hostname context : end

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • Windows Azure Service Bus Splitter and Aggregator

    - by Alan Smith
    This article will cover basic implementations of the Splitter and Aggregator patterns using the Windows Azure Service Bus. The content will be included in the next release of the “Windows Azure Service Bus Developer Guide”, along with some other patterns I am working on. I’ve taken the pattern descriptions from the book “Enterprise Integration Patterns” by Gregor Hohpe. I bought a copy of the book in 2004, and recently dusted it off when I started to look at implementing the patterns on the Windows Azure Service Bus. Gregor has also presented an session in 2011 “Enterprise Integration Patterns: Past, Present and Future” which is well worth a look. I’ll be covering more patterns in the coming weeks, I’m currently working on Wire-Tap and Scatter-Gather. There will no doubt be a section on implementing these patterns in my “SOA, Connectivity and Integration using the Windows Azure Service Bus” course. There are a number of scenarios where a message needs to be divided into a number of sub messages, and also where a number of sub messages need to be combined to form one message. The splitter and aggregator patterns provide a definition of how this can be achieved. This section will focus on the implementation of basic splitter and aggregator patens using the Windows Azure Service Bus direct programming model. In BizTalk Server receive pipelines are typically used to implement the splitter patterns, with sequential convoy orchestrations often used to aggregate messages. In the current release of the Service Bus, there is no functionality in the direct programming model that implements these patterns, so it is up to the developer to implement them in the applications that send and receive messages. Splitter A message splitter takes a message and spits the message into a number of sub messages. As there are different scenarios for how a message can be split into sub messages, message splitters are implemented using different algorithms. The Enterprise Integration Patterns book describes the splatter pattern as follows: How can we process a message if it contains multiple elements, each of which may have to be processed in a different way? Use a Splitter to break out the composite message into a series of individual messages, each containing data related to one item. The Enterprise Integration Patterns website provides a description of the Splitter pattern here. In some scenarios a batch message could be split into the sub messages that are contained in the batch. The splitting of a message could be based on the message type of sub-message, or the trading partner that the sub message is to be sent to. Aggregator An aggregator takes a stream or related messages and combines them together to form one message. The Enterprise Integration Patterns book describes the aggregator pattern as follows: How do we combine the results of individual, but related messages so that they can be processed as a whole? Use a stateful filter, an Aggregator, to collect and store individual messages until a complete set of related messages has been received. Then, the Aggregator publishes a single message distilled from the individual messages. The Enterprise Integration Patterns website provides a description of the Aggregator pattern here. A common example of the need for an aggregator is in scenarios where a stream of messages needs to be combined into a daily batch to be sent to a legacy line-of-business application. The BizTalk Server EDI functionality provides support for batching messages in this way using a sequential convoy orchestration. Scenario The scenario for this implementation of the splitter and aggregator patterns is the sending and receiving of large messages using a Service Bus queue. In the current release, the Windows Azure Service Bus currently supports a maximum message size of 256 KB, with a maximum header size of 64 KB. This leaves a safe maximum body size of 192 KB. The BrokeredMessage class will support messages larger than 256 KB; in fact the Size property is of type long, implying that very large messages may be supported at some point in the future. The 256 KB size restriction is set in the service bus components that are deployed in the Windows Azure data centers. One of the ways of working around this size restriction is to split large messages into a sequence of smaller sub messages in the sending application, send them via a queue, and then reassemble them in the receiving application. This scenario will be used to demonstrate the pattern implementations. Implementation The splitter and aggregator will be used to provide functionality to send and receive large messages over the Windows Azure Service Bus. In order to make the implementations generic and reusable they will be implemented as a class library. The splitter will be implemented in the LargeMessageSender class and the aggregator in the LargeMessageReceiver class. A class diagram showing the two classes is shown below. Implementing the Splitter The splitter will take a large brokered message, and split the messages into a sequence of smaller sub-messages that can be transmitted over the service bus messaging entities. The LargeMessageSender class provides a Send method that takes a large brokered message as a parameter. The implementation of the class is shown below; console output has been added to provide details of the splitting operation. public class LargeMessageSender {     private static int SubMessageBodySize = 192 * 1024;     private QueueClient m_QueueClient;       public LargeMessageSender(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public void Send(BrokeredMessage message)     {         // Calculate the number of sub messages required.         long messageBodySize = message.Size;         int nrSubMessages = (int)(messageBodySize / SubMessageBodySize);         if (messageBodySize % SubMessageBodySize != 0)         {             nrSubMessages++;         }           // Create a unique session Id.         string sessionId = Guid.NewGuid().ToString();         Console.WriteLine("Message session Id: " + sessionId);         Console.Write("Sending {0} sub-messages", nrSubMessages);           Stream bodyStream = message.GetBody<Stream>();         for (int streamOffest = 0; streamOffest < messageBodySize;             streamOffest += SubMessageBodySize)         {                                     // Get the stream chunk from the large message             long arraySize = (messageBodySize - streamOffest) > SubMessageBodySize                 ? SubMessageBodySize : messageBodySize - streamOffest;             byte[] subMessageBytes = new byte[arraySize];             int result = bodyStream.Read(subMessageBytes, 0, (int)arraySize);             MemoryStream subMessageStream = new MemoryStream(subMessageBytes);               // Create a new message             BrokeredMessage subMessage = new BrokeredMessage(subMessageStream, true);             subMessage.SessionId = sessionId;               // Send the message             m_QueueClient.Send(subMessage);             Console.Write(".");         }         Console.WriteLine("Done!");     }} The LargeMessageSender class is initialized with a QueueClient that is created by the sending application. When the large message is sent, the number of sub messages is calculated based on the size of the body of the large message. A unique session Id is created to allow the sub messages to be sent as a message session, this session Id will be used for correlation in the aggregator. A for loop in then used to create the sequence of sub messages by creating chunks of data from the stream of the large message. The sub messages are then sent to the queue using the QueueClient. As sessions are used to correlate the messages, the queue used for message exchange must be created with the RequiresSession property set to true. Implementing the Aggregator The aggregator will receive the sub messages in the message session that was created by the splitter, and combine them to form a single, large message. The aggregator is implemented in the LargeMessageReceiver class, with a Receive method that returns a BrokeredMessage. The implementation of the class is shown below; console output has been added to provide details of the splitting operation.   public class LargeMessageReceiver {     private QueueClient m_QueueClient;       public LargeMessageReceiver(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public BrokeredMessage Receive()     {         // Create a memory stream to store the large message body.         MemoryStream largeMessageStream = new MemoryStream();           // Accept a message session from the queue.         MessageSession session = m_QueueClient.AcceptMessageSession();         Console.WriteLine("Message session Id: " + session.SessionId);         Console.Write("Receiving sub messages");           while (true)         {             // Receive a sub message             BrokeredMessage subMessage = session.Receive(TimeSpan.FromSeconds(5));               if (subMessage != null)             {                 // Copy the sub message body to the large message stream.                 Stream subMessageStream = subMessage.GetBody<Stream>();                 subMessageStream.CopyTo(largeMessageStream);                   // Mark the message as complete.                 subMessage.Complete();                 Console.Write(".");             }             else             {                 // The last message in the sequence is our completeness criteria.                 Console.WriteLine("Done!");                 break;             }         }                     // Create an aggregated message from the large message stream.         BrokeredMessage largeMessage = new BrokeredMessage(largeMessageStream, true);         return largeMessage;     } }   The LargeMessageReceiver initialized using a QueueClient that is created by the receiving application. The receive method creates a memory stream that will be used to aggregate the large message body. The AcceptMessageSession method on the QueueClient is then called, which will wait for the first message in a message session to become available on the queue. As the AcceptMessageSession can throw a timeout exception if no message is available on the queue after 60 seconds, a real-world implementation should handle this accordingly. Once the message session as accepted, the sub messages in the session are received, and their message body streams copied to the memory stream. Once all the messages have been received, the memory stream is used to create a large message, that is then returned to the receiving application. Testing the Implementation The splitter and aggregator are tested by creating a message sender and message receiver application. The payload for the large message will be one of the webcast video files from http://www.cloudcasts.net/, the file size is 9,697 KB, well over the 256 KB threshold imposed by the Service Bus. As the splitter and aggregator are implemented in a separate class library, the code used in the sender and receiver console is fairly basic. The implementation of the main method of the sending application is shown below.   static void Main(string[] args) {     // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Open the input file.     FileStream fileStream = new FileStream(AccountDetails.TestFile, FileMode.Open);       // Create a BrokeredMessage for the file.     BrokeredMessage largeMessage = new BrokeredMessage(fileStream, true);       Console.WriteLine("Sending: " + AccountDetails.TestFile);     Console.WriteLine("Message body size: " + largeMessage.Size);     Console.WriteLine();         // Send the message with a LargeMessageSender     LargeMessageSender sender = new LargeMessageSender(queueClient);     sender.Send(largeMessage);       // Close the messaging facory.     factory.Close();  } The implementation of the main method of the receiving application is shown below. static void Main(string[] args) {       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Create a LargeMessageReceiver and receive the message.     LargeMessageReceiver receiver = new LargeMessageReceiver(queueClient);     BrokeredMessage largeMessage = receiver.Receive();       Console.WriteLine("Received message");     Console.WriteLine("Message body size: " + largeMessage.Size);       string testFile = AccountDetails.TestFile.Replace(@"\In\", @"\Out\");     Console.WriteLine("Saving file: " + testFile);       // Save the message body as a file.     Stream largeMessageStream = largeMessage.GetBody<Stream>();     largeMessageStream.Seek(0, SeekOrigin.Begin);     FileStream fileOut = new FileStream(testFile, FileMode.Create);     largeMessageStream.CopyTo(fileOut);     fileOut.Close();       Console.WriteLine("Done!"); } In order to test the application, the sending application is executed, which will use the LargeMessageSender class to split the message and place it on the queue. The output of the sender console is shown below. The console shows that the body size of the large message was 9,929,365 bytes, and the message was sent as a sequence of 51 sub messages. When the receiving application is executed the results are shown below. The console application shows that the aggregator has received the 51 messages from the message sequence that was creating in the sending application. The messages have been aggregated to form a massage with a body of 9,929,365 bytes, which is the same as the original large message. The message body is then saved as a file. Improvements to the Implementation The splitter and aggregator patterns in this implementation were created in order to show the usage of the patterns in a demo, which they do quite well. When implementing these patterns in a real-world scenario there are a number of improvements that could be made to the design. Copying Message Header Properties When sending a large message using these classes, it would be great if the message header properties in the message that was received were copied from the message that was sent. The sending application may well add information to the message context that will be required in the receiving application. When the sub messages are created in the splitter, the header properties in the first message could be set to the values in the original large message. The aggregator could then used the values from this first sub message to set the properties in the message header of the large message during the aggregation process. Using Asynchronous Methods The current implementation uses the synchronous send and receive methods of the QueueClient class. It would be much more performant to use the asynchronous methods, however doing so may well affect the sequence in which the sub messages are enqueued, which would require the implementation of a resequencer in the aggregator to restore the correct message sequence. Handling Exceptions In order to keep the code readable no exception handling was added to the implementations. In a real-world scenario exceptions should be handled accordingly.

    Read the article

< Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >