Search Results

Search found 3399 results on 136 pages for 'mod macro'.

Page 95/136 | < Previous Page | 91 92 93 94 95 96 97 98 99 100 101 102  | Next Page >

  • Mercurial with Trac on mod_wsgi

    - by 47
    I'm trying to set up a Trac environment running on Apache+mod-wsgi+Mercurial....I've set up everything according to the install docs....however, when I open up the URL to my Trac environment I get: Warning: Can't synchronize with the repository (Unsupported version control system "hg": Can't find an appropriate component, maybe the corresponding plugin was not enabled? ). I've installed mercurial-trac from ports BTW. What could be the problem?

    Read the article

  • What is lighttpd's version of "mod_substitute"?

    - by Dennis
    Recently I read that Apache 2.2 has a new mod to patch outputs on the fly. mod_substitute provides a mechanism to perform both regular expression and fixed string substitutions on response bodies. The feature is useful when I setup testing/development environment. I can replace hostname without touching the content/code. How can I do similar configuration in lighttpd?

    Read the article

  • ESX Install........

    - by ov4
    HI all, I recently purchases a bunch of r710 from dell, i installed esx on it. the installation process finished without a problem. however once the esx boot the following error displays at the botton with red letters 00:00:02:21.493 cpu11:4119) mod:2971: Initialization for vmfs2 failed with -1 i installed on two different servers and the same error pops up. the curius thing is that if i install esxi 3.5 or 4 there is not problem help Thanks Oscar

    Read the article

  • am i properly setting this up correctly? [closed]

    - by codrgii
    i'm having a problem with mod_security. I have installed it, but i am not sure on how to make the rules for it, i want the rules to prevent all major attacks like cross site scripting, remote file inclusion etc i'm using mod security 2.6.5, apache 2.2 with php 5.3.10. i went to this site http://www.gotroot.com/mod_security+rules but i am not sure how to set up the rules or which one to use, or how i add them properly in httpd.conf, would someone please explain the process and also recommend rules for someone in my position?

    Read the article

  • Load Balancing Linux Web Services and Change Config Without Restart

    - by Eric J.
    What options are available to load balance web service traffic on Linux with the ability to add or remove servers from the server pool without restarting the load balancer? This post: http://serverfault.com/questions/71437/mod-proxy-change-without-restart looks like a very promising way to switch between two servers, but I don't know enough about mod_proxy and mod_rewrite to understand how/if I can use an external file to specify the BalancerMember entries for a section. Are there other open source load balancers that support reconfiguration without restart?

    Read the article

  • Partial Client Certificate request for Apache HTTP

    - by Joshua
    I have an Apache HTTP Server with SSL enabled and requesting a Client Certificate. How do I set up Apache to only request the certificate when a user hits a certain part of the website? Example: /myapp/ should not request the cert /myapp2/ should request the cert Note: These applications are being served using the mod-jk

    Read the article

  • Is there any very bare minimal ftp server for ubuntu that wouldn't conflict with other installed servers?

    - by Disco
    I have installed proftpd with mod-sql modules; i need to have a ftp server that would run on another port (and use a separate authentication scheme) Whenever i try to install vsftpd or pureftpd it simply removes proftpd and dependencies; i'm guessing it's to prevent having conflicts ... Is there any 'very small' ftp server; like run from command line that I could use ? I've searched all around but cannot find ... Any help would be appreciated

    Read the article

  • Where can I download mod_shaper for proftpd?

    - by lorus
    www.castaglia.org/proftpd/ says: mod_shaper is distributed with the proftpd source code but in the latest src from ftp://ftp1.at.proftpd.org/ProFTPD/distrib/source/proftpd-1.3.2e.tar.gz there is no mod_shaper.c inside ... so where can I get this mod?

    Read the article

  • Invalid command 'SSLRequireSSL',

    - by Bad Programmer
    An svn server that I managed crashed. The server is up and running again, but I can't manage to get svn running anymore. I followed the instructions listed here: http://mark.koli.ch/2010/03/howto-setting-up-your-own-svn-server-using-apache-and-mod-dav-svn.html Yet when I try to start apache using /etc/init.d/httpd start I get a [FAILED] message. There is no content in the error logs. Any suggestions?

    Read the article

  • Failling install Ralink RT5592 driver on Ubuntu 14.04 LTS

    - by atisou
    My problem concerns the installation of a wi-fi driver (RT5592) for my new wi-fi adapter (PCE-N53) on my newly built computer. Basically, I don't manage to get the driver installed and therefore I cannot get the wifi to work. I know I am not the only one having this issue this year, between RT5592 driver and Ubuntu 14.04 LTS, in one way or the other. Is there anybody who has ever been able to fix this problem? It does not look like on all the posts I have been through... Following an answer to a same problem as mine (I was getting the same error message as Christopher Kyle Horton of "incompatible types" etc), I have applied the instructions and done the editings in a script as suggested by Paul B. Unfortunately I still do get error/warnings message (a different one this time) at the end of the make and the wi-fi still does not work. Below is a snapshot of the end of the message: In file included from /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/include/os/rt_linux.h:31:0, from /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/include/rtmp_os.h:44, from /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/include/rtmp_comm.h:69, from /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/os/linux/../../os/linux/pci_main_dev.c:31: include/linux/module.h:88:32: error: ‘__mod_pci_device_table’ aliased to undefined symbol ‘rt2860_pci_tbl’ extern const struct gtype##_id __mod_##gtype##_table \ ^ include/linux/module.h:146:3: note: in expansion of macro ‘MODULE_GENERIC_TABLE’ MODULE_GENERIC_TABLE(type##_device,name) ^ /home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/os/linux/../../os/linux/pci_main_dev.c:73:1: note: in expansion of macro ‘MODULE_DEVICE_TABLE’ MODULE_DEVICE_TABLE(pci, rt2860_pci_tbl); ^ cc1: some warnings being treated as errors make[2]: *** [/home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/os/linux/../../os/linux/pci_main_dev.o] Error 1 make[1]: *** [_module_/home/username/Downloads/PCE-N53/Linux/DPO_GPL_RT5592STA_LinuxSTA_v2.6.0.0_20120326/os/linux] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-3.13.0-32-generic' make: *** [LINUX] Error 2 The full pastebin data: paste.ubuntu.com/8088834/ It looks from the message that one would need to edit manually some of/other scripts in the driver package, as did Paul B suggest in one case. But I have no idea how to do that. Here is the driver package of the wifi adapter: www.asus.com/uk/Networking/PCEN53/HelpDesk_Download/ My system is as following: OS: ubuntu 14.04 LTS wi-fi card: Asus PCE-N53 motherboard: Asus KCMA-D8 processor: AMD Opteron 4228 HE kernel: 3.13.0-32-generic Following this info from chili555 in here, below are some extra info about my system: lspci -nn | grep 0280 gives 04:00.0 Network controller [0280]: Ralink corp. RT5592 PCI2 Wireless Network Adapater [1814:5592] and sudo apt-get install linux-headers-generic returns linux-headers-generic is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. If this is a kernel version (I have 3.13.0-32-generic) incompatibility issue with the driver as chilli555 suggests (the README file in the driver package says indeed it is compatible with kernel 2.6), how could one trick this around to make it work? that should be possible right? On ubuntu forums, the patches proposed dont work (leads the computer to freeze). Basically: is there anybody out there who has ever been able to make a PCE-N53 work on Ubuntu 14.04 LTS (kernel 3.13)? how shall I edit the driver package to make it work for my kernel?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Build Your Own CE6 Kernel

    - by Kate Moss' Big Fan
    The Share Source Program in Windows CE provides many modules in %_WINCEROOT%\Private\ tree, and the kernel is one of them! Although it is not full source of kernel but it is good enough for tracing it, even tweak the kernel. Tracing the kernel and see how it works is lots of fun, but it is fascinated to modify and verify the change you made. So first comes first, where is the source of kernel? It's in your %_WINCEROOT%\private\winceos\COREOS\nk\ And next question will be "How do I build it?", Some of you may say just "build -c" there and it should be good. If you are the owner of kernel and got full source, that is definitely the right answer, but none of them are applied to our case though. So what should I do? Let's dig deeper into the coreos\nk folder, there are a couples of subfolder, CELOG, KDSTUB, KERNEL and etc. KERNEL\ is the main component of kernel.dll, in the other word, most of the modify to kernel is going to happen here. And the good thing is, you could "build -c" in %_WINCEROOT%\private\winceos\COREOS\nk\kernel\ with no error at all. But before doing that, remember to backup eveything you are going to modify, including the source and binaries; remember, this is not something belong to you, and if you didn't restore them back later, it could end up confuse the subsequence QFE updates! Here is the steps Backup the source code, I will suggest the whole %_WINCEROOT%\private\winceos\COREOS\nk\ Backup the binaries in common\oak\lib\, and again if you are not sure which files, backup the whole %_WINCEROOT%\common\oak\lib\ is the safest way. Do whatever modification you want in %_WINCEROOT%\private\winceos\COREOS\nk\kernel\ build -c in %_WINCEROOT%\private\winceos\COREOS\nk\kernel If everything went well so far, you should get a new nkmain.lib,nkmain.pdb, nkprmain.lib and nkprmain.pdb in %_WINCEROOT%\public\common\oak\lib\%_TGTCPU%\%WINCEDEBUG%\ Basically, you just rebuild your new kernel, the rest is to "blddemo clean -q" to have your new kernel SYSGEN'd and include in your OS Image. Or just "set WINCEREL=1" then "sysgen -p common nk nkprof" and "makeimg" if you can't wait another minutes for "blddemo clean -q" Tat sounds good, but some of you may not like the idea to alter any code in private folder, and not to mention how annoying to backup/restore files every time. Better idea? Yes, Microsoft provides a tool SYSGEN_CAPTURE (http://msdn.microsoft.com/en-us/library/ee504678.aspx for detail and usage) to creates Sources files for public drivers that you want to modify and build in your platform directory. In fact, not only public drivers, virtually anything in the %_WINCEROOT%\public\<project name>\cesysgen\makefile can be captured, and of course including kernel. So I am going to introduce a second way to build your own kernel by using SYSGEN_CAPTURE tool. Again the steps Create a folder in your BSP for building kernel, says %_TARGETPLATROOT%\SRC\Kernel. Use "SYSGEN_CAPTURE -p common nk" and then you will get a SOURCES.KERN, you could also "SYSGEN_CAPTURE -p common nkprof" to generate profiler enabled kernel. rename the SOURCE.KERN to SOURCES and copy one of the sample makefile into your kernel directory. For example the one in PRIVATE\WINCEOS\COREOS\NK\KERNEL\NKNORMAL. Copy the source files you want to modify from private\winceos\coreos\nk\kernel\ into your kernel directory. Modifying the SOURCES= macro to the source files you addes in step 4. For example, if you copied the vm.c, it is going to be SOURCES=vm.c Refer to the private\winceos\COREOS\nk\kernel\sources.inc and add macro defines and proper include path in your SOURCES file. "set WINCEREL=1", "build -c" in your kernel directory and "makeimg", voila! Here is an example for the MACROS you need to add in x86 Here are the macros for x86 CDEFINES=$(CDEFINES) -DIN_KERNEL -DWINCEMACRO -DKERN_CORE # Machine independent defines CDEFINES=$(CDEFINES) -DDBGSUPPORT _COREOSROOT=$(_WINCEROOT)\private\winceos\coreos INCLUDES=$(_COREOSROOT)\inc;$(_COREOSROOT)\nk\inc !IFDEF DP_SETTINGS CDEFINES=$(CDEFINES) -DDP_SETTINGS=$(DP_SETTINGS) !ENDIF ASM_SAFESEH=1 CDEFINES=$(CDEFINES) -Gs100000 -DENCODE_GS_COOKIE

    Read the article

  • C++ property system interface for game editors (reflection system)

    - by Cristopher Ismael Sosa Abarca
    I have designed an reusable game engine for an project, and their functionality is like this: Is a completely scripted game engine instead of the usual scripting languages as Lua or Python, this uses Runtime-Compiled C++, and an modified version of Cistron (an component-based programming framework).to be compatible with Runtime-Compiled C++ and so on. Using the typical GameObject and Component classes of the Component-based design pattern, is serializable via JSON, BSON or Binary useful for selecting which objects will be loaded the next time. The main problem: We want to use our custom GameObjects and their components properties in our level editor, before used hardcoded functions to access GameObject base class virtual functions from the derived ones, if do you want to modify an property specifically from that class you need inside into the code, this situation happens too with the derived classes of Component class, in little projects there's no problem but for larger projects becomes tedious, lengthy and error-prone. I've researched a lot to find a solution without luck, i tried with the Ogitor's property system (since our engine is Ogre-based) but we find it inappropiate for the component-based design and it's limited only for the Ogre classes and can lead to performance overhead, and we tried some code we find in the Internet we tested it and worked a little but we considered the macro and lambda abuse too horrible take a look (some code omitted): IWE_IMPLEMENT_PROP_BEGIN(CBaseEntity) IWE_PROP_LEVEL_BEGIN("Editor"); IWE_PROP_INT_S("Id", "Internal id", m_nEntID, [](int n) {}, true); IWE_PROP_LEVEL_END(); IWE_PROP_LEVEL_BEGIN("Entity"); IWE_PROP_STRING_S("Mesh", "Mesh used for this entity", m_pModelName, [pInst](const std::string& sModelName) { pInst->m_stackMemUndoType.push(ENT_MEM_MESH); pInst->m_stackMemUndoStr.push(pInst->getModelName()); pInst->setModel(sModelName, false); pInst->saveState(); }, false); IWE_PROP_VECTOR3_S("Position", m_vecPosition, [pInst](float fX, float fY, float fZ) { pInst->m_stackMemUndoType.push(ENT_MEM_POSITION); pInst->m_stackMemUndoVec3.push(pInst->getPosition()); pInst->saveState(); pInst->m_vecPosition.Get()[0] = fX; pInst->m_vecPosition.Get()[1] = fY; pInst->m_vecPosition.Get()[2] = fZ; pInst->setPosition(pInst->m_vecPosition); }, false); IWE_PROP_QUATERNION_S("Orientation (Quat)", m_quatOrientation, [pInst](float fW, float fX, float fY, float fZ) { pInst->m_stackMemUndoType.push(ENT_MEM_ROTATE); pInst->m_stackMemUndoQuat.push(pInst->getOrientation()); pInst->saveState(); pInst->m_quatOrientation.Get()[0] = fW; pInst->m_quatOrientation.Get()[1] = fX; pInst->m_quatOrientation.Get()[2] = fY; pInst->m_quatOrientation.Get()[3] = fZ; pInst->setOrientation(pInst->m_quatOrientation); }, false); IWE_PROP_LEVEL_END(); IWE_IMPLEMENT_PROP_END() We are finding an simplified way to this, without leading confusing the programmers, (will be released to the public) i find ways to achieve this but they are only available for the common scripting as Lua or editors using C#. also too portable, we can write "wrappers" for different GUI toolkits as Qt or GTK, also i'm thinking to using Boost.Wave to get additional macro functionality without creating my own compiler. The properties designed to use in the editor they are removed in the game since the save file contains their data and loads it using an simple 'load' function to reduce unnecessary code bloat may will be useful if some GameObject property wants to be hidden instead. In summary, there's a way to implement an reflection(property) system for a level editor based in properties from derived classes? Also we can use C++11 and Boost (restricted only to Wave and PropertyTree)

    Read the article

  • [News] NHibernate vs MS Entity Framework

    Voil? une question qui se posera de plus en plus avec la sortie prochaine de .NET V4 et Entity Framework V4, l'outil de mapping objet/relationnel de Microsoft. M?me s'il est vrai que l'opinion de Ayende peut para?tre biais?e du fait qu'il est contributeur NHibernate, son point de vue et surtout ses arguments techniques donnent du cr?dit ? ce billet. Il semble aussi que la diff?rence se jouera dans l'outillage, sur ce plan, Entity Framework a pris de l'avance avec la mod?lisation graphique des entit?s. Mais NHibernate est dans ses pas avec Visual NHibernate de l'?diteur Slyce Software.

    Read the article

  • What features would you like to have in PHP?

    - by StasM
    Since it's the holiday season now and everybody's making wishes, I wonder - which language features you would wish PHP would have added? I am interested in some practical suggestions/wishes for the language. By practical I mean: Something that can be practically done (not: "I wish PHP would guess what my code means and fix bugs for me" or "I wish any code would execute under 5ms") Something that doesn't require changing PHP into another language (not: "I wish they'd drop $ signs and use space instead of braces" or "I wish PHP were compiled, statically typed and had # in it's name") Something that would not require breaking all the existing code (not: "Let's rename 500 functions and change parameter order for them") Something that does change the language or some interesting aspect of it (not: "I wish there was extension to support for XYZ protocol" or "I wish bug #12345 were finally fixed") Something that is more than a rant (not: "I wish PHP wouldn't suck so badly") Anybody has any good wishes? Mod edit: Stanislav Malyshev is a core PHP developer.

    Read the article

  • Slot Machine Pay Out

    - by Kris.Mitchell
    I have done a lot of research into random number generators for slot machines, reel stop calculations and how to physically give the user a good chance on winning. What I can't figure out is how to properly insure that the machine is going to have a payout rating of (lets say) 95%. So, I have a reel set up wit 22 spaces on it. Filled with 16 different symbols. When I get my random number, mod divide it by 64 and get the remainder, I hop over to a loop up table to see how the virtual stop relates to the reel position. Now that I have how the reels are going to stop, do I make sure the payout ratio is correct? For every dollar they put in, how to I make sure the machine will pay out .95 cents? Thanks for the ideas. I am working in actionscript, if that helps with the language issues, but in general I am just looking for theory.

    Read the article

  • Replica Myst Book Actually Plays all the Myst Games

    - by Jason Fitzpatrick
    Runaway 1990s gaming hit Myst features books that had the power to transport you to other worlds. One dedicated fan has gone so far as to make a book that, when opened, transports you to the Myst universe. From hand-crafting the book itself to populating the guts of the book with carefully selected (and frequently modified) parts, Mike Ando left no part of his project uncustomized. The end result is a stunning mod and tribute to the Myst franchise–a beautiful book you can open and play through all the games in the series. Check out the video above to see it in action then hit up the link below to check out Mike’s build album. Myst Book [via Hack A Day] What Is the Purpose of the “Do Not Cover This Hole” Hole on Hard Drives? How To Log Into The Desktop, Add a Start Menu, and Disable Hot Corners in Windows 8 HTG Explains: Why You Shouldn’t Use a Task Killer On Android

    Read the article

  • How do I ask google not to index certain parts of my page?

    - by Gavin Mannion
    I was searching for an old review on my site today and I noticed that Google is indexing the headline text in my latest article list on every page that it appears, obviously I guess. The problem is if I search for my Dragon's Lair review specifically to my site like this http://www.google.co.za/search?sugexp=chrome,mod=9&sourceid=chrome&ie=UTF-8&q=site%3Alazygamer.net+dragons+lair+review Then it returns a ton of pages that aren't appropriate as they aren't related to the review at all. The reason why I care is that I have a second Dragon's Lair review that was posted years ago and now I can't find it. Is there a way to hint to google that certain text isn't relevant to the actual content on the page? is it a terrible idea?

    Read the article

  • Starcraft 2 - Third Person Custom Map

    - by Norla
    I would like to try my hand at creating a custom map in Starcraft 2 that has a third-person camera follow an individual unit. There are a few custom maps that exist with this feature already, so I do know this is possible. What I'm having trouble wrapping my head around are the features that are new to the SC2 map editor that didn't exist in the Warcraft 3 editor. For instance, to do a third-person map, do I need a custom mods file, or can everything be done in the map file? Regardless, is it worth using a mod file? What map settings do I NEED to edit/implement? Which are not necessary, but recommended?

    Read the article

  • Tips on googling for sugar

    - by Mikey
    I have a question up on SO I am a little embarassed I can't just google: http://stackoverflow.com/questions/13734664/groovy-variables-in-method-names-with-double-question-marks The problem is google seems to chuck any terms that are just punctuation, so queries like these: .findBy?? .and?? groovy '??' Are coming out the same as these: findBy and groovy I have had this problem before when I didn't know the name of the elvis operator, and countless other times (probably happened first time I saw an infix '%' mod too if I had to guess). Is there a resource for syntax sugar lookups? Some way to force google or a different search engine to not ignore my funky punctuation?

    Read the article

  • Project Kapros: A Custom-Built Workstation Featuring an In-Desk Computer

    - by Jason Fitzpatrick
    While we’ve seen our fair share of case mods, it’s infrequent we see one as polished and built-in as this custom built work station. What started as an IKEA Galant desk, ended as a stunningly executed desk-as-computer build. High gloss paint, sand-blasted plexiglass windows, custom lighting, and some quality hardware all come together in this build to yield a gorgeous setup with plenty of power and style to go around. Hit up the link below for a massive photo album build guide detailing the process from start to finish. Project Kapros: IKEA Galant PC Desk Mod [via Kotaku] How to Stress Test the Hard Drives in Your PC or Server How To Customize Your Android Lock Screen with WidgetLocker The Best Free Portable Apps for Your Flash Drive Toolkit

    Read the article

  • Getting PHP to work with apache to run .php files through browser [closed]

    - by Kevin Duke
    I have VPS running Debian 5.0 (I think) and I would like to get it to run PHP files. I was told it needed to be configured with Apache. I tried entering the command apt-get install apache2 php5 libapache2-mod-php5. But there was no change. Console output: http://pastebin.com/sVMWq6mA This is everything in my /etc/apache2/mods-enabled: http://img35.imageshack.us/img35/6474/modsb.jpg My webserver can be accessed here: http://206.217.223.136/test/ In my test.php file I have the code : <?php phpinfo(); ?> but instead of displaying the page, it tries to download it. How can I fix this?

    Read the article

  • DIY Internet Radio Maintains Controls and Interface of Vintage Case

    - by Jason Fitzpatrick
    Updating an old radio for modern inputs/streaming audio isn’t a new trick but this DIY mod stands out by maintaining the original controls and interface style. Rather than replace the needle-style selector window with a modern text-readout or cover-flow style interface, modder Florian Amrhein opted to replace the old rectangular station selector with an LCD screen that emulates the same red-needle layout. Using the same knob that previously moved the needle on the analog interface, you can slide the digital selector back and forth to select Internet radio stations. Watch the video above to see it in action and hit up the link below for the build guide. 1930s Internet Radio [via Hack A Day] HTG Explains: Does Your Android Phone Need an Antivirus? How To Use USB Drives With the Nexus 7 and Other Android Devices Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder?

    Read the article

  • Is it legal and ethical to reverse engineer software to port it to another system?

    - by Igor Zinov'yev
    I love gaming, I love games that allow modding and I love linux. But the fact that most games right now are targeted for windows (consoles aside), most mods and modding tools are also targeted for windows. There is a certain modder called Boris Vorontsov that makes a famous visual overhaul mod series called ENB. What he does (or I think he does) is he enhances or changes the behavior of classes defined in the d3d9.dll library. Needless to say it almost never works under wine. Recently I have asked him if he would ever release his version of the library under some open license, and he said "no". Now that I think of it, even if he did release his code, he would have surely faced some legal problems. Now there is my question. Is it legal and ethical to reverse engineer his version of the library to adapt the wine's open source version of d3d9.dll to be able to run his mods?

    Read the article

  • Methods to Validate User Supplied Data

    - by clifgray
    I am working on a website where users record data from certain locations and they input an address to tag that location with a GPS coordinate. Pretty frequently those locations are tagged more than a mile away from the actual location and I am trying to implement a few ways to validate the data. Right now I am thinkiing of: having a tag of location pages for other users to say "incorrect location" so I can go one by one and fix it letting users with a decent amount of experience (reputation) edit the location GPS coordinates making the location be validated by a mod before it goes live and they make sure it is a good location Are these reasonable? I know the first will take a lot of my time and I would love some suggestions.

    Read the article

< Previous Page | 91 92 93 94 95 96 97 98 99 100 101 102  | Next Page >