Search Results

Search found 9117 results on 365 pages for 'systems analysis'.

Page 96/365 | < Previous Page | 92 93 94 95 96 97 98 99 100 101 102 103  | Next Page >

  • Optimum configuration of McAfee for Servers

    - by Wayne Arthurton
    Our corporate standard is McAfee Enterprise, unfortunately this is non-negotiable. On two types of servers I'm responsible for, SQL & Web, we have noticed major performance issues with the corporate standard setup. Max scan time 45sec One policy for all processes Scan ALL files on write, read and open for backup Heuristics: Find unknown programs, trojans and macros Detect unwanted programs Exclude: EVT, LDF, LOG, MDF, VMD, , windows file protection) This of course still causes major slowdowns. IIS .NET recompiles are slow especially with SharePoint, SQL backups and restores, SQL Analysis Services, Integration Services and temp data from them as well. I have looked from time to time, for some best practices on setting up McAfee of SQL & SQL Analysis Service, SQL Integration Service, Visual Studio, Sharepoint, and .NET web servers in general. How do people setup McAfee enterprise on their corporate serves keeping security intact, but affecting performance as minimally as possible? Has anyone run across white papers on these setups? Obviously some are case by case, but there must be some best practices out there somewhere.

    Read the article

  • WinDbg Problem with ntoskrnl

    - by Wilf
    I've got a similar problem to "BSOD - Unable to verify timestamp for ntoskrnl.exe", in that I can't seem to get the correct symbols to read ntoskrnl. I've followed the advice given by BK1E, but still can't get a result. Text from debug below: Loading Dump File [C:\Users\XXXX\AppData\Local\Temp\WER9D78.tmp\Mini030610-01.dmp] Mini Kernel Dump File: Only registers and stack trace are available Symbol search path is: SRV*c:\Windows\Symbols*http://msdl.microsoft.com/download/symbols Executable search path is: Unable to load image \SystemRoot\system32\ntoskrnl.exe, Win32 error 0n2 *** WARNING: Unable to verify timestamp for ntoskrnl.exe *** ERROR: Module load completed but symbols could not be loaded for ntoskrnl.exe Windows Server 2008/Windows Vista Kernel Version 6002 (Service Pack 2) MP (4 procs) Free x64 Product: WinNt, suite: TerminalServer SingleUserTS Personal Machine Name: Kernel base = 0xfffff800`01e59000 PsLoadedModuleList = 0xfffff800`0201ddd0 Debug session time: Sat Mar 6 14:08:20.516 2010 (UTC + 0:00) System Uptime: 0 days 0:42:01.723 Unable to load image \SystemRoot\system32\ntoskrnl.exe, Win32 error 0n2 *** WARNING: Unable to verify timestamp for ntoskrnl.exe *** ERROR: Module load completed but symbols could not be loaded for ntoskrnl.exe Loading Kernel Symbols ............................................................... ................................................................ ......................... Loading User Symbols Loading unloaded module list .... ******************************************************************************* * * * Bugcheck Analysis * * * ******************************************************************************* Use !analyze -v to get detailed debugging information. BugCheck A, {11, c, 0, fffff80001ec9489} ***** Kernel symbols are WRONG. Please fix symbols to do analysis. How do I fix this issue? OS is Windows Vista x64 SP2.

    Read the article

  • Defrag starting when not scheduled. What is triggering the defrag

    - by leroyclark
    I have a fileserver that is starting a defrag around 2:00 PM everyday. This is killing performance as it runs for ours becuase this is a file server and has multiple drives. All scheduled tasks regarding defrag have been disabled. I have verified that it is accessing the data drives(using SysInternals tools). The reason I might have though otherwise was the event log has multiple entries regarding defragging a db file related to shadow copies. Oh yes these drives take shadow copy snapshots multiple times per day but the times of them don't coincide with the defrag task. There is nothing in the event logs regarding defrag except those noted above in relation to shadow copies. I'm out of ideas looking for what is starting these jobs. One possiblility is that the drives are not being defgramented, but being analyized to determine if they need to be defragmented. I manually ran an analysis and the cpu usage(by dfrgntfs.exe) seems to be similar to what I'm seeing everday while the defrag process is running. However I've found no setting that schedules this analysis.

    Read the article

  • IP Blacklists and suspicious inbound and outbound traffic

    - by Pantelis Sopasakis
    I administer a web server and recently we had our IP banned (!) from our host after they received a notification e-mail for abuse. In particular our server is allegedly involved in spam attacks over HTTP. The content of the abuse report email we received was not much informative - for example the IP addresses our server is supposed to have attacked against are not included - so I started a wireshark session checking for suspicious traffic over TCP/HTTP while trying to locate possible security holes on the system. (Let me note that the machine runs a Debian OS). Here is an example of such a request... Source: 89.74.188.233 Destination: 12.34.56.78 // my ip Protocol: HTTP Info: GET 'http://www.media.apniworld.com/image.php?type=hv' HTTP/1.0 I manually blacklisted this host (as well as some other ones) blocking them with iptables, but I can't keep on doing manually all day long... I'm looking for an automated way to block such IPs based on: Statistical analysis, pattern recognition or other AI-based analysis (Though, I'm reluctant to trust such a solution, if exists) Public blacklists Using DNSBL I actually found out that 89.74.188.233 is blacklisted. However other IPs which are strongly suspicious like 93.199.112.126 (i.e. http://www.pornstarnetwork.com/account/signin), unfortunately were not blacklisted! What I would like to do is to automatically connect my firewall with DNSBL (or some other blacklist database) and block all traffic towards blacklisted IPs or somehow have my local blacklist automatically updated.

    Read the article

  • WSUS KB978338 Chain of Supersession Incorrect?

    - by Kasius
    The chain appears to be KB978338 to KB978886 to KB2563894 to KB2588516 (newest). All four of these updates are approved on our WSUS server. KB978338 is listing as Not Applicable on all machines, because it has been superseded. This is the behavior I would expect. However, our security office is reporting that KB978338 should still be installed on all machines because its actual effect is not replicated by any of the updates that follow it. Here is the analysis I was sent: KB978886 applies to Vista SP1 only. The rollout of SP2 did not address the ISATAP vulnerability and reintroduces it. KB2563894 only updates two files (Tcpip.sys and Tcpipreg.sys). It does not update the 12 other affected ISATAP, UDP, and NUD .sys and .dll files. (MS11-064) KB2588516 addresses malformed continuous UDP packet overflow. But does not address the ISATAP related NUD and TCP .sys and .dll files. (MS11-083) So yes, many IP vulnerabilities. But each KB addresses specific issues that do not cross over to other KBs. We can install KB978338 by manually running the .MSU file, but we aren't certain if that will overwrite the couple files that get updated by later patches since we would be installing the patch out of order. Is the above analysis correct? Is the chain of supersession incorrectly defined? If it is, what is the proper way to report it so that it can be changed by the correct Microsoft team? We are currently using 32-bit and 64-bit installations of Vista SP2. Note: I should mention that I posted this on Technet as well. I will keep this up-to-date with any information I get on there.

    Read the article

  • Strange issue with 74.125.79.118

    - by Domenic
    I'm facing with a strange issue on a Linux server. After frequent crashes the analysis found that the server is led to collapse by a huge number of connections to the ip 74.125.79.118 departing from php scripts of the hosted web sites. After a depth analysis of the files I'm found that are not present any malware infections. Ip 74.125.79.118 is Google. I realize after a Google search that the connections to this ip are generated by embedded video from youtube on web sites, among other Google features like safe search. But I don't understand how this type of behavior can lead to the collapse the server and the uniqueness of the situation leads me to think that the situation is far from being attributable only to Google and Youtube. Also I've found that blocking connections from eth0 to 74.125.79.118:80 doesn't solve the issue but if I stop DNS traffic from eth0 to internet, connections to 74.125.79.118 stops. I'm really confused about this. Any suggestions? Cheers.

    Read the article

  • Server Hosting + AWS

    - by ledy
    Since my dedicated servers are hosted at a "normal" hosting service, I wonder if there is a really cheap way to extend the server farm with AWS instances. E.g. it seems to be a effient and flexible solution with data storage and ressources for ocassional data processing, too. However, it might be very in-efficient to mix two data centres and transfering data from current webhoster to amazon and vice-versa. In my case, the traffic for this continuous data exchange seems to be expensive and the delay for moving the data back to the hoster leads into a lack or delay. How are best practises for mixing non-aws and aws systems? E.g.: How to move the hosters data to aws as log file storage to run urchin analysis and/or port the log file data into a bigtable for exhausting analysis there. After working with the data: how to bring it back to the hoster and use the data with the webservers there? I am not going to move all the server farm to amazon, only "separate" parts or tasks if the transfer/exchange does not lead to increased cost.

    Read the article

  • java distributed cache for low latency, high availability

    - by Shahbaz
    I've never used distributed caches/DHTs like memcached, jboss cache, ehcache, etc. I'm wondering which, if any, is appropriate for my use. First, I'm not doing web applications (as most of these project seem to be geared towards web apps). I write servers (Order Management Systems actually) for financial trading firms. The servers themselves are not too complicated. They need to receive information (market data, orders, executions, etc.) rout them to their destination while possibly transforming some of these messages. I am looking at these products to solve the following problems: * Safe repository of the state of the server. I'd rather build the logic of my application as a bunch of transformers (similar to Apache Camel) and store the state in a 'safe' place * This repository should be distributed: in case one of these data stores crashes, one or two more should be up and I should be able to switch to them seamlessly * This repository should be fast. Single digits milliseconds count here, in other words, systems which consume/process this data are automated systems, not humans clicking on links. This system needs to have high-throughput and low latency. By sending my data outside the process, I am necessarily slowing performance, but I am trying to balance absolute raw speed and absolute protection of data. * This repository should be safe. Similar to the point about several on-line backups, this system needs to write data to disk (potentially more than one disk). I'd really like to stop writing my own 'transaction servers.' Am I correct to be looking into projects such as jboss cache, ehcache, etc.? Thanks

    Read the article

  • Linux System Programming

    - by AJ
    I wanted to get into systems programming for linux and wanted to know how to approach that and where to begin. I come from a web development background (Python, PHP) but I also know some C and C++. Essentially, I would like to know: Which language(s) to learn and pursue (I think mainly C and C++)? How/Where to learn those languages specific to Systems Programming? Books, websites, blogs, tutorials etc. Any other good places where I can start this from basics? Any good libraries to begin with? What environment setup (or approx.) do I need? Assuming linux has to be there but I have a linux box which I rarely log into using GUI (always use SSH). Is GUI a lot more helpful or VI editor is enough? (Please let me know if this part of the question should go to serverfault.com) PS: Just to clarify, by systems programming I mean things like writing device drivers, System tools, write native applications which are not present on Linux platform but are on others, play with linux kernel etc.

    Read the article

  • TCL tDom Empty XML Tag

    - by pws5068
    I'm using tDom to loop through some XML and pull out each element's text(). set xml { <systems> <object> <type>Hardware</type> <name>Server Name</name> <attributes> <vendor></vendor> </attributes> </object> <object> <type>Hardware</type> <name>Server Two Name</name> <attributes> <vendor></vendor> </attributes> </object> </systems> }; set doc [dom parse $xml] set root [$doc documentElement] set nodeList [$root selectNodes /systems/object] foreach node $nodeList { set nType [$node selectNodes type/text()] set nName [$node selectNodes name/text()] set nVendor [$node selectNodes attributes/vendor/text()] # Etc... puts "Type: " puts [$nType data] # Etc .. puts [$nVendor data] } But when it tries to print out the Vendor, which is empty, it thows the error invalid command name "". How can I ignore this and just set $nVendor to an empty string?

    Read the article

  • What would it take to get auto-revert-mode to actually work in my dired buffer?

    - by Cheeso
    Apparently auto-revert-mode is supposed to work in dired buffers. I had never heard of this, but the doc says it works. Then I read a little more and found some fine print: Auto-reverting Dired buffers currently works on GNU or Unix style operating systems. It may not work satisfactorily on some other systems. ...and... [dired buffers] do not auto-revert when information about a particular file changes (e.g. when the size changes) or when inserted subdirectories change. To be sure that all listed information is up to date, you have to manually revert using g, even if auto-reverting is enabled in the Dired buffer. source Well, uh, gee.... That doesn't sound like autorevert to me. What would it take to get auto-revert for dired to actually work? Even on (gasp) non-Unix operating systems. Could I just modify auto-revert-handler to call revert-buffer on dired buffers?

    Read the article

  • Upload using python script takes very long on one laptop as compared to another

    - by Engr Am
    I have a python 2.7 code which uses STORBINARY function for uploading files to an ftp server and RETRBINARY for downloading from this server. However, the issue is the upload is taking a very long time on three laptops from different brands as compared to a Dell laptop. The strange part is when I manually upload any file, it takes the same time on all the systems. The manual upload rate and upload rate with the python script is the same on the Dell Laptop. However, on every other brand of laptop (I have tried with IBM, Toshiba, Fujitsu-Siemens) the python script has a very low upload rate than the manual attempt. Also, on all these other laptops, the upload rate using the python script is the same (1Mbit/s) while the manual upload rate is approx. 8 Mbit/s. I have tried to vary the filesize for the upload to no avail. TCP Optimizer improved the download rate on all the systems but had no effect on the upload rate. Download rate using this script on all the systems is fine and same as the manual download rate. I have checked the server and it has more than 90% free space. The network connection is the same for all the laptops, and I try uploading only with one laptop at a time. All the laptops have almost the same system configurations, same operating system and approximately the same free drive space. If anything the Dell laptop is a little less in terms of processing power and RAM than 2 of the others, but I suppose this has no effect as I have checked many times to see how much was the CPU usage and network usage during these uploads and downloads, and I am sure that no other virus or program has been eating up my bandwidth. Here is the code ('ftp' and 'file_path' are inputs to the function): path,filename=os.path.split(file_path) filesize=os.path.getsize(file_path) deffilesize=(filesize/1024)/1024 f = open(file_path, "rb") upstart = time.clock() print ftp.storbinary("STOR "+filename, f) upende = time.clock()-upstart outname="Upload " f.close() return upende, deffilesize, outname

    Read the article

  • What does it mean for an OS to "execute within user processes"? Do any modern OS's use that approach

    - by Chris Cooper
    I have recently become interested in operating system, and a friend of mine lent me a book called Operating Systems: Internals and Design Principles (I have the third edition), published in 1998. It's been a very interesting book so far, but I have come to the part dealing with process control, and it's using UNIX System V as one of its examples of an operating system that executes within user processes. This concept has struck me as a little strange. First of all, does this mean that OS instructions and data are stored in each user of the processes? Probably not, because that would be an absurdly redundant scheme. But if not, then what does it mean to "execute within" a user process? Do any modern operating systems use this approach? It seems much more logical to have the operating system execute as its own process, or even independently of all processes, if you're short on memory. All the inter-accessiblilty of process data required for this layout seems to greatly complicate things. (But maybe that's just because I don't quite get the concept ;D) Here is what the book says: "Execution within User Processes: An alternative that is common with operation systems on smaller machines is to execute virtually all operating system software in the context of a user process. ... "

    Read the article

  • Integration transport choice (Oracle + SQL Server)

    - by lak-b
    We have several systems with Oracle (A) and SQL Server (B) databases on backend. I have to consolidate data from those systems into the new SQL Server database. Something like that: (A) =>|---------------| | some software | => SQL Server (B) =>|---------------| where some software is: transport (A and B systems located in the network) processing business logic (custom .NET code) Due to first point, I need some queue software or something similar (like MSMQ, Service Broker or something). In another hand, I can implement a web-service instead of queue. (A) =>|---------------|-------------| | queue/service | custom code | => SQL Server (B) =>|---------------|-------------| The question is: which queue/transport framework should I use with Oracle and SQL Server databases? It would be nice, if I can post messages to MSMQ in both Oracle and SQL Server stored procedures (can I?) It would be nice, if I can call a web-service in both Oracle and SQL Server stored procedures (can I?) It would be nice, if I can use something similar in both Oracle and SQL Server stored procedures (what exactly?) What software should I prefer to my requirements?

    Read the article

  • Is there a free, smale-scale, not web-based issue/bug tracking system?

    - by Doc Brown
    I know, there were posts before here on SO before concerning issue or bug tracking systems, like this one, but the given answers point either to commercial systems or web-based systems, which both seem to be oversized for our needs. What I am looking for is a non-commercial tool for a team of 3 to 4 developers, which can be used on an existing fileserver, without the need of installing additional server software like a C/S database or a web server. Some things I expect from such a system: allows to remember bugs (with a priority) and issues / ideas for new features (mostly without a priority) description of the issue, perhaps some additional remarks short info who entered the bug/issue entry one or more tags allowing us to group or filter the list Any suggestions? EDIT: I should have said that, but we are using MS Windows clients, Visual Studio development, Tortoise SVN (the latter works fine without a subversion server). And yes, I am strict on "no server software", since all server based solutions I have seen so far seem much to oversized/heavy weighted/too-much-effort-to-be-worth-it. In fact, if no one has a better idea, we are going to use a spreadsheet, but I can't believe there are no ready-made, light weight solutions.

    Read the article

  • Mgmt wants to re-title my position: Any help...? [closed]

    - by JohnFlyTN
    Management here wants to re-title my position, since I'm doing quite a bit of different work than was originally planned. They want my input. After a quick glance over my skill set and job duties, what would we need to describe this position as? I'll just list things I'm at least proficient in, I will not list things I have a passing knowledge of. About me : ~10 years software development. Languages : C, C++, Perl, PHP, C#, TCL, Unix shell scripting, SQL (TSQL, PLSQL) Systems : MS-Dos, Windows 3.1 to 7 for client, NT 4 to 2008 for server, OS/2, IBM MVS & z/OS, Linux ( multiple distros), AIX Current position: I do all sorts of in-house software. The range is single user apps to large systems spanning multiple OS's. One of the larger projects I've designed and coded is about 100k lines of C#, and a database where I have been the sole designer and maintainer. I have near total freedom to design as I see fit, restraints are usually budgetary. Skills required to replace me in my current role: Windows and Unix admin, Database design, .NET up to 3.5 (C#, ASP.NET), C++, Perl, good skills in designing large and efficient data processing systems. Given this small level of information what would you see this as being titled? (is more information required to render a decision?)

    Read the article

  • Storing "binary" data type in C program

    - by puchu
    I need to create a program that converts one number system to other number systems. I used itoa in Windows (Dev C++) and my only problem is that I do not know how to convert binary numbers to other number systems. All the other number systems conversion work accordingly. Does this involve something like storing the input to be converted using %? Here is a snippet of my work: case 2: { printf("\nEnter a binary number: "); scanf("%d", &num); itoa(num,buffer,8); printf("\nOctal %s",buffer); itoa(num,buffer,10); printf("\nDecimal %s",buffer); itoa(num,buffer,16); printf("\nHexadecimal %s \n",buffer); break; } For decimal I used %d, for octal I used %o and for hexadecimal I used %x. What could be the correct one for binary? Thanks for future answers!

    Read the article

  • Install McAfee ePO Agent via Group Policy

    - by neildeadman
    We have recently deployed ePO to our infrastructure, but the Agent will not deploy to all systems. We suspect this is a firewall issue as disabing Windows Firewall generally makes it work. We have decided to install the Agent via Group Policy to make sure all systems get the it and then ePO will deploy VirusScan on reboot. Following the manual I have run: Framepkg.exe /gengpomsi /SiteInfo=<sharedpath>\SiteList.xml /FrmInstLogLoc=<localtempDir> \<filename>.log and then created the GPO, but it never installs. Has anyone managed to get this working? Or maybe they can suggest a resolution for the failed installs of Agent deploy from ePO?

    Read the article

  • Partitioning recommendations for a Proxmox VM Server (OpenVZ)

    - by luison
    We are new to virtualization and we are planning to turn our online server into a virualized one, mainly for maintenance, backup and recovery improvements. Initially we would only have one real virtual system with load plus 1-3 copys for testing and recovering and maybe a small centralized syslog virtual machine. We would like, if possible the host machine to include an iptables plus rsync to back up to other machines and some other global security systems. Due to this and the offerings of our hosting supplier we are mainly considering Proxmox for its simplicity (we like the idea of its web admin panel) and as I also understand that the container approach of OpenVMZ systems may fit well resource wise with our setup. The base system comes with debian so we can personalise it to our requirements. Proxmox installations default installs an LVM partition for the VMs. Our doubts are with the fact of what would be the best partition structure for this considering that: we would like to have a mirror of the root partition we could boot from if required (our provider supports booting the system from another partition via control panel) we ideally would like to have a partition that could be shared among the VM systems. We still don't know if this is possible directly with OpenVMZ containers, otherwise we are considering doing this by sharing it via NFS on the host machine. we want to use the backup system available on the proxmox host administrator to programme VMs backups and then rsync it to another machine. With this based on a Linux Raid of aprox (750Gb) we are considering something like: ext3_1/ - (20Gb) ext3_2/bak_root - (20Gb) mostly unmounted, root partition sync LVM_1 /var/lib/vz - (390Gb) partition for virtual images LVM_2 /shared_data - (30Gb) LVM_3 /backups - (300Gb) where all backups would be allocated Our initial tests with Proxmox seem to have issues with snapshots backups like this, perhaps caused by the fact that they can not be done to another LVM partition (error: command 'lvcreate --size 1024M --snapshot --name vzsnap-ns204084.XXX.net-0 /dev/pve/LV' failed with exit code 5) in which case we might have to use a standart ext3 partition (but unsure if we can do this with the 4 primary partition limitations). Does this makes more or less sense? Would it be mad to for example write VMs /var/logs to a NFS mounted partition (on the host system)? Are their any other easier ways to mount host system partitions (or folders) to the VMs?

    Read the article

  • gparted installed on OpenSuse shows all file system types as greyed out except for hfs

    - by cmdematos.com
    I have had this problem before and fixed it, but I don't recall how I did it and I did not record it (sadness :( ) I have all the requisite commands installed on OpenSuse to support gparted's efforts in creating any of the supported file systems. I recall that the problem was that gparted could not find the commands, in any event all the file systems are greyed out in the context menu except for the legacy hfs partition which only supports < 2gb. Even extfs2-extfs4 are greyed out. How do I fix this?

    Read the article

  • gparted installed on OpenSuse shows all file system types as greyed out except for hfs

    - by cmdematos
    I have had this problem before and fixed it, but I don't recall how I did it and I did not record it (sadness :( ) I have all the requisite commands installed on OpenSuse to support gparted's efforts in creating any of the supported file systems. I recall that the problem was that gparted could not find the commands, in any event all the file systems are greyed out in the context menu except for the legacy hfs partition which only supports < 2gb. Even extfs2-extfs4 are greyed out. How do I fix this?

    Read the article

  • what is acceptable datastore latency on VMware ESXi host?

    - by BeowulfNode42
    Looking at our performance figures on our existing VMware ESXi 4.1 host at the Datastore/Real-time performance data Write Latency Avg 14 ms Max 41 ms Read Latency Avg 4.5 ms Max 12 ms People don't seem to be complaining too much about it being slow with those numbers. But how much higher could they get before people found it to be a problem? We are reviewing our head office systems due to running low on storage space, and are tossing up between buying a 2nd VM host with DAS or buying some sort of NAS for SMB file shares in the near term and maybe running VMs from it in the longer term. Currently we have just under 40 staff at head office with 9 smaller branches spread across the country. Head office is runnning in an MS RDS session based environment with linux ERP and mail systems. In total 22 VMs on a single host with DAS made from a RAID 10 made of 6x 15k SAS disks.

    Read the article

  • Immutable hard links on ext3/4?

    - by shovas
    In my research on file versioning at the fs level, snapshotting, and related ideas, I took a look at hard-links and exactly what they are and how they behave. Using rsync you can get a pretty slick poor man's snapshotting system up and running on file systems that don't natively support it. But, can you get immutable hard links on ext3/4 or any other file systems for that matter? My definition for immutable hard link is: A hard link which, when changed on one location, becomes a regular copy and no longer a hard link. I would like this because it would enable snapshotting use of the source data to link against instead of a copy of the data (in the case of the rsync snapshotting technique). I have gigabytes of data that can't be duplicated due to space restrictions but I have enough room if I can intelligently snapshot individual changed files with the rest linked to the source not a copy. Given all that, is there some other technique, feature or technology I'm really looking for?

    Read the article

  • Cacti dskIndex RHEL

    - by andyh_ky
    I'm attempting to use includeAllDisks in my snmpd.conf for RHEL 4 and RHEL 5 machines, but no data is being returned on the Cacti Data Query. snmpwalk isn't giving me any results. $ snmpwalk -v 2c -c public 172.19.4.140 .1.3.6.1.4.1.2021.9.1.1 UCD-SNMP-MIB::dskIndex = No Such Instance currently exists at this OID If I add disk / to snmpd.conf snmpwalk gives me the right results. $ snmpwalk -v 2c -c public 172.19.4.140 .1.3.6.1.4.1.2021.9.1.1 UCD-SNMP-MIB::dskIndex.1 = INTEGER: 1 I am wanting to deploy this to many systems using the same snmpd.conf (via Satellite). The disk configuration varies among systems and manually configuring snmpd.conf is not an optimal solution. Is there a way to get includeAllDisks to work? My snmpd.conf file: rocommunity public <cacti server IP> dontPrintUnits true includeAllDisks

    Read the article

  • Linux - Only first virtual interface can ping external gateway

    - by husvar
    I created 3 virtual interfaces with different mac addresses all linked to the same physical interface. I see that they successfully arp for the gw and they can ping (the request is coming in the packet capture in wireshark). However the ping utility does not count the responses. Does anyone knows the issue? I am running Ubuntu 14.04 in a VmWare. root@ubuntu:~# ip link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff inet6 fe80::20c:29ff:febc:fc8b/64 scope link valid_lft forever preferred_lft forever root@ubuntu:~# ip route sh root@ubuntu:~# ip link add link eth0 eth0.1 addr 00:00:00:00:00:11 type macvlan root@ubuntu:~# ip link add link eth0 eth0.2 addr 00:00:00:00:00:22 type macvlan root@ubuntu:~# ip link add link eth0 eth0.3 addr 00:00:00:00:00:33 type macvlan root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh root@ubuntu:~# dhclient -v eth0.1 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.1/00:00:00:00:00:11 Sending on LPF/eth0.1/00:00:00:00:00:11 Sending on Socket/fallback DHCPDISCOVER on eth0.1 to 255.255.255.255 port 67 interval 3 (xid=0x568eac05) DHCPREQUEST of 192.168.1.145 on eth0.1 to 255.255.255.255 port 67 (xid=0x568eac05) DHCPOFFER of 192.168.1.145 from 192.168.1.254 DHCPACK of 192.168.1.145 from 192.168.1.254 bound to 192.168.1.145 -- renewal in 1473 seconds. root@ubuntu:~# dhclient -v eth0.2 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.2/00:00:00:00:00:22 Sending on LPF/eth0.2/00:00:00:00:00:22 Sending on Socket/fallback DHCPDISCOVER on eth0.2 to 255.255.255.255 port 67 interval 3 (xid=0x21e3114e) DHCPREQUEST of 192.168.1.146 on eth0.2 to 255.255.255.255 port 67 (xid=0x21e3114e) DHCPOFFER of 192.168.1.146 from 192.168.1.254 DHCPACK of 192.168.1.146 from 192.168.1.254 bound to 192.168.1.146 -- renewal in 1366 seconds. root@ubuntu:~# dhclient -v eth0.3 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.3/00:00:00:00:00:33 Sending on LPF/eth0.3/00:00:00:00:00:33 Sending on Socket/fallback DHCPDISCOVER on eth0.3 to 255.255.255.255 port 67 interval 3 (xid=0x11dc5f03) DHCPREQUEST of 192.168.1.147 on eth0.3 to 255.255.255.255 port 67 (xid=0x11dc5f03) DHCPOFFER of 192.168.1.147 from 192.168.1.254 DHCPACK of 192.168.1.147 from 192.168.1.254 bound to 192.168.1.147 -- renewal in 1657 seconds. root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.145/24 brd 192.168.1.255 scope global eth0.1 valid_lft forever preferred_lft forever 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.146/24 brd 192.168.1.255 scope global eth0.2 valid_lft forever preferred_lft forever 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.147/24 brd 192.168.1.255 scope global eth0.3 valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh default via 192.168.1.254 dev eth0.1 192.168.1.0/24 dev eth0.1 proto kernel scope link src 192.168.1.145 192.168.1.0/24 dev eth0.2 proto kernel scope link src 192.168.1.146 192.168.1.0/24 dev eth0.3 proto kernel scope link src 192.168.1.147 root@ubuntu:~# arping -c 5 -I eth0.1 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.145 eth0.1 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 6.936ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.986ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 0.654ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.137ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.426ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.2 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.146 eth0.2 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.665ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.753ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 16.500ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.287ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 32.438ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.3 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.147 eth0.3 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 4.422ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.429ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.321ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 40.423ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.268ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# tcpdump -n -i eth0.1 -v & [1] 5317 root@ubuntu:~# ping -c5 -q -I eth0.1 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.145 eth0.1: 56(84) bytes of data. tcpdump: listening on eth0.1, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:37.612558 IP (tos 0x0, ttl 64, id 2595, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 2, length 64 13:18:37.618864 IP (tos 0x68, ttl 64, id 14493, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 2, length 64 13:18:37.743650 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:38.134997 IP (tos 0x0, ttl 128, id 23547, offset 0, flags [none], proto UDP (17), length 229) 192.168.1.86.138 > 192.168.1.255.138: NBT UDP PACKET(138) 13:18:38.614580 IP (tos 0x0, ttl 64, id 2596, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 3, length 64 13:18:38.793479 IP (tos 0x68, ttl 64, id 14495, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 3, length 64 13:18:39.151282 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:39.615612 IP (tos 0x0, ttl 64, id 2597, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 4, length 64 13:18:39.746981 IP (tos 0x68, ttl 64, id 14496, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 4, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4008ms rtt min/avg/max/mdev = 2.793/67.810/178.934/73.108 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 12 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.1 -v root@ubuntu:~# tcpdump -n -i eth0.2 -v & [1] 5320 root@ubuntu:~# ping -c5 -q -I eth0.2 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.146 eth0.2: 56(84) bytes of data. tcpdump: listening on eth0.2, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:41.536874 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.1.254 is-at 58:98:35:57:a0:70, length 46 13:18:41.536933 IP (tos 0x0, ttl 64, id 2599, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 1, length 64 13:18:41.539255 IP (tos 0x68, ttl 64, id 14507, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 1, length 64 13:18:42.127715 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:42.511725 IP (tos 0x0, ttl 64, id 2600, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 2, length 64 13:18:42.514385 IP (tos 0x68, ttl 64, id 14527, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 2, length 64 13:18:42.743856 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:43.511727 IP (tos 0x0, ttl 64, id 2601, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 3, length 64 13:18:43.513768 IP (tos 0x68, ttl 64, id 14528, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 3, length 64 13:18:43.637598 IP (tos 0x0, ttl 128, id 23551, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.641185 IP (tos 0x0, ttl 128, id 23552, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 192.168.1.255.17500: UDP, length 197 13:18:43.641201 IP (tos 0x0, ttl 128, id 23553, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.743890 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:44.510758 IP (tos 0x0, ttl 64, id 2602, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 4, length 64 13:18:44.512892 IP (tos 0x68, ttl 64, id 14538, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 4, length 64 13:18:45.510794 IP (tos 0x0, ttl 64, id 2603, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 5, length 64 13:18:45.519701 IP (tos 0x68, ttl 64, id 14539, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 5, length 64 13:18:49.287554 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:50.013463 IP (tos 0x0, ttl 255, id 50737, offset 0, flags [DF], proto UDP (17), length 73) 192.168.1.146.5353 > 224.0.0.251.5353: 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:50.218874 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:51.129961 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:52.197074 IP6 (hlim 255, next-header UDP (17) payload length: 53) 2001:818:d812:da00:200:ff:fe00:22.5353 > ff02::fb.5353: [udp sum ok] 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:54.128240 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4000ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 13:18:54.657731 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:54.743174 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 25 packets captured 26 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.2 -v root@ubuntu:~# tcpdump -n -i eth0.3 icmp & [1] 5324 root@ubuntu:~# ping -c5 -q -I eth0.3 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.147 eth0.3: 56(84) bytes of data. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0.3, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:56.373434 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 1, length 64 13:18:57.372116 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 2, length 64 13:18:57.381263 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 2, length 64 13:18:58.371141 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 3, length 64 13:18:58.373275 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 3, length 64 13:18:59.371165 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 4, length 64 13:18:59.373259 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 4, length 64 13:19:00.371211 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 5, length 64 13:19:00.373278 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 5, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 1 received, 80% packet loss, time 4001ms rtt min/avg/max/mdev = 13.666/13.666/13.666/0.000 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 10 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.3 icmp root@ubuntu:~# arp -n Address HWtype HWaddress Flags Mask Iface 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.1 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.2 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.3

    Read the article

< Previous Page | 92 93 94 95 96 97 98 99 100 101 102 103  | Next Page >