Search Results

Search found 25246 results on 1010 pages for 'cache control'.

Page 95/1010 | < Previous Page | 91 92 93 94 95 96 97 98 99 100 101 102  | Next Page >

  • Clear tableView cell cache (or remove an entry)

    - by ManniAT
    Hi, I have the same question problem as described here http://stackoverflow.com/questions/2286669/iphone-how-to-purge-a-cached-uitableviewcell But my problem can't be solved with "resetting content". To be precise - I use a custom cell (own class). While running the application it is possible that I have to use a different "cell type". It's the same class - but it has (a lot of) differnt attributes. Of course I could always reset all the things at "PrepareForReuse" but that's not a good idea I guess (there are a lot things to reset). My idea - I do all these things in the constructor of the cell. And all the rows will use this "type of cell" later. When the (seldom) situation comes that I have to change the look of all rows I create a new instance of this kind of cell with different settings. And now I want to replace the queued cell with this new one. I tried it with simply calling the constructor with the same cellidentifier (in the hope it will replace the existing one) but that doesn't work. I also didn't find a "ClearReusableCells" or something like this. Is there a way to clear the cache - or to remove / replace a specific item? Manfred

    Read the article

  • Cache layer for MVC - Model or controller?

    - by Industrial
    Hi everyone, I am having some second thoughts about where to implement the caching part. Where is the most appropriate place to implement it, you think? Inside every model, or in the controller? Approach 1 (psuedo-code): // mycontroller.php MyController extends Controller_class { function index () { $data = $this->model->getData(); echo $data; } } // myModel.php MyModel extends Model_Class{ function getData() { $data = memcached->get('data'); if (!$data) { $query->SQL_QUERY("Do query!"); } return $data; } } Approach 2: // mycontroller.php MyController extends Controller_class { function index () { $dataArray = $this->memcached->getMulti('data','data2'); foreach ($dataArray as $key) { if (!$key) { $data = $this->model->getData(); $this->memcached->set($key, $data); } } echo $data; } } // myModel.php MyModel extends Model_Class{ function getData() { $query->SQL_QUERY("Do query!"); return $data; } } Thoughts: Approach 1: No multiget/multi-set. If a high number of keys would be returned, overhead would be caused. Easier to maintain, all database/cache handling is in each model Approach 2: Better performancewise - multiset/multiget is used More code required Harder to maintain Tell me what you think!

    Read the article

  • How to cache code in PHP?

    - by Janis Peisenieks
    I am creating a custom form building system, which includes various tokens. These tokens are found using Regular Expressions, and depending on the type of toke, parsed. Some require simple replacement, some require cycles, and so forth. Now I know, that RegExp is quite resource and time consuming, so I would like to be able to parse the code for the form once, creating a php code, and then save the PHP code, for next uses. How would I go about doing this? So far I have only seen output caching. Is there a way to cache commands like echo and cycles like foreach()? Because of misunderstandings, I'll create an example. Unparsed template data: Thank You for Your interest, [*Title*] [*Firstname*] [*Lastname*]. Here are the details of Your order! [*KeyValuePairs*] Here is the link to Your request: [*LinkToRequest*]. Parsed template: "Thank You for Your interest, <?php echo $data->title;?> <?php echo $data->firstname;?> <?php echo $data->lastname;?>. Here are the details of Your order! <?php foreach($data->values as $key=>$value){ echo $key."-".$value }?> Here is the link to Your request: <?php echo $data->linkToRequest;?>. I would then save the parsed template, and instead of parsing the template every time, just pass the $data variable to the already parsed one, which would generate an output.

    Read the article

  • Ideal HTTP cache control headers for different types of resources

    - by chris_l
    I want to find a minimal set of headers, that work with "all" caches and browsers (also when using HTTPS!) On my (GWT-based) web site, I'll have three kinds of resources: 1. Forever cacheable (public / equal for all users) These files don't ever change, and they get a filename based on the MD5 of their contents (this is GWT's approach). They should get cached as much as possible, even when using HTTPS (so I assume, I should set Cache-Control: public, especially for Firefox?) 2. Changing for every new version of the site (public / equal for all users) These files can be cached, but probably need to be revalidated every time. 3. Individual for each request (private / user specific) These resources (e. g. JSON responses) should never be cached unencrypted to disk under no circumstances. (Maybe I'll have a few specific requests that could be cached.) I have a general idea on which headers I would probably use for each type, but there's always something I could be missing.

    Read the article

  • Fast path cache generation for a connected node graph

    - by Sukasa
    I'm trying to get a faster pathfinding mechanism in place in a game I'm working on for a connected node graph. The nodes are classed into two types, "Networks" and "Routers." In this picture, the blue circles represent routers and the grey rectangles networks. Each network keeps a list of which routers it is connected to, and vice-versa. Routers cannot connect directly to other routers, and networks cannot connect directly to other networks. Networks list which routers they're connected to Routers do the same I need to get an algorithm that will map out a path, measured in the number of networks crossed, for each possible source and destination network excluding paths where the source and destination are the same network. I have one right now, however it is unusably slow, taking about two seconds to map the paths, which becomes incredibly noticeable for all connected players. The current algorithm is a depth-first brute-force search (It was thrown together in about an hour to just get the path caching working) which returns an array of networks in the order they are traversed, which explains why it's so slow. Are there any algorithms that are more efficient? As a side note, while these example graphs have four networks, the in-practice graphs have 55 networks and about 20 routers in use. Paths which are not possible also can occur, and as well at any time the network/router graph topography can change, requiring the path cache to be rebuilt. What approach/algorithm would likely provide the best results for this type of a graph?

    Read the article

  • How to force client browser to download images from server rather using its cache

    - by anonim.developer
    Assume a simple aspx data entry page in which admin user can upload an image as well as some other data. They are stored in database and the next time admin visits that page to edit record, image data fetched and a preview generated and saved to disk (using GDI+) and the preview is shown in an image control. This procedure works fine for the first time however if the image changes (a new one uploaded) the next time the page is surfed it shows previously uploaded image. I debugged the application and everything works correct. The new image data is in database and new preview is stored in Temp location however the page shows previous one. If I refresh the page it shows the new image preview. I should mention that preview is always saved to disk with one name (id of each record as the name). I think that is because of IE and other browsers use client cache instead of loading images each time a page is surfed. I wonder if there is a way to force the client browser to refresh itself so the newly uploaded image is shown without user intervention. Thanks and appreciation in advance,

    Read the article

  • SVN: Working with branches using the same working copy

    - by uXuf
    We've just moved to SVN from CVS. We have a small team and everyone checks in code on the trunk and we have never ever used branches for development. We each have directories on a remote dev server with the codebase checked out. Each developer works on their own sandbox with an associated URL to pull up the app in a browser (something like the setup here: Trade-offs of local vs remote development workflows for a web development team). I've decided that for my current project, I'll use a branch because it would span multiple releases. I've already cut a branch out, but I am using the same directory as the one originally checked out (i.e. for the trunk). Since it's the same directory (or working copy) for both the branch and the trunk, if for e.g. a bug pops up in the app I switch to the trunk and commit the change there, and then switch back to my branch for my project development. My questions are: Is this a sane way to work with branches? Are there any pitfalls that I need to be aware of? What would be the optimal way to work with branches if separate working copies are out of the question? I haven't had issues yet as I have just started doing this way but all the tutorials/books/blog posts I have seen about branching with SVN imply working with different working copies (or perhaps I haven't come across an explanation of mixed working copies in plain English). I just don't want to be sorry three months down the road when its time to integrate the branch back to the trunk.

    Read the article

  • Using a service registry that doesn’t suck part II: Dear registry, do you have to be a message broker?

    - by gsusx
    Continuing our series of posts about service registry patterns that suck, we decided to address one of the most common techniques that Service Oriented (SOA) governance tools use to enforce policies. Scenario Service registries and repositories serve typically as a mechanism for storing service policies that model behaviors such as security, trust, reliable messaging, SLAs, etc. This makes perfect sense given that SOA governance registries were conceived as a mechanism to store and manage the policies...(read more)

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • add_shown & add_hiding ModalPopupExtender Events

    - by Yousef_Jadallah
        In this topic, I’ll discuss the Client events we usually need while using ModalPopupExtender. The add_shown fires when the ModalPopupExtender had shown and add_hiding fires when the user cancels it by CancelControlID,note that it fires before hiding the modal. They are useful in many cases, for example may you need to set focus to specific Textbox when the user display the modal, or if you need to reset the controls values inside the Modal after it has been hidden. To declare Client event either in pageLoad javascript function or you can attach the function by Sys.Application.add_load like this: Sys.Application.add_load(modalInit); function modalInit() { var modalPopup = $find('mpeID'); modalPopup.add_hiding(onHiding); } function onHiding(sender, args) { } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   I’ll use the first way in the current example. So lets start with the illustration:   1- In this example am using simple panel which contain UserName and Password Textboxes besides submit and cancel buttons, this Panel will be used as PopupControlID in the ModalPopupExtender : <asp:Panel ID="panModal" runat="server" Height="180px" Width="300px" style="display:none" CssClass="ModalWindow"> <table width="100%" > <tr> <td> User Name </td> <td> <asp:TextBox ID="txtName" runat="server"></asp:TextBox> </td> </tr> <tr> <td> Password </td> <td> <asp:TextBox ID="txtPassword" runat="server" TextMode="Password"></asp:TextBox> </td> </tr> </table> <br /> <asp:Button ID="btnSubmit" runat="server" Text="Submit" /> <asp:Button ID="btnCancel" runat="server" Text="Cancel" /> </asp:Panel>   You can use this simple style for the Panel : <style type="text/css"> .ModalWindow { border: solid; border-width:3px; background:#f0f0f0; } </style> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   2- Create the view button (TargetControlID) as you know this contain the ID of the element that activates the modal popup: <asp:Button ID="btnView" runat="server" Text="View" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   3-Add the ModalPopupExtender ,moreover don’t forget to add the ScriptManager: <asp:ScriptManager ID="ScriptManager1" runat="server"/> <cc1:ModalPopupExtender ID="ModalPopupExtender1" runat="server" TargetControlID="btnView" PopupControlID="panModal" CancelControlID="btnCancel"/> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     4-In the pageLoad javascript function inside add_shown event set the focus on the txtName , and inside add_hiding reset the two Textboxes. <script language="javascript" type="text/javascript"> function pageLoad() { $find('ModalPopupExtender1').add_shown(function() { alert('add_shown event fires'); $get('<%=txtName.ClientID%>').focus();   });   $find('ModalPopupExtender1').add_hiding(function() { alert('add_hiding event fires'); $get('<%=txtName.ClientID%>').value = ""; $get('<%=txtPassword.ClientID%>').value = "";   }); }   </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   I’ve added the two alerts just to let you show when the event fires.   Hope this simple example show you the benefit and how to use these events.

    Read the article

  • ASP.NET AJAX Microsoft tutorial

    - by Yousef_Jadallah
    Many people asking about the previous link of ASP.NET AJAX 1.0 documentation that started with  http://www.asp.net/ajax/documentation/live which support .NET 2. Actually, this link has been removed but instead you can visit  http://msdn.microsoft.com/en-us/library/bb398874.aspx which illustrate the version that Supported for .NET  4, 3.5 . Hope this help.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Soluto’s New Quick Question Button Makes Family Tech Support Simple

    - by Jason Fitzpatrick
    Soluto, a computer and boot management tool, now features a Quick Question button that allows the people you help out to easily click a button and send you both a short message and a screenshot of the problem. Any time your friend or family member presses F8, Soluto will take a screenshot of the screen, the Task Manager history, and a note from the user highlighting what issue they’re experiencing, and then email it all to you. After reviewing the email you can easily login to Soluto to remotely manage your friend’s computer and help with the problem. For more information about Soluto you can check out our previous reviews of the service here and here, or just hit up the link below to read more and take Soluto for a test drive. Soluto is a free service (for the first 5 computers), Windows only. Introducing Quick Question [The Soluto Blog] Java is Insecure and Awful, It’s Time to Disable It, and Here’s How What Are the Windows A: and B: Drives Used For? HTG Explains: What is DNS?

    Read the article

  • Cleaner HTML Markup with ASP.NET 4 Web Forms - Client IDs (VS 2010 and .NET 4.0 Series)

    - by ScottGu
    This is the sixteenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post is the first of a few blog posts I’ll be doing that talk about some of the important changes we’ve made to make Web Forms in ASP.NET 4 generate clean, standards-compliant, CSS-friendly markup.  Today I’ll cover the work we are doing to provide better control over the “ID” attributes rendered by server controls to the client. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Clean, Standards-Based, CSS-Friendly Markup One of the common complaints developers have often had with ASP.NET Web Forms is that when using server controls they don’t have the ability to easily generate clean, CSS-friendly output and markup.  Some of the specific complaints with previous ASP.NET releases include: Auto-generated ID attributes within HTML make it hard to write JavaScript and style with CSS Use of tables instead of semantic markup for certain controls (in particular the asp:menu control) make styling ugly Some controls render inline style properties even if no style property on the control has been set ViewState can often be bigger than ideal ASP.NET 4 provides better support for building standards-compliant pages out of the box.  The built-in <asp:> server controls with ASP.NET 4 now generate cleaner markup and support CSS styling – and help address all of the above issues.  Markup Compatibility When Upgrading Existing ASP.NET Web Forms Applications A common question people often ask when hearing about the cleaner markup coming with ASP.NET 4 is “Great - but what about my existing applications?  Will these changes/improvements break things when I upgrade?” To help ensure that we don’t break assumptions around markup and styling with existing ASP.NET Web Forms applications, we’ve enabled a configuration flag – controlRenderingCompatbilityVersion – within web.config that let’s you decide if you want to use the new cleaner markup approach that is the default with new ASP.NET 4 applications, or for compatibility reasons render the same markup that previous versions of ASP.NET used:   When the controlRenderingCompatbilityVersion flag is set to “3.5” your application and server controls will by default render output using the same markup generation used with VS 2008 and .NET 3.5.  When the controlRenderingCompatbilityVersion flag is set to “4.0” your application and server controls will strictly adhere to the XHTML 1.1 specification, have cleaner client IDs, render with semantic correctness in mind, and have extraneous inline styles removed. This flag defaults to 4.0 for all new ASP.NET Web Forms applications built using ASP.NET 4. Any previous application that is upgraded using VS 2010 will have the controlRenderingCompatbilityVersion flag automatically set to 3.5 by the upgrade wizard to ensure backwards compatibility.  You can then optionally change it (either at the application level, or scope it within the web.config file to be on a per page or directory level) if you move your pages to use CSS and take advantage of the new markup rendering. Today’s Cleaner Markup Topic: Client IDs The ability to have clean, predictable, ID attributes on rendered HTML elements is something developers have long asked for with Web Forms (ID values like “ctl00_ContentPlaceholder1_ListView1_ctrl0_Label1” are not very popular).  Having control over the ID values rendered helps make it much easier to write client-side JavaScript against the output, makes it easier to style elements using CSS, and on large pages can help reduce the overall size of the markup generated. New ClientIDMode Property on Controls ASP.NET 4 supports a new ClientIDMode property on the Control base class.  The ClientIDMode property indicates how controls should generate client ID values when they render.  The ClientIDMode property supports four possible values: AutoID—Renders the output as in .NET 3.5 (auto-generated IDs which will still render prefixes like ctrl00 for compatibility) Predictable (Default)— Trims any “ctl00” ID string and if a list/container control concatenates child ids (example: id=”ParentControl_ChildControl”) Static—Hands over full ID naming control to the developer – whatever they set as the ID of the control is what is rendered (example: id=”JustMyId”) Inherit—Tells the control to defer to the naming behavior mode of the parent container control The ClientIDMode property can be set directly on individual controls (or within container controls – in which case the controls within them will by default inherit the setting): Or it can be specified at a page or usercontrol level (using the <%@ Page %> or <%@ Control %> directives) – in which case controls within the pages/usercontrols inherit the setting (and can optionally override it): Or it can be set within the web.config file of an application – in which case pages within the application inherit the setting (and can optionally override it): This gives you the flexibility to customize/override the naming behavior however you want. Example: Using the ClientIDMode property to control the IDs of Non-List Controls Let’s take a look at how we can use the new ClientIDMode property to control the rendering of “ID” elements within a page.  To help illustrate this we can create a simple page called “SingleControlExample.aspx” that is based on a master-page called “Site.Master”, and which has a single <asp:label> control with an ID of “Message” that is contained with an <asp:content> container control called “MainContent”: Within our code-behind we’ll then add some simple code like below to dynamically populate the Label’s Text property at runtime:   If we were running this application using ASP.NET 3.5 (or had our ASP.NET 4 application configured to run using 3.5 rendering or ClientIDMode=AutoID), then the generated markup sent down to the client would look like below: This ID is unique (which is good) – but rather ugly because of the “ct100” prefix (which is bad). Markup Rendering when using ASP.NET 4 and the ClientIDMode is set to “Predictable” With ASP.NET 4, server controls by default now render their ID’s using ClientIDMode=”Predictable”.  This helps ensure that ID values are still unique and don’t conflict on a page, but at the same time it makes the IDs less verbose and more predictable.  This means that the generated markup of our <asp:label> control above will by default now look like below with ASP.NET 4: Notice that the “ct100” prefix is gone. Because the “Message” control is embedded within a “MainContent” container control, by default it’s ID will be prefixed “MainContent_Message” to avoid potential collisions with other controls elsewhere within the page. Markup Rendering when using ASP.NET 4 and the ClientIDMode is set to “Static” Sometimes you don’t want your ID values to be nested hierarchically, though, and instead just want the ID rendered to be whatever value you set it as.  To enable this you can now use ClientIDMode=static, in which case the ID rendered will be exactly the same as what you set it on the server-side on your control.  This will cause the below markup to be rendered with ASP.NET 4: This option now gives you the ability to completely control the client ID values sent down by controls. Example: Using the ClientIDMode property to control the IDs of Data-Bound List Controls Data-bound list/grid controls have historically been the hardest to use/style when it comes to working with Web Form’s automatically generated IDs.  Let’s now take a look at a scenario where we’ll customize the ID’s rendered using a ListView control with ASP.NET 4. The code snippet below is an example of a ListView control that displays the contents of a data-bound collection — in this case, airports: We can then write code like below within our code-behind to dynamically databind a list of airports to the ListView above: At runtime this will then by default generate a <ul> list of airports like below.  Note that because the <ul> and <li> elements in the ListView’s template are not server controls, no IDs are rendered in our markup: Adding Client ID’s to Each Row Item Now, let’s say that we wanted to add client-ID’s to the output so that we can programmatically access each <li> via JavaScript.  We want these ID’s to be unique, predictable, and identifiable. A first approach would be to mark each <li> element within the template as being a server control (by giving it a runat=server attribute) and by giving each one an id of “airport”: By default ASP.NET 4 will now render clean IDs like below (no ctl001-like ids are rendered):   Using the ClientIDRowSuffix Property Our template above now generates unique ID’s for each <li> element – but if we are going to access them programmatically on the client using JavaScript we might want to instead have the ID’s contain the airport code within them to make them easier to reference.  The good news is that we can easily do this by taking advantage of the new ClientIDRowSuffix property on databound controls in ASP.NET 4 to better control the ID’s of our individual row elements. To do this, we’ll set the ClientIDRowSuffix property to “Code” on our ListView control.  This tells the ListView to use the databound “Code” property from our Airport class when generating the ID: And now instead of having row suffixes like “1”, “2”, and “3”, we’ll instead have the Airport.Code value embedded within the IDs (e.g: _CLE, _CAK, _PDX, etc): You can use this ClientIDRowSuffix approach with other databound controls like the GridView as well. It is useful anytime you want to program row elements on the client – and use clean/identified IDs to easily reference them from JavaScript code. Summary ASP.NET 4 enables you to generate much cleaner HTML markup from server controls and from within your Web Forms applications.  In today’s post I covered how you can now easily control the client ID values that are rendered by server controls.  In upcoming posts I’ll cover some of the other markup improvements that are also coming with the ASP.NET 4 release. Hope this helps, Scott

    Read the article

  • We are hiring (take a minute to read this, is not another BS talk ;) )

    - by gsusx
    I really wanted to wait until our new website was out to blog about this but I hope you can put up with the ugly website for a few more days J. Tellago keeps growing and, after a quick break at the beginning of the year, we are back in hiring mode J. We are currently expanding our teams in the United States and Argentina and have various positions open in the following categories. .NET developers: If you are an exceptional .NET programmer with a passion for creating great software solutions working...(read more)

    Read the article

  • On improving commit practices

    - by greengit
    I was thinking about ways to improving my commit practices. Is there any co-relation between no. of source code lines and no. of commits? In a recent project that I was involved in, I was going at 30 commits per 1000 lines. One typical file from the project has these stats language: JavaScript total commits that include this file: 32 total lines: 1408 source lines: 1140 comment lines: 98 no. of function declarations: 28 other declarations: 8 Another file has these... Language: Python total commits that include this file: 17 total lines: 933 source lines: 730 comment lines: 80 classes: 1 methods: 10 I also think that no. of commits is more related to no. of features or no. of changes to the code and less to the no. of lines. The general git community motto is make short commits and commit often. So, do you really think about you commit strategy before you start the project. For that matter, is there anything like commit strategy? If so, what's yours?

    Read the article

  • Ask How-To Geek: Tiling Windows, iOS Remote Desktop, and Getting a Handle on Windows 7 Libraries

    - by Jason Fitzpatrick
    This week we’re taking a look at how to tile application windows in Windows 7, remote controlling your desktop from iOS devices, and understanding exactly what Windows 7 libraries are. Once a week we dip into our reader mailbag and help readers solve their problems, sharing the useful solutions with you in the process. Read on to see the fixes for this week’s reader dilemmas. Latest Features How-To Geek ETC How To Colorize Black and White Vintage Photographs in Photoshop How To Get SSH Command-Line Access to Windows 7 Using Cygwin The How-To Geek Video Guide to Using Windows 7 Speech Recognition How To Create Your Own Custom ASCII Art from Any Image How To Process Camera Raw Without Paying for Adobe Photoshop How Do You Block Annoying Text Message (SMS) Spam? Battlestar Galactica – Caprica Map of the 12 Colonies (Wallpaper Also Available) View Enlarged Versions of Thumbnail Images with Thumbnail Zoom for Firefox IntoNow Identifies Any TV Show by Sound Walk Score Calculates a Neighborhood’s Pedestrian Friendliness Factor Fantasy World at Twilight Wallpaper Hack a Wireless Doorbell into a Snail Mail Indicator

    Read the article

  • Trade-offs of local vs remote development workflows for a web development team

    - by lamp_scaler
    We currently have SVN setup on a remote development server. Developers SSH into the server and develops on their sandbox environment on the server. Each one has a virtual host pointed to their sandbox so they can preview their changes via the web browser by connecting to developer-sandbox1.domain.com. This has worked well so far because the team is small and everyone uses computers with varying specs and OSs. I've heard some web shops are using a workflow that has the developers work off of a VM on their local machine and then finally push changes to the remote server that hosts SVN. The downside to this is that everyone will need to make sure their machine is powerful enough to run both the VM and all their development tools. This would also mean creating images that mirror the server environment (we use CentOS) and have them install it into their VMs. And this would mean creating new images every time there is an update to the server environment. What are some other trade-offs? Ultimately, why did you choose one workflow over the other?

    Read the article

  • Are there any subversion "dash board" web applications that can show me a list of recent commits from all my repositories?

    - by Joe
    I am looking for something like a subversion dashboard that at the very least can show me commits from across a group of repositories. Is there anything like this available? Since it could just as well be dead simple and I can't find anything immediately I am thinking if just scratching my own itch here, but I am hoping someone has wanted this before? Are there any subversion "dashboards" that an show me even a simple twitter-like list of commits from across my repositories?

    Read the article

  • User roles in GWT applications

    - by csaffi
    Hi everybody, I'm wondering if you could suggest me any way to implement "user roles" in GWT applications. I would like to implement a GWT application where users log in and are assigned "roles". Based on their role, they would be able to see and use different application areas. Here are two possible solution I thought: 1) A possible solution could be to make an RPC call to the server during onModuleLoad. This RPC call would generate the necessary Widgets and/or place them on a panel and then return this panel to the client end. 2) Another possible solution could be to make an RPC call on login retrieving from server users roles and inspecting them to see what the user can do. What do you think about? Thank you very much in advance for your help!

    Read the article

  • Tellago && Tellago Studios 2010

    - by gsusx
    With 2011 around the corner we, at Tellago and Tellago Studios , we have been spending a lot of times evaluating our successes and failures (yes those too ;)) of 2010 and delineating some of our goals and strategies for 2011. When I look at 2010 here are some of the things that quickly jump off the page: Growing Tellago by 300% Launching a brand new company: Tellago Studios Expanding our customer base Establishing our business intelligence practice http://tellago.com/what-we-say/events/business-intelligence...(read more)

    Read the article

  • Tellago 2011: Dwight, Chris and Don are MVPs

    - by gsusx
    It’s been a great start of 2011. Tellago’s Dwight Goins has been awarded as a Microsoft BizTalk Server MVP for 2011. I’ve always said that Dwight should have been an MVP a long time ago. His contributions to the BizTalk Server community are nothing but remarkable. In addition to Dwight, my colleagues Don Demsak and Chris Love also renewed their respective MVP award. A few other of us are up for renewal later in the year. As a recognition to Dwight’s award, we have made him the designated doorman...(read more)

    Read the article

  • git tagging comments - best practices

    - by Evan
    I've adopted a tagging system of x.x.x.x, and this works fine. However, you also need to leave a comment with your git tag. I've been using descriptions such as "fixes bug Y" or "feature X", but is this the best sort of comment to be leaving? Particularly, what if a tag encompasses several fixes, it seems not to make sense to have a very long tag comment. Does this mean that I should be creating a tag for every bug fix or feature, or should the tag comments be reflective of something else? I have a few ideas that may be good, but I'd love some advice from seasoned git tagging veterans :) For those who prefer specific examples: 1.0.0.0 - initial release 1.0.0.1 - bug fix for issue X 1.0.0.2 - (what if this is a bug fix for multiple issues, the comment would be too long, no?) Another example, in this example, the comments are more or less the same as the tags, it seems redundant. Is there something else we could be describing? https://github.com/osCommerce/oscommerce2/tags

    Read the article

  • Connect ViewModel and View using Unity

    - by brainbox
    In this post i want to describe the approach of connecting View and ViewModel which I'm using in my last project.The main idea is to do it during resolve inside of unity container. It can be achived using InjectionFactory introduced in Unity 2.0 public static class MVVMUnityExtensions{    public static void RegisterView<TView, TViewModel>(this IUnityContainer container) where TView : FrameworkElement    {        container.RegisterView<TView, TView, TViewModel>();    }    public static void RegisterView<TViewFrom, TViewTo, TViewModel>(this IUnityContainer container)        where TViewTo : FrameworkElement, TViewFrom    {        container.RegisterType<TViewFrom>(new InjectionFactory(            c =>            {                var model = c.Resolve<TViewModel>();                var view = Activator.CreateInstance<TViewTo>();                view.DataContext = model;                return view;            }         ));    }}}And here is the sample how it could be used:var unityContainer = new UnityContainer();unityContainer.RegisterView<IFooView, FooView, FooViewModel>();IFooView view = unityContainer.Resolve<IFooView>(); // view with injected viewmodel in its datacontextPlease tell me your prefered way to connect viewmodel and view.

    Read the article

< Previous Page | 91 92 93 94 95 96 97 98 99 100 101 102  | Next Page >