Search Results

Search found 8893 results on 356 pages for 'stored'.

Page 97/356 | < Previous Page | 93 94 95 96 97 98 99 100 101 102 103 104  | Next Page >

  • Using the ASP.NET Membership API with SQL Server / SQL Azure: The new &ldquo;System.Web.Providers&rdquo; namespace

    - by Harish Ranganathan
    The Membership API came in .NET 2.0 and was a huge enhancement in building web applications with users, managing roles, permissions etc.,  The Membership API by default uses SQL Express and until Visual Studio 2008, it was available only through the ASP.NET Configuration manager screen (Website – ASP.NET Configuration) or (Project – ASP.NET Configuration) and for every application, one has to manually visit this place to start using the Security and other settings.  Upon doing that the default SQL Express database aspnet.mdf is created to store all the user profiles. Starting Visual Studio 2010 and .NET 4.0, the Default Website template includes the Membership API controls as a part of the page i.e. When you create a “File – New – ASP.NET Web Application” or an “ASP.NET MVC Application”, by default the Login/Register controls are enabled in the MasterPage and they are termed under “ApplicationServices” setting in the web.config file with connection string pointed to the SQL Express database. In fact, when you run the default website and click on “Logon” –> “Register”, and enter the details for registration and click “Register”, that is the time the aspnet.mdf file is created with the tables for Users, Roles, UsersInRoles, Profile etc., Now, this uses the default SQL Express database within the App_Data folder.  If you want to move your Membership information to some other database such as SQL Server, SQL CE or SQL Azure, you need to manually run the aspnet_regsql command and specify the destination database name. This would create all the Tables, Procedures and Views required to handle the Membership information.  Thereafter you can change the connection string for “ApplicationServices” to point to the database where you had run all the scripts. Now, enter “System.Web.Providers” Alpha. This is available as a part of the NuGet package library.  Scott Hanselman has a neat post describing the steps required to get it up and running as well as doing the basic changes  at http://www.hanselman.com/blog/IntroducingSystemWebProvidersASPNETUniversalProvidersForSessionMembershipRolesAndUserProfileOnSQLCompactAndSQLAzure.aspx Pretty much, it covers what the new System.Web.Providers do. One thing I wanted to clarify is that, the new “System.Web.Providers” add a lot of new settings which are also marked as the defaults, in the web.config.  Even now, they use SQL Express as the default database.  But, if you change the connection string for “DefaultConnection” under connectionStrings to point to your SQL Server or SQL Azure, Membership API would now be able to create all the tables, procedures and views at the destination specified (i.e. SQL Server or SQL Azure). In my case, I modified the DefaultConneciton to point to my SQL Azure database.  Next, I hit F5 to run the application.  The default view loads.  I clicked on “LogOn” and then “Register” since I knew there are no tables/users as of then.  One thing to note is that, I had put “NewDB” as the database name in the connection string that points to SQL Azure.  NewDB wasn’t existing and I would assume it would be created before the tables/views/procedures for Membership are created. Once I clicked on the “Register” to register my first username, it took a while and then registered as well as logged in me in.  Also, I went to the SQL Azure Management Portal and verified that there exists “NewDB” which has just been created I could also connect to the SQL Azure database “NewDB” from Management Studio and found that the tables now don’t have the aspnet_ prefix.  The tables were simply Users, Roles, UsersInRoles, Profiles etc., So, with a few clicks and configuration change, I could actually set up the user base for my application on SQL Azure and even make the SessionState, Roles, Profiles being stored in SQL Azure database. The new System.Web.Proivders also required MARS (MultipleActiveResultSets=true) setting since it uses Entity Framework for the DAL operations.  Also, the “Project – ASP.NET Configuration” screen can be used to further create/manage users/roles etc., although the data is stored on the remote database. With that, a long pending request from the community to have the ability to configure and use remote databases for Application users management without having to run the scripts from SQL Express is fulfilled. Cheers !!!

    Read the article

  • Delegation of Solaris Zone Administration

    - by darrenm
    In Solaris 11 'Zone Delegation' is a built in feature. The Zones system now uses finegrained RBAC authorisations to allow delegation of management of distinct zones, rather than all zones which is what the 'Zone Management' RBAC profile did in Solaris 10.The data for this can be stored with the Zone or you could also create RBAC profiles (that can even be stored in NIS or LDAP) for granting access to specific lists of Zones to administrators.For example lets say we have zones named zoneA through zoneF and we have three admins alice, bob, carl.  We want to grant a subset of the zone management to each of them.We could do that either by adding the admin resource to the appropriate zones via zonecfg(1M) or we could do something like this with RBAC data directly: First lets look at an example of storing the data with the zone. # zonecfg -z zoneA zonecfg:zoneA> add admin zonecfg:zoneA> set user=alice zonecfg:zoneA> set auths=manage zonecfg:zoneA> end zonecfg:zoneA> commit zonecfg:zoneA> exit Now lets look at the alternate method of storing this directly in the RBAC database, but we will show all our admins and zones for this example: # usermod -P +Zone Management -A +solaris.zone.manage/zoneA alice # usermod -A +solaris.zone.login/zoneB alice # usermod -P +Zone Management-A +solaris.zone.manage/zoneB bob # usermod -A +solaris.zone.manage/zoneC bob # usermod -P +Zone Management-A +solaris.zone.manage/zoneC carl # usermod -A +solaris.zone.manage/zoneD carl # usermod -A +solaris.zone.manage/zoneE carl # usermod -A +solaris.zone.manage/zoneF carl In the above alice can only manage zoneA, bob can manage zoneB and zoneC and carl can manage zoneC through zoneF.  The user alice can also login on the console to zoneB but she can't do the operations that require the solaris.zone.manage authorisation on it.Or if you have a large number of zones and/or admins or you just want to provide a layer of abstraction you can collect the authorisation lists into an RBAC profile and grant that to the admins, for example lets great an RBAC profile for the things that alice and carl can do. # profiles -p 'Zone Group 1' profiles:Zone Group 1> set desc="Zone Group 1" profiles:Zone Group 1> add profile="Zone Management" profiles:Zone Group 1> add auths=solaris.zone.manage/zoneA profiles:Zone Group 1> add auths=solaris.zone.login/zoneB profiles:Zone Group 1> commit profiles:Zone Group 1> exit # profiles -p 'Zone Group 3' profiles:Zone Group 1> set desc="Zone Group 3" profiles:Zone Group 1> add profile="Zone Management" profiles:Zone Group 1> add auths=solaris.zone.manage/zoneD profiles:Zone Group 1> add auths=solaris.zone.manage/zoneE profiles:Zone Group 1> add auths=solaris.zone.manage/zoneF profiles:Zone Group 1> commit profiles:Zone Group 1> exit Now instead of granting carl  and aliace the 'Zone Management' profile and the authorisations directly we can just give them the appropriate profile. # usermod -P +'Zone Group 3' carl # usermod -P +'Zone Group 1' alice If we wanted to store the profile data and the profiles granted to the users in LDAP just add '-S ldap' to the profiles and usermod commands. For a documentation overview see the description of the "admin" resource in zonecfg(1M), profiles(1) and usermod(1M)

    Read the article

  • Using the RSSBus Salesforce Excel Add-In From Excel Macros (VBA)

    - by dataintegration
    The RSSBus Salesforce Excel Add-In makes it easy to retrieve and update data from Salesforce from within Microsoft Excel. In addition to the built-in wizards that make data manipulation possible without code, the full functionality of the RSSBus Excel Add-Ins is available programmatically with Excel Macros (VBA) and Excel Functions. This article shows how to write an Excel macro that can be used to perform bulk inserts into Salesforce. Although this article uses the Salesforce Excel Add-In as an example, the same process can be applied to any of the Excel Add-Ins available on our website. Step 1: Download and install the RSSBus Excel Add-In available on our website. Step 2: Open Excel and create place holder cells for the connection details that are needed from the macro. In this article, a spreadsheet will be created for batch inserts, and these cells will store the connection details, and will be used to report the job Id, the batch Id, and the batch status. Step 3: Switch to the Developer tab in Excel. Add a new button on the spreadsheet, and create a new macro associated with it. This macro will contain the code needed to insert a batch of rows into Salesforce. Step 4: Add a reference to the Excel Add-In by selecting Tools --> References --> RSSBus Excel Add-In. The macro functions of the Excel Add-In will be available once the reference has been added. The following code shows how to call a Stored Procedure. In this example, a job is created to insert Leads by calling the CreateJob stored procedure. CreateJob returns a jobId that can be used to upload a large number of Leads in one transaction. Note the use of cells B1, B2, B3, and B4 that were created in Step 2 to read the connection settings from the Excel SpreadSheet and to write out the status of the procedure. methodName = "CreateJob" module.SetProviderName ("Salesforce") nameArray = Array("ObjectName", "Action", "ConcurrencyMode") valueArray = Array("Lead", "insert", "Serial") user = Range("B1").value pass = Range("B2").value atoken = Range("B3").value If (Not user = "" And Not pass = "" And Not atoken = "") Then module.SetConnectionString ("User=" + user + ";Password=" + pass + ";Access Token=" + atoken + ";") If module.CallSP(methodName, nameArray, valueArray) Then Dim ColumnCount As Integer ColumnCount = module.GetColumnCount Dim idIndex As Integer For Count = 0 To ColumnCount - 1 Dim colName As String colName = module.GetColumnName(Count) If module.GetColumnName(Count) = "id" Then idIndex = Count End If Next While (Not module.EOF) Range("B4").value = module.GetValue(idIndex) module.MoveNext Wend Else MsgBox "The CreateJob query failed." End If Exit Sub Else MsgBox "Please specify the connection details." Exit Sub End If Error: MsgBox "ERROR: " & Err.Description Step 5: Add the code to your macro. If you use the code above, you can check the results at Salesforce.com. They can be seen at Administration Setup -> Monitoring -> Bulk Data Load Jobs. Download the attached sample file for a more complete demo. Distributing an Excel File With Macros An Excel file with macros is saved using the .xlms extension. The code for the macro remains in the Excel file, and you can distribute your Excel file to any machine where the RSSBus Salesforce Excel Add-In is already installed. Macro Sample File Please download the fully functional sample excel file that includes the code referenced here. You will also need the RSSBus Excel Add-In to make the connection. You can download a free trial here. Note: You may get an error message stating: "Can't find project or library." in Excel 2007, since this example is made using Excel 2010. To resolve this, navigate to Tools -> References and uncheck the "MISSING: RSSBus Excel Add-In", then scroll down and check the "RSSBus Excel Add-In" listed below it.

    Read the article

  • Silverlight Cream for March 08, 2011 -- #1056

    - by Dave Campbell
    In this Issue: Joost van Schaik, Manas Patnaik, Kevin Hoffman, Jesse Liberty, Deborah Kurata, Dhananjay Kumar, Dennis Delimarsky, Samuel Jack, Peter Kuhn, WindowsPhoneGeek, and Jfo. Above the Fold: Silverlight: "How I let the trees grow" Peter Kuhn WP7: "Simple Windows Phone 7 / Silverlight drag/flick behavior" Joost van Schaik Shoutouts: SilverlightShow has their top 5 from last week posted, plus the ECOContest is ready to be voted on: SilverlightShow for Feb 28 - March 06, 2011 Drew DeVault is a young man involved with the Microsoft Student Insiders. He gave a WP7 presentation at RMTT and has posted his material: Post-Session: Windows Phone 7 @ RMTT Rui Marinho has an app in the ECO Contest called Forest Findr. is based on the BIng Map Control for silverlight and Sql Spatial data, and helps you find Forests and get geolocated pictures and wikipedia information, and has a post up with a bunch of info on it here: Forest Findr. my entry on the SilverlightShow EcoContest From SilverlightCream.com: Simple Windows Phone 7 / Silverlight drag/flick behavior Joost van Schaik has a behavior that makes *anything* draggable and 'flickable' in WP7 ... read the intro, scroll to the bottom to watch the demo, and then grab up the code... cool stuff, Joost! Data Aggregation Using Presentation Model in RIA and Silverlight 4 Manas Patnaik sent me a link to his blog, and it appears he's got lots of Silverlight goodness out there so you'll be hearing more about him. This first post is on the Presentation Model in RIA and Silverlight 4... good discussion, diagrams and code... good job, Manas! WP7 for iPhone and Android Developers - Advanced UI Kevin Hoffman has part 3 of an ambitious 12-part tutorial series up on WP7 development ... this go-around is concentrating on Advanced UI - Panorama/Pivot controls, DataBinding, ObservableCollections, and Converters... whew! Sterling DB on top of Isolated Storage – 2 Jesse Liberty has part 2 of his Sterling series up... this time setting up the database in App.xaml so it can be used for dealing with tombstoning. Silverlight Charting: Formatting the Tick Marks Deborah Kurata's next chart tutorial is all about showing you how to continue to dress up your charts.. this time by formatting the tick marks... if you don't know what that is... check out the first image in the post. Stored Procedure in WCF Data Service Dhananjay Kumar has a very nice tutorial up on using a stored proc with WCF Data Services... I happen to know someone working on just that at this time. If you have this in mind, here's a step-by-step guide to getting it done. Windows Phone 7 – Episode 5 – Pages Dennis Delimarsky has part 5 of his WP7 tutorial series up and is discussing Pages in this 17 minute video. Unpacking Simon Squared: My mini framework-independent animation library Samuel Jack has not only Open-Sourced the WP7 game he built and blogged about, but he's now explaining some of the structure of the game in posts such as this one about the animation library he wrote that his game is built on. How I let the trees grow Peter Kuhn shares with us the code he used for the tree animation in his ECO Contest entry. There's a lot to learn in this post about performance ... the fully-animated tree has about 20K elements... 5K branches and 20K leaves... check it out. WP7 ToastPrompt in depth WindowsPhoneGeek takes a deep dive into the ToastPrompt control in the Coding4fun Toolkit... everything you need to completely use the control including sample code. Beware the loaded event Jfo talks about another frustration point she had with WP7 development, and that is around the use of the loaded event... read these tips from someone that's been there. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Key-Value Pair Databases and Document Databases – Day 13 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Relational Database and NoSQL database in the Big Data Story. In this article we will understand the role of Key-Value Pair Databases and Document Databases Supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (Yesterday’s post) NoSQL Databases (Yesterday’s post) Key-Value Pair Databases (This post) Document Databases (This post) Columnar Databases (Tomorrow’s post) Graph Databases (Tomorrow’s post) Spatial Databases (Tomorrow’s post) Key Value Pair Databases Key Value Pair Databases are also known as KVP databases. A key is a field name and attribute, an identifier. The content of that field is its value, the data that is being identified and stored. They have a very simple implementation of NoSQL database concepts. They do not have schema hence they are very flexible as well as scalable. The disadvantages of Key Value Pair (KVP) database are that they do not follow ACID (Atomicity, Consistency, Isolation, Durability) properties. Additionally, it will require data architects to plan for data placement, replication as well as high availability. In KVP databases the data is stored as strings. Here is a simple example of how Key Value Database will look like: Key Value Name Pinal Dave Color Blue Twitter @pinaldave Name Nupur Dave Movie The Hero As the number of users grow in Key Value Pair databases it starts getting difficult to manage the entire database. As there is no specific schema or rules associated with the database, there are chances that database grows exponentially as well. It is very crucial to select the right Key Value Pair Database which offers an additional set of tools to manage the data and provides finer control over various business aspects of the same. Riak Rick is one of the most popular Key Value Database. It is known for its scalability and performance in high volume and velocity database. Additionally, it implements a mechanism for collection key and values which further helps to build manageable system. We will further discuss Riak in future blog posts. Key Value Databases are a good choice for social media, communities, caching layers for connecting other databases. In simpler words, whenever we required flexibility of the data storage keeping scalability in mind – KVP databases are good options to consider. Document Database There are two different kinds of document databases. 1) Full document Content (web pages, word docs etc) and 2) Storing Document Components for storage. The second types of the document database we are talking about over here. They use Javascript Object Notation (JSON) and Binary JSON for the structure of the documents. JSON is very easy to understand language and it is very easy to write for applications. There are two major structures of JSON used for Document Database – 1) Name Value Pairs and 2) Ordered List. MongoDB and CouchDB are two of the most popular Open Source NonRelational Document Database. MongoDB MongoDB databases are called collections. Each collection is build of documents and each document is composed of fields. MongoDB collections can be indexed for optimal performance. MongoDB ecosystem is highly available, supports query services as well as MapReduce. It is often used in high volume content management system. CouchDB CouchDB databases are composed of documents which consists fields and attachments (known as description). It supports ACID properties. The main attraction points of CouchDB are that it will continue to operate even though network connectivity is sketchy. Due to this nature CouchDB prefers local data storage. Document Database is a good choice of the database when users have to generate dynamic reports from elements which are changing very frequently. A good example of document usages is in real time analytics in social networking or content management system. Tomorrow In tomorrow’s blog post we will discuss about various other Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Anatomy of a .NET Assembly - Signature encodings

    - by Simon Cooper
    If you've just joined this series, I highly recommend you read the previous posts in this series, starting here, or at least these posts, covering the CLR metadata tables. Before we look at custom attribute encoding, we first need to have a brief look at how signatures are encoded in an assembly in general. Signature types There are several types of signatures in an assembly, all of which share a common base representation, and are all stored as binary blobs in the #Blob heap, referenced by an offset from various metadata tables. The types of signatures are: Method definition and method reference signatures. Field signatures Property signatures Method local variables. These are referenced from the StandAloneSig table, which is then referenced by method body headers. Generic type specifications. These represent a particular instantiation of a generic type. Generic method specifications. Similarly, these represent a particular instantiation of a generic method. All these signatures share the same underlying mechanism to represent a type Representing a type All metadata signatures are based around the ELEMENT_TYPE structure. This assigns a number to each 'built-in' type in the framework; for example, Uint16 is 0x07, String is 0x0e, and Object is 0x1c. Byte codes are also used to indicate SzArrays, multi-dimensional arrays, custom types, and generic type and method variables. However, these require some further information. Firstly, custom types (ie not one of the built-in types). These require you to specify the 4-byte TypeDefOrRef coded token after the CLASS (0x12) or VALUETYPE (0x11) element type. This 4-byte value is stored in a compressed format before being written out to disk (for more excruciating details, you can refer to the CLI specification). SzArrays simply have the array item type after the SZARRAY byte (0x1d). Multidimensional arrays follow the ARRAY element type with a series of compressed integers indicating the number of dimensions, and the size and lower bound of each dimension. Generic variables are simply followed by the index of the generic variable they refer to. There are other additions as well, for example, a specific byte value indicates a method parameter passed by reference (BYREF), and other values indicating custom modifiers. Some examples... To demonstrate, here's a few examples and what the resulting blobs in the #Blob heap will look like. Each name in capitals corresponds to a particular byte value in the ELEMENT_TYPE or CALLCONV structure, and coded tokens to custom types are represented by the type name in curly brackets. A simple field: int intField; FIELD I4 A field of an array of a generic type parameter (assuming T is the first generic parameter of the containing type): T[] genArrayField FIELD SZARRAY VAR 0 An instance method signature (note how the number of parameters does not include the return type): instance string MyMethod(MyType, int&, bool[][]); HASTHIS DEFAULT 3 STRING CLASS {MyType} BYREF I4 SZARRAY SZARRAY BOOLEAN A generic type instantiation: MyGenericType<MyType, MyStruct> GENERICINST CLASS {MyGenericType} 2 CLASS {MyType} VALUETYPE {MyStruct} For more complicated examples, in the following C# type declaration: GenericType<T> : GenericBaseType<object[], T, GenericType<T>> { ... } the Extends field of the TypeDef for GenericType will point to a TypeSpec with the following blob: GENERICINST CLASS {GenericBaseType} 3 SZARRAY OBJECT VAR 0 GENERICINST CLASS {GenericType} 1 VAR 0 And a static generic method signature (generic parameters on types are referenced using VAR, generic parameters on methods using MVAR): TResult[] GenericMethod<TInput, TResult>( TInput, System.Converter<TInput, TOutput>); GENERIC 2 2 SZARRAY MVAR 1 MVAR 0 GENERICINST CLASS {System.Converter} 2 MVAR 0 MVAR 1 As you can see, complicated signatures are recursively built up out of quite simple building blocks to represent all the possible variations in a .NET assembly. Now we've looked at the basics of normal method signatures, in my next post I'll look at custom attribute application signatures, and how they are different to normal signatures.

    Read the article

  • Enterprise Integration: Can Companies Afford It?

    - by Ralph Wheaton
    Each year, my company holds a global sales conference where employees and partners from around the world some together to collaborate, share knowledge and ideas and learn about future plans.  As a member of the professional services division, several of us had been asked to make a presentation, an elevator pitch in 3 minutes or less that relates to a success we have worked on or directly relates to our tag (that is, our primary technology focus).  Mine happens to be Enterprise Integration as it relates Business Intelligence.  I found it rather difficult to present that pitch in a short amount of time and had to pare it down.  At any rate, in just a little over 3 minutes, this is the presentation I submitted.  Here is a link to the full presentation video in WMV format.   Many companies today subscribe to a buy versus build mentality in an attempt to drive down costs and improve time to implementation. Sometimes this makes sense, especially as it relates to specialized software or software that performs a small number of tasks extremely well. However, if not carefully considered or planned out, this oftentimes leads to multiple disparate systems with silos of data or multiple versions of the same data. For instance, client data (contact information, addresses, phone numbers, opportunities, sales) stored in your CRM system may not play well with Accounts Receivables. Employee data may be stored across multiple systems such as HR, Time Entry and Payroll. Other data (such as member data) may not originate internally, but be provided by multiple outside sources in multiple formats. And to top it all off, some data may have to be manually entered into multiple systems to keep it all synchronized. When left to grow out of control like this, overall performance is lacking, stability is questionable and maintenance is frequent and costly. Worse yet, in many cases, this topology, this hodgepodge of data creates a reporting nightmare. Decision makers are forced to try to put together pieces of the puzzle attempting to find the information they need, wading through multiple systems to find what they think is the single version of the truth. More often than not, they find they are missing pieces, pieces that may be crucial to growing the business rather than closing the business. across applications. Master data owners are defined to establish single sources of data (such as the CRM system owns client data). Other systems subscribe to the master data and changes are replicated to subscribers as they are made. This can be one way (no changes are allowed on the subscriber systems) or bi-directional. But at all times, the master data owner is current or up to date. And all data, whether internal or external, use the same processes and methods to move data from one place to another, leveraging the same validations, lookups and transformations enterprise wide, eliminating inconsistencies and siloed data. Once implemented, an enterprise integration solution improves performance and stability by reducing the number of moving parts and eliminating inconsistent data. Overall maintenance costs are mitigated by reducing touch points or the number of places that require modification when a business rule is changed or another data element is added. Most importantly, however, now decision makers can easily extract and piece together the information they need to grow their business, improve customer satisfaction and so on. So, in implementing an enterprise integration solution, companies can position themselves for the future, allowing for easy transition to data marts, data warehousing and, ultimately, business intelligence. Along this path, companies can achieve growth in size, intelligence and complexity. Truly, the question is not can companies afford to implement an enterprise integration solution, but can they afford not to.   Ralph Wheaton Microsoft Certified Technology Specialist Microsoft Certified Professional Developer Microsoft VTS-P BizTalk, .Net

    Read the article

  • Blueprints for Oracle NoSQL Database

    - by dan.mcclary
    I think that some of the most interesting analytic problems are graph problems.  I'm always interested in new ways to store and access graphs.  As such, I really like the work being done by Tinkerpop to create Open Source Software to make property graphs more accessible over a wide variety of datastores.  Since key-value stores like Oracle NoSQL Database are well-suited to storing property graphs, I decided to extend the Blueprints API to work with it.  Below I'll discuss some of the implementation details, but you can check out the finished product here: http://github.com/dwmclary/blueprints-oracle-nosqldb.  What's in a Property Graph?  In the most general sense, a graph is just a collection of vertices and edges.  Vertices and edges can have properties: weights, names, or any number of other traits.  In an undirected graph, edges connect vertices without direction.  A directed graph specifies that all edges have a head and a tail --- a direction.  A multi-graph allows multiple edges to connect two vertices.  A "property graph" encompasses all of these traits. Key-Value Stores for Property Graphs Key-Value stores like Oracle NoSQL Database tend to be ideal for implementing property graphs.  First, if any vertex or edge can have any number of traits, we can treat it as a hash map.  For example: Vertex["name"] = "Mary" Vertex["age"] = 28 Vertex["ID"] = 12345  and so on.  This is a natural key-value relationship: the key "name" maps to the value "Mary."  Moreover if we maintain two hash maps, one for vertex objects and one for edge objects, we've essentially captured the graph.  As such, any scalable key-value store is fertile ground for planting graphs. Oracle NoSQL Database as a Scalable Graph Database While Oracle NoSQL Database offers useful features like tunable consistency, what lends it to storing property graphs is the storage guarantees around its key structure.  Keys in Oracle NoSQL Database are divided into two parts: a major key and a minor key.  The storage guarantee is simple.  Major keys will be distributed across storage nodes, which could encompass a large number of servers.  However, all minor keys which are children of a given major key are guaranteed to be stored on the same storage node.  For example, the vertices: /Personnel/Vertex/1  and /Personnel/Vertex/2 May be stored on different servers, but /Personnel/Vertex/1-/name and  /Personnel/Vertex/1-/age will always be on the same server.  This means that we can structure our graph database such that retrieving all the properties for a vertex or edge requires I/O from only a single storage node.  Moreover, Oracle NoSQL Database provides a storeIterator which allows us to store a huge number of vertices and edges in a scalable fashion.  By storing the vertices and edges as major keys, we guarantee that they are distributed evenly across all storage nodes.  At the same time we can use a partial major key to iterate over all the vertices or edges (e.g. we search over /Personnel/Vertex to iterate over all vertices). Fork It! The Blueprints API and Oracle NoSQL Database present a great way to get started using a scalable key-value database to store and access graph data.  However, a graph store isn't useful without a good graph to work on.  I encourage you to fork or pull the repository, store some data, and try using Gremlin or any other language to explore.

    Read the article

  • Weird SSIS Configuration Error

    - by Christopher House
    I ran into an interesting SSIS issue that I thought I'd share in hopes that it may save someone from bruising their head after repeatedly banging it on the desk like I did.  I was trying to setup what I believe is referred to as "indirect configuration" in SSIS.  This is where you store your configuration in some repository like a database or a file, then store the location of that repository in an environment variable and use that to configure the connection to your configuration repository.  In my specific situation, I was using a SQL database.  I had this all working, but for reasons I'll not bore you with, I had to move my SSIS development to a new VM last week.  When I got my new VM, I set about creating a new package.  I finished up development on the package and started setting up configuration.  I created an OLE DB connection that pointed to my configuration table then went through the configuration wizard to have the connection string for this connection set through my environment variable.  I then went through the wizard to set another property through a value stored in the configuration table.  When I got to the point where you select the connection, my connection wasn't in the list: As you can see in the screen capture above, the ConfigurationDb connection isn't in the list of available SQL connections in the configuration wizard.  Strange.  I canceled out of the wizard, went to the properties for ConfigurationDb, tested the connection and it was successful.  I went back to the wizard again and this time ConfigurationDb was there.  I completed the wizard then went to test my package.  Unfortunately the package wouldn't run, I got the following error: Unfortunately, googling for this error code didn't help much as none of the results appears related to package configuration.  I did notice that when I went back through the package configuration and tried to edit a previously saved config entry,  I was getting the following error: I checked the connection string I had stored in my environment variable and noticed that indeed, it did not have a provider name.  I didn't recall having included one on my previous VM, but I figured I'd include it just to see what happened.  That made no difference at all.  After a day and a half of trying to figure out what the problem was, I'm pleased to report that through extensive trial and error, I have resolved the error. As it turns out, the person who setup this new VM for me named the server SQLSERVER2008.  This meant my configuration connection string was: Initial Catalog=SSISConfigDb;Data Source=SQLSERVER2008;Integrated Security=SSPI; Just for the heck of it, I tried changing it to: Initial Catalog=SSISConfigDb;Data Source=(local);Integrated Security=SSPI; That did the trick!  As soon as I restarted BIDS, I was able to run the package with no errors at all.  Crazy.  So, the moral of the story is, don't name your server SQLSERVER2008 if you want SSIS configuration to work when using SQL as your config store.

    Read the article

  • Build-time dependency resolving coming to Entity Framework. Now, how about those BI tools too?

    - by jamiet
    Three months ago I wrote a blog post entitled Some thoughts on Visual Studio database references and how they should be used for SQL Server BI where I shared some thoughts on a feature available to database developers in Visual Studio 2010 that I would love to see added to SQL Server Integration Services (SSIS), Analysis Services (SSAS) and Reporting Services (SSRS). In there I said: Over the past few weeks I have been making heavy use of the Database tools in Visual Studio 2010 and one of the features that has most impressed me has been database references.   Database references allow you to have stored procedures in your database project that refer to objects (tables, views, stored procedures etc…) that exist in other database projects and hence when you build your database project it is able to resolve those references.   It occurred to me that similar functionality would be incredibly useful for SQL Server Integration Services(SSIS), Analysis Services (SSAS) & Reporting Services (SSRS) projects. After all reports, packages and data source views are rife with references to database objects – why shouldn’t we be able to have design-time dependency checking in our BI projects the same way that database and .Net developers do? In that blog post I shared links to three Connect submissions where I requested this feature be added to SSIS, SSAS & SSRS. In addition I also submitted a request that the feature be extended to .Net projects so that any reference to a database object in a .Net assembly can be resolved at build time. That Connect submission is at [Entity FX] Use database references to constrain the EDM and overnight it received this comment from Microsoft: We have been working on this feature for a while and and will be available soon This is really good news - it improves the Microsoft developer ecosystem by ensuring invalid references to database references get caught at build time (ideally as part of a Continuous integration build) rather than run time. [Hopefully it might nip this code-first nonsense in the bud too (Ooo...way to incite flame comments :) ) ]. If you want to see this feature in action then check out a video from Teched Europe last month entitled SQL Server Developer Tools Code-named "Juneau" where it is demo'd by Lance Delano and Tim Laverty.   The point of this blog post though is not just to draw attention to this forthcoming feature for .Net developers, it is to ask you to petition Microsoft to get this feature added to SSIS/SSAS/SSRS too. After all, we already know (from the video above) that the feature is coming to this new code-name Juneau development environment plus we also know that Juneau will be the development environment for SSIS/SSAS/SSRS as well - is it really much of a stretch to expect the BI tools to have access to this great feature too? I don't think so and if you agree with me then I urge you to vote and add a comment to the Connection submissions that are requesting this feature. They are at: [SSAS] Declare Object Dependancies [SSRS] Declare Object Dependancies [SSIS] Declare Object Dependancies (Update, Apparently someone at Microsoft has deemed it necassary to set this to private and I am not able to change it back even though I submitted it. You can still vote on the other two though.) Let's close that SQL Developer Gap!   @Jamiet    

    Read the article

  • SQL Server Date Comparison Functions

    - by HighAltitudeCoder
    A few months ago, I found myself working with a repetitive cursor that looped until the data had been manipulated enough times that it was finally correct.  The cursor was heavily dependent upon dates, every time requiring the earlier of two (or several) dates in one stored procedure, while requiring the later of two dates in another stored procedure. In short what I needed was a function that would allow me to perform the following evaluation: WHERE MAX(Date1, Date2) < @SomeDate The problem is, the MAX() function in SQL Server does not perform this functionality.  So, I set out to put these functions together.  They are titled: EarlierOf() and LaterOf(). /**********************************************************                               EarlierOf.sql   **********************************************************/ /**********************************************************   Return the later of two DATETIME variables.   Parameter 1: DATETIME1 Parameter 2: DATETIME2   Works for a variety of DATETIME or NULL values. Even though comparisons with NULL are actually indeterminate, we know conceptually that NULL is not earlier or later than any other date provided.   SYNTAX: SELECT dbo.EarlierOf('1/1/2000','12/1/2009') SELECT dbo.EarlierOf('2009-12-01 00:00:00.000','2009-12-01 00:00:00.521') SELECT dbo.EarlierOf('11/15/2000',NULL) SELECT dbo.EarlierOf(NULL,'1/15/2004') SELECT dbo.EarlierOf(NULL,NULL)   **********************************************************/ USE AdventureWorks GO   IF EXISTS       (SELECT *       FROM sysobjects       WHERE name = 'EarlierOf'       AND xtype = 'FN'       ) BEGIN             DROP FUNCTION EarlierOf END GO   CREATE FUNCTION EarlierOf (       @Date1                              DATETIME,       @Date2                              DATETIME )   RETURNS DATETIME   AS BEGIN       DECLARE @ReturnDate     DATETIME         IF (@Date1 IS NULL AND @Date2 IS NULL)       BEGIN             SET @ReturnDate = NULL             GOTO EndOfFunction       END         ELSE IF (@Date1 IS NULL AND @Date2 IS NOT NULL)       BEGIN             SET @ReturnDate = @Date2             GOTO EndOfFunction       END         ELSE IF (@Date1 IS NOT NULL AND @Date2 IS NULL)       BEGIN             SET @ReturnDate = @Date1             GOTO EndOfFunction       END         ELSE       BEGIN             SET @ReturnDate = @Date1             IF @Date2 < @Date1                   SET @ReturnDate = @Date2             GOTO EndOfFunction       END         EndOfFunction:       RETURN @ReturnDate   END -- End Function GO   ---- Set Permissions --GRANT SELECT ON EarlierOf TO UserRole1 --GRANT SELECT ON EarlierOf TO UserRole2 --GO                                                                                             The inverse of this function is only slightly different. /**********************************************************                               LaterOf.sql   **********************************************************/ /**********************************************************   Return the later of two DATETIME variables.   Parameter 1: DATETIME1 Parameter 2: DATETIME2   Works for a variety of DATETIME or NULL values. Even though comparisons with NULL are actually indeterminate, we know conceptually that NULL is not earlier or later than any other date provided.   SYNTAX: SELECT dbo.LaterOf('1/1/2000','12/1/2009') SELECT dbo.LaterOf('2009-12-01 00:00:00.000','2009-12-01 00:00:00.521') SELECT dbo.LaterOf('11/15/2000',NULL) SELECT dbo.LaterOf(NULL,'1/15/2004') SELECT dbo.LaterOf(NULL,NULL)   **********************************************************/ USE AdventureWorks GO   IF EXISTS       (SELECT *       FROM sysobjects       WHERE name = 'LaterOf'       AND xtype = 'FN'       ) BEGIN             DROP FUNCTION LaterOf END GO   CREATE FUNCTION LaterOf (       @Date1                              DATETIME,       @Date2                              DATETIME )   RETURNS DATETIME   AS BEGIN       DECLARE @ReturnDate     DATETIME         IF (@Date1 IS NULL AND @Date2 IS NULL)       BEGIN             SET @ReturnDate = NULL             GOTO EndOfFunction       END         ELSE IF (@Date1 IS NULL AND @Date2 IS NOT NULL)       BEGIN             SET @ReturnDate = @Date2             GOTO EndOfFunction       END         ELSE IF (@Date1 IS NOT NULL AND @Date2 IS NULL)       BEGIN             SET @ReturnDate = @Date1             GOTO EndOfFunction       END         ELSE       BEGIN             SET @ReturnDate = @Date1             IF @Date2 > @Date1                   SET @ReturnDate = @Date2             GOTO EndOfFunction       END         EndOfFunction:       RETURN @ReturnDate   END -- End Function GO   ---- Set Permissions --GRANT SELECT ON LaterOf TO UserRole1 --GRANT SELECT ON LaterOf TO UserRole2 --GO                                                                                             The interesting thing about this function is its simplicity and the built-in NULL handling functionality.  Its interesting, because it seems like something should already exist in SQL Server that does this.  From a different vantage point, if you create this functionality and it is easy to use (ideally, intuitively self-explanatory), you have made a successful contribution. Interesting is good.  Self-explanatory, or intuitive is FAR better.  Happy coding! Graeme

    Read the article

  • Understanding the Customer Form in Release 12 from an AR Perspective!!

    - by user793553
    Confused by the Customer Form in Release 12??  Read on, to get some insight into the evolution of this screen, and how it links in with Trading Community Architecture. Historically, the customer data model was owned by Oracle Receivables (AR).  However, as the data model changed and more complex relationships and attributes had to be tracked and monitored, the Trading Community Architecture (TCA) product was created.  All applications within the E-Business suite that require interaction with a customer integrate with TCA. Customer information is no longer stored in the individual applications but rather in a central repository/registry maintained within TCA.  It is important to understand the following entities/concepts stored in TCA: Party: A party is an entity with whom you can have a potential business relationship.  A party can be either a Person or an Organization.  The Party entity is completely independent of any business relationship; this means that a Party can exist even if you have no transactions with it.   The Party is the "umbrella" entity under which you capture all other attributes listed below. Customer: A customer is a party with whom you have an existing business relationship.  From an AR perspective, you can simplify the concepts by thinking of a Customer as a Party. This definition however does not apply to all other applications. In the Oracle Receivables Customer form, the information displayed at the Customer level is from TCA's Party information record. Customer Account (also called Account): An account contains information about how you transact business with a particular customer.  You can create multiple accounts for a customer.  When you create invoices and receipts you associate it to a particular Account of a Customer. Location: A Location is an address.  It is a point in space, typically identified by a street number, a street name, a city, a state or province, a country.  A location is independent of what it is used for - you do not associate a purpose to a location. Party Site: A Party Site is associated to a Party.  It is the location where a party is physically located.  When defining sites for a Party, only one can be an identifying address.  However, you can define other party sites associated to a party. You can define purposes/usage for Party Sites. Account Site: An Account Site is associated to a Customer Account. It is the location associated to the account you are transacting business with. You can define business purposes (also called site uses) for an Account site. Read more about the Customer Workbench in these notes: Doc ID 1436547.1 Oracle Receivables: Understanding the Customer Form in Release 12 Doc ID  1437866.1 Customer Form - Address: Troubleshooting, Known Issues and Patches Doc ID  1448442.1 Oracle Receivables (AR): Customer Workbench Information Center Do you find this type of blog entry useful?  Please add comments to let us know how we can help you more effectively.  Thank you!

    Read the article

  • Game Object Factory: Fixing Memory Leaks

    - by Bunkai.Satori
    Dear all, this is going to be tough: I have created a game object factory that generates objects of my wish. However, I get memory leaks which I can not fix. Memory leaks are generated by return new Object(); in the bottom part of the code sample. static BaseObject * CreateObjectFunc() { return new Object(); } How and where to delete the pointers? I wrote bool ReleaseClassType(). Despite the factory works well, ReleaseClassType() does not fix memory leaks. bool ReleaseClassTypes() { unsigned int nRecordCount = vFactories.size(); for (unsigned int nLoop = 0; nLoop < nRecordCount; nLoop++ ) { // if the object exists in the container and is valid, then render it if( vFactories[nLoop] != NULL) delete vFactories[nLoop](); } return true; } Before taking a look at the code below, let me help you in that my CGameObjectFactory creates pointers to functions creating particular object type. The pointers are stored within vFactories vector container. I have chosen this way because I parse an object map file. I have object type IDs (integer values) which I need to translate them into real objects. Because I have over 100 different object data types, I wished to avoid continuously traversing very long Switch() statement. Therefore, to create an object, I call vFactoriesnEnumObjectTypeID via CGameObjectFactory::create() to call stored function that generates desired object. The position of the appropriate function in the vFactories is identical to the nObjectTypeID, so I can use indexing to access the function. So the question remains, how to proceed with garbage collection and avoid reported memory leaks? #ifndef GAMEOBJECTFACTORY_H_UNIPIXELS #define GAMEOBJECTFACTORY_H_UNIPIXELS //#include "MemoryManager.h" #include <vector> template <typename BaseObject> class CGameObjectFactory { public: // cleanup and release registered object data types bool ReleaseClassTypes() { unsigned int nRecordCount = vFactories.size(); for (unsigned int nLoop = 0; nLoop < nRecordCount; nLoop++ ) { // if the object exists in the container and is valid, then render it if( vFactories[nLoop] != NULL) delete vFactories[nLoop](); } return true; } // register new object data type template <typename Object> bool RegisterClassType(unsigned int nObjectIDParam ) { if(vFactories.size() < nObjectIDParam) vFactories.resize(nObjectIDParam); vFactories[nObjectIDParam] = &CreateObjectFunc<Object>; return true; } // create new object by calling the pointer to the appropriate type function BaseObject* create(unsigned int nObjectIDParam) const { return vFactories[nObjectIDParam](); } // resize the vector array containing pointers to function calls bool resize(unsigned int nSizeParam) { vFactories.resize(nSizeParam); return true; } private: //DECLARE_HEAP; template <typename Object> static BaseObject * CreateObjectFunc() { return new Object(); } typedef BaseObject*(*factory)(); std::vector<factory> vFactories; }; //DEFINE_HEAP_T(CGameObjectFactory, "Game Object Factory"); #endif // GAMEOBJECTFACTORY_H_UNIPIXELS

    Read the article

  • Caching factory design

    - by max
    I have a factory class XFactory that creates objects of class X. Instances of X are very large, so the main purpose of the factory is to cache them, as transparently to the client code as possible. Objects of class X are immutable, so the following code seems reasonable: # module xfactory.py import x class XFactory: _registry = {} def get_x(self, arg1, arg2, use_cache = True): if use_cache: hash_id = hash((arg1, arg2)) if hash_id in _registry: return _registry[hash_id] obj = x.X(arg1, arg2) _registry[hash_id] = obj return obj # module x.py class X: # ... Is it a good pattern? (I know it's not the actual Factory Pattern.) Is there anything I should change? Now, I find that sometimes I want to cache X objects to disk. I'll use pickle for that purpose, and store as values in the _registry the filenames of the pickled objects instead of references to the objects. Of course, _registry itself would have to be stored persistently (perhaps in a pickle file of its own, in a text file, in a database, or simply by giving pickle files the filenames that contain hash_id). Except now the validity of the cached object depends not only on the parameters passed to get_x(), but also on the version of the code that created these objects. Strictly speaking, even a memory-cached object could become invalid if someone modifies x.py or any of its dependencies, and reloads it while the program is running. So far I ignored this danger since it seems unlikely for my application. But I certainly cannot ignore it when my objects are cached to persistent storage. What can I do? I suppose I could make the hash_id more robust by calculating hash of a tuple that contains arguments arg1 and arg2, as well as the filename and last modified date for x.py and every module and data file that it (recursively) depends on. To help delete cache files that won't ever be useful again, I'd add to the _registry the unhashed representation of the modified dates for each record. But even this solution isn't 100% safe since theoretically someone might load a module dynamically, and I wouldn't know about it from statically analyzing the source code. If I go all out and assume every file in the project is a dependency, the mechanism will still break if some module grabs data from an external website, etc.). In addition, the frequency of changes in x.py and its dependencies is quite high, leading to heavy cache invalidation. Thus, I figured I might as well give up some safety, and only invalidate the cache only when there is an obvious mismatch. This means that class X would have a class-level cache validation identifier that should be changed whenever the developer believes a change happened that should invalidate the cache. (With multiple developers, a separate invalidation identifier is required for each.) This identifier is hashed along with arg1 and arg2 and becomes part of the hash keys stored in _registry. Since developers may forget to update the validation identifier or not realize that they invalidated existing cache, it would seem better to add another validation mechanism: class X can have a method that returns all the known "traits" of X. For instance, if X is a table, I might add the names of all the columns. The hash calculation will include the traits as well. I can write this code, but I am afraid that I'm missing something important; and I'm also wondering if perhaps there's a framework or package that can do all of this stuff already. Ideally, I'd like to combine in-memory and disk-based caching.

    Read the article

  • Documentation and Test Assertions in Databases

    - by Phil Factor
    When I first worked with Sybase/SQL Server, we thought our databases were impressively large but they were, by today’s standards, pathetically small. We had one script to build the whole database. Every script I ever read was richly annotated; it was more like reading a document. Every table had a comment block, and every line would be commented too. At the end of each routine (e.g. procedure) was a quick integration test, or series of test assertions, to check that nothing in the build was broken. We simply ran the build script, stored in the Version Control System, and it pulled everything together in a logical sequence that not only created the database objects but pulled in the static data. This worked fine at the scale we had. The advantage was that one could, by reading the source code, reach a rapid understanding of how the database worked and how one could interface with it. The problem was that it was a system that meant that only one developer at the time could work on the database. It was very easy for a developer to execute accidentally the entire build script rather than the selected section on which he or she was working, thereby cleansing the database of everyone else’s work-in-progress and data. It soon became the fashion to work at the object level, so that programmers could check out individual views, tables, functions, constraints and rules and work on them independently. It was then that I noticed the trend to generate the source for the VCS retrospectively from the development server. Tables were worst affected. You can, of course, add or delete a table’s columns and constraints retrospectively, which means that the existing source no longer represents the current object. If, after your development work, you generate the source from the live table, then you get no block or line comments, and the source script is sprinkled with silly square-brackets and other confetti, thereby rendering it visually indigestible. Routines, too, were affected. In our system, every routine had a directly attached string of unit-tests. A retro-generated routine has no unit-tests or test assertions. Yes, one can still commit our test code to the VCS but it’s a separate module and teams end up running the whole suite of tests for every individual change, rather than just the tests for that routine, which doesn’t scale for database testing. With Extended properties, one can get the best of both worlds, and even use them to put blame, praise or annotations into your VCS. It requires a lot of work, though, particularly the script to generate the table. The problem is that there are no conventional names beyond ‘MS_Description’ for the special use of extended properties. This makes it difficult to do splendid things such ensuring the integrity of the build by running a suite of tests that are actually stored in extended properties within the database and therefore the VCS. We have lost the readability of database source code over the years, and largely jettisoned the use of test assertions as part of the database build. This is not unexpected in view of the increasing complexity of the structure of databases and number of programmers working on them. There must, surely, be a way of getting them back, but I sometimes wonder if I’m one of very few who miss them.

    Read the article

  • HERMES Medical Solutions Helps Save Lives with MySQL

    - by Bertrand Matthelié
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Cambria","serif"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} HERMES Medical Solutions was established in 1976 in Stockholm, Sweden, and is a leading innovator in medical imaging hardware/software products for health care facilities worldwide. HERMES delivers a plethora of different medical imaging solutions to optimize hospital workflow. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Cambria","serif"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} HERMES advanced algorithms make it possible to detect the smallest changes under therapies important and necessary to optimize different therapeutic methods and doses. Challenges Fighting illness & disease requires state-of-the-art imaging modalities and software in order to diagnose accurately, stage disease appropriately and select the best treatment available. Selecting and implementing a new database platform that would deliver the needed performance, reliability, security and flexibility required by the high-end medical solutions offered by HERMES. Solution Decision to migrate from in-house database to an embedded SQL database powering the HERMES products, delivered either as software, integrated hardware and software solutions, or via the cloud in a software-as-a-service configuration. Evaluation of several databases and selection of MySQL based on its high performance, ease of use and integration, and low Total Cost of Ownership. On average, between 4 and 12 Terabytes of data are stored in MySQL databases underpinning the HERMES solutions. The data generated by each medical study is indeed stored during 10 years or more after the treatment was performed. MySQL-based HERMES systems also allow doctors worldwide to conduct new drug research projects leveraging the large amount of medical data collected. Hospitals and other HERMES customers worldwide highly value the “zero administration” capabilities and reliability of MySQL, enabling them to perform medical analysis without any downtime. Relying on MySQL as their embedded database, the HERMES team has been able to increase their focus on further developing their clinical applications. HERMES Medical Solutions could leverage the Oracle Financing payment plan to spread its investment over time and make the MySQL choice even more valuable. “MySQL has proven to be an excellent database choice for us. We offer high-end medical solutions, and MySQL delivers the reliability, security and performance such solutions require.” Jan Bertling, CEO.

    Read the article

  • PCI Encryption Key Management

    - by Unicorn Bob
    (Full disclosure: I'm already an active participant here and at StackOverflow, but for reasons that should hopefully be obvious, I'm choosing to ask this particular question anonymously). I currently work for a small software shop that produces software that's sold commercially to manage small- to mid-size business in a couple of fairly specialized industries. Because these industries are customer-facing, a large portion of the software is related to storing and managing customer information. In particular, the storage (and securing) of customer credit card information. With that, of course, comes PCI compliance. To make a long story short, I'm left with a couple of questions about why certain things were done the way they were, and I'm unfortunately without much of a resource at the moment. This is a very small shop (I report directly to the owner, as does the only other full-time employee), and the owner doesn't have an answer to these questions, and the previous developer is...err...unavailable. Issue 1: Periodic Re-encryption As of now, the software prompts the user to do a wholesale re-encryption of all of the sensitive information in the database (basically credit card numbers and user passwords) if either of these conditions is true: There are any NON-encrypted pieces of sensitive information in the database (added through a manual database statement instead of through the business object, for example). This should not happen during the ordinary use of the software. The current key has been in use for more than a particular period of time. I believe it's 12 months, but I'm not certain of that. The point here is that the key "expires". This is my first foray into commercial solution development that deals with PCI, so I am unfortunately uneducated on the practices involved. Is there some aspect of PCI compliance that mandates (or even just strongly recommends) periodic key updating? This isn't a huge issue for me other than I don't currently have a good explanation to give to end users if they ask why they are being prompted to run it. Question 1: Is the concept of key expiration standard, and, if so, is that simply industry-standard or an element of PCI? Issue 2: Key Storage Here's my real issue...the encryption key is stored in the database, just obfuscated. The key is padded on the left and right with a few garbage bytes and some bits are twiddled, but fundamentally there's nothing stopping an enterprising person from examining our (dotfuscated) code, determining the pattern used to turn the stored key into the real key, then using that key to run amok. This seems like a horrible practice to me, but I want to make sure that this isn't just one of those "grin and bear it" practices that people in this industry have taken to. I have developed an alternative approach that would prevent such an attack, but I'm just looking for a sanity check here. Question 2: Is this method of key storage--namely storing the key in the database using an obfuscation method that exists in client code--normal or crazy? Believe me, I know that free advice is worth every penny that I've paid for it, nobody here is an attorney (or at least isn't offering legal advice), caveat emptor, etc. etc., but I'm looking for any input that you all can provide. Thank you in advance!

    Read the article

  • Why is x=x++ undefined?

    - by ugoren
    It's undefined because the it modifies x twice between sequence points. The standard says it's undefined, therefore it's undefined. That much I know. But why? My understanding is that forbidding this allows compilers to optimize better. This could have made sense when C was invented, but now seems like a weak argument. If we were to reinvent C today, would we do it this way, or can it be done better? Or maybe there's a deeper problem, that makes it hard to define consistent rules for such expressions, so it's best to forbid them? So suppose we were to reinvent C today. I'd like to suggest simple rules for expressions such as x=x++, which seem to me to work better than the existing rules. I'd like to get your opinion on the suggested rules compared to the existing ones, or other suggestions. Suggested Rules: Between sequence points, order of evaluation is unspecified. Side effects take place immediately. There's no undefined behavior involved. Expressions evaluate to this value or that, but surely won't format your hard disk (strangely, I've never seen an implementation where x=x++ formats the hard disk). Example Expressions x=x++ - Well defined, doesn't change x. First, x is incremented (immediately when x++ is evaluated), then it's old value is stored in x. x++ + ++x - Increments x twice, evaluates to 2*x+2. Though either side may be evaluated first, the result is either x + (x+2) (left side first) or (x+1) + (x+1) (right side first). x = x + (x=3) - Unspecified, x set to either x+3 or 6. If the right side is evaluated first, it's x+3. It's also possible that x=3 is evaluated first, so it's 3+3. In either case, the x=3 assignment happens immediately when x=3 is evaluated, so the value stored is overwritten by the other assignment. x+=(x=3) - Well defined, sets x to 6. You could argue that this is just shorthand for the expression above. But I'd say that += must be executed after x=3, and not in two parts (read x, evaluate x=3, add and store new value). What's the Advantage? Some comments raised this good point. It's not that I'm after the pleasure of using x=x++ in my code. It's a strange and misleading expression. What I want is to be able to understand complicated expressions. Normally, a complicated expression is no more than the sum of its parts. If you understand the parts and the operators combining them, you can understand the whole. C's current behavior seems to deviate from this principle. One assignment plus another assignment suddenly doesn't make two assignments. Today, when I look at x=x++, I can't say what it does. With my suggested rules, I can, by simply examining its components and their relations.

    Read the article

  • Using Recursive SQL and XML trick to PIVOT(OK, concat) a "Document Folder Structure Relationship" table, works like MySQL GROUP_CONCAT

    - by Kevin Shyr
    I'm in the process of building out a Data Warehouse and encountered this issue along the way.In the environment, there is a table that stores all the folders with the individual level.  For example, if a document is created here:{App Path}\Level 1\Level 2\Level 3\{document}, then the DocumentFolder table would look like this:IDID_ParentFolderName1NULLLevel 121Level 232Level 3To my understanding, the table was built so that:Each proposal can have multiple documents stored at various locationsDifferent users working on the proposal will have different access level to the folder; if one user is assigned access to a folder level, she/he can see all the sub folders and their content.Now we understand from an application point of view why this table was built this way.  But you can quickly see the pain this causes the report writer to show a document link on the report.  I wasn't surprised to find the report query had 5 self outer joins, which is at the mercy of nobody creating a document that is buried 6 levels deep, and not to mention the degradation in performance.With the help of 2 posts (at the end of this post), I was able to come up with this solution:Use recursive SQL to build out the folder pathUse SQL XML trick to concat the strings.Code (a reminder, I built this code in a stored procedure.  If you copy the syntax into a simple query window and execute, you'll get an incorrect syntax error) Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} -- Get all folders and group them by the original DocumentFolderID in PTSDocument table;WITH DocFoldersByDocFolderID(PTSDocumentFolderID_Original, PTSDocumentFolderID_Parent, sDocumentFolder, nLevel)AS (-- first member      SELECT 'PTSDocumentFolderID_Original' = d1.PTSDocumentFolderID            , PTSDocumentFolderID_Parent            , 'sDocumentFolder' = sName            , 'nLevel' = CONVERT(INT, 1000000)      FROM (SELECT DISTINCT PTSDocumentFolderID                  FROM dbo.PTSDocument_DY WITH(READPAST)            ) AS d1            INNER JOIN dbo.PTSDocumentFolder_DY AS df1 WITH(READPAST)                  ON d1.PTSDocumentFolderID = df1.PTSDocumentFolderID      UNION ALL      -- recursive      SELECT ddf1.PTSDocumentFolderID_Original            , df1.PTSDocumentFolderID_Parent            , 'sDocumentFolder' = df1.sName            , 'nLevel' = ddf1.nLevel - 1      FROM dbo.PTSDocumentFolder_DY AS df1 WITH(READPAST)            INNER JOIN DocFoldersByDocFolderID AS ddf1                  ON df1.PTSDocumentFolderID = ddf1.PTSDocumentFolderID_Parent)-- Flatten out folder path, DocFolderSingleByDocFolderID(PTSDocumentFolderID_Original, sDocumentFolder)AS (SELECT dfbdf.PTSDocumentFolderID_Original            , 'sDocumentFolder' = STUFF((SELECT '\' + sDocumentFolder                                         FROM DocFoldersByDocFolderID                                         WHERE (PTSDocumentFolderID_Original = dfbdf.PTSDocumentFolderID_Original)                                         ORDER BY PTSDocumentFolderID_Original, nLevel                                         FOR XML PATH ('')),1,1,'')      FROM DocFoldersByDocFolderID AS dfbdf      GROUP BY dfbdf.PTSDocumentFolderID_Original) And voila, I use the second CTE to join back to my original query (which is now a CTE for Source as we can now use MERGE to do INSERT and UPDATE at the same time).Each part of this solution would not solve the problem by itself because:If I don't use recursion, I cannot build out the path properly.  If I use the XML trick only, then I don't have the originating folder ID info that I need to link to the document.If I don't use the XML trick, then I don't have one row per document to show in the report.I could conceivably do this in the report function, but I'd rather not deal with the beginning or ending backslash and how to attach the document name.PIVOT doesn't do strings and UNPIVOT runs into the same problem as the above.I'm excited that each version of SQL server provides us new tools to solve old problems and/or enables us to solve problems in a more elegant wayThe 2 posts that helped me along:Recursive Queries Using Common Table ExpressionHow to use GROUP BY to concatenate strings in SQL server?

    Read the article

  • SQL Server: Writing CASE expressions properly when NULLs are involved

    - by Mladen Prajdic
    We’ve all written a CASE expression (yes, it’s an expression and not a statement) or two every now and then. But did you know there are actually 2 formats you can write the CASE expression in? This actually bit me when I was trying to add some new functionality to an old stored procedure. In some rare cases the stored procedure just didn’t work correctly. After a quick look it turned out to be a CASE expression problem when dealing with NULLS. In the first format we make simple “equals to” comparisons to a value: SELECT CASE <value> WHEN <equals this value> THEN <return this> WHEN <equals this value> THEN <return this> -- ... more WHEN's here ELSE <return this> END Second format is much more flexible since it allows for complex conditions. USE THIS ONE! SELECT CASE WHEN <value> <compared to> <value> THEN <return this> WHEN <value> <compared to> <value> THEN <return this> -- ... more WHEN's here ELSE <return this> END Now that we know both formats and you know which to use (the second one if that hasn’t been clear enough) here’s an example how the first format WILL make your evaluation logic WRONG. Run the following code for different values of @i. Just comment out any 2 out of 3 “SELECT @i =” statements. DECLARE @i INTSELECT  @i = -1 -- first resultSELECT  @i = 55 -- second resultSELECT  @i = NULL -- third resultSELECT @i AS OriginalValue, -- first CASE format. DON'T USE THIS! CASE @i WHEN -1 THEN '-1' WHEN NULL THEN 'We have a NULL!' ELSE 'We landed in ELSE' END AS DontUseThisCaseFormatValue, -- second CASE format. USE THIS! CASE WHEN @i = -1 THEN '-1' WHEN @i IS NULL THEN 'We have a NULL!' ELSE 'We landed in ELSE' END AS UseThisCaseFormatValue When the value of @i is –1 everything works as expected, since both formats go into the –1 WHEN branch. When the value of @i is 55 everything again works as expected, since both formats go into the ELSE branch. When the value of @i is NULL the problems become evident. The first format doesn’t go into the WHEN NULL branch because it makes an equality comparison between two NULLs. Because a NULL is an unknown value: NULL = NULL is false. That is why the first format goes into the ELSE Branch but the second format correctly handles the proper IS NULL comparison.   Please use the second more explicit format. Your future self will be very grateful to you when he doesn’t have to discover these kinds of bugs.

    Read the article

  • Integrating Amazon S3 in Java via NetBeans IDE

    - by Geertjan
    To continue from yesterday, let's set up a scenario that enables us to make use of this drag/drop service in NetBeans IDE: The above service is applicable to Amazon S3, an Amazon storage provider that is typically used to store large binary files. In Amazon S3, every object stored is contained in a bucket. Buckets partition the namespace of objects stored in Amazon S3. More on buckets here. Let's use the tools in NetBeans IDE to create a Java application that accesses our Amazon S3 buckets. Create a Java application named "AmazonBuckets" with a main class named "AmazonBuckets". Open the main class and then drag the above service into the main method of the class. Now, NetBeans IDE will create all the other classes and the properties file that you see in the screenshot below. The first thing to do is to open the properties file above and enter the access key and secret: access_key=SOMETHINGsecret=SOMETHINGELSE Now you're all set up. Make sure to, of course, actually have some buckets available: Then rewrite the Java class to parse the XML that is returned via the generated code: package amazonbuckets;import java.io.ByteArrayInputStream;import java.io.IOException;import javax.xml.parsers.DocumentBuilder;import javax.xml.parsers.DocumentBuilderFactory;import javax.xml.parsers.ParserConfigurationException;import org.netbeans.saas.amazon.AmazonS3Service;import org.netbeans.saas.RestResponse;import org.w3c.dom.DOMException;import org.w3c.dom.Document;import org.w3c.dom.Node;import org.w3c.dom.NodeList;import org.xml.sax.InputSource;import org.xml.sax.SAXException;public class AmazonBuckets {    public static void main(String[] args) {        try {            RestResponse result = AmazonS3Service.getBuckets();            String dataAsString = result.getDataAsString();            DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();            DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();            Document doc = dBuilder.parse(                    new InputSource(new ByteArrayInputStream(dataAsString.getBytes("utf-8"))));            NodeList bucketList = doc.getElementsByTagName("Bucket");            for (int i = 0; i < bucketList.getLength(); i++) {                Node node = bucketList.item(i);                System.out.println("Bucket Name: " + node.getFirstChild().getTextContent());            }        } catch (IOException | ParserConfigurationException | SAXException | DOMException ex) {        }    }}That's all. This is simpler to setup than the scenario described yesterday. Also notice that there are other Amazon S3 services you can interact with from your Java code, again after generating a heap of code after drag/drop into a Java source file: I tried the above, e.g., I created a new Amazon S3 bucket after dragging "createBucket", adding my credentials in the properties file, and then running the code that had been created. I.e., without adding a single line of code I was able to programmatically create new buckets. The above outlines a handy set of tools and techniques to use if you want to let your users store and access data in Amazon S3 buckets directly from the application you've created for them.

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

  • Multitenancy in SQL Azure

    - by cibrax
    If you are building a SaaS application in Windows Azure that relies on SQL Azure, it’s probably that you will need to support multiple tenants at database level. This is short overview of the different approaches you can use for support that scenario, A different database per tenant A new database is created and assigned when a tenant is provisioned. Pros Complete isolation between tenants. All the data for a tenant lives in a database only he can access. Cons It’s not cost effective. SQL Azure databases are not cheap, and the minimum size for a database is 1GB.  You might be paying for storage that you don’t really use. A different connection pool is required per database. Updates must be replicated across all the databases You need multiple backup strategies across all the databases Multiple schemas in a database shared by all the tenants A single database is shared among all the tenants, but every tenant is assigned to a different schema and database user. Pros You only pay for a single database. Data is isolated at database level. If the credentials for one tenant is compromised, the rest of the data for the other tenants is not. Cons You need to replicate all the database objects in every schema, so the number of objects can increase indefinitely. Updates must be replicated across all the schemas. The connection pool for the database must maintain a different connection per tenant (or set of credentials) A different user is required per tenant, which is stored at server level. You have to backup that user independently. Centralizing the database access with store procedures in a database shared by all the tenants A single database is shared among all the tenants, but nobody can read the data directly from the tables. All the data operations are performed through store procedures that centralize the access to the tenant data. The store procedures contain some logic to map the database user to an specific tenant. Pros You only pay for a single database. You only have a set of objects to maintain and backup. Cons There is no real isolation. All the data for the different tenants is shared in the same tables. You can not use traditional ORM like EF code first for consuming the data. A different user is required per tenant, which is stored at server level. You have to backup that user independently. SQL Federations A single database is shared among all the tenants, but a different federation is used per tenant. A federation in few words, it’s a mechanism for horizontal scaling in SQL Azure, which basically uses the idea of logical partitions to distribute data based on certain criteria. Pros You only have a single database with multiple federations. You can use filtering in the connections to pick the right federation, so any ORM could be used to consume the data. Cons There is no real isolation at that database level. The isolation is enforced programmatically with federations.

    Read the article

  • Hidden Field losing its Value on postback

    - by Ratan
    I have a ascx page where I am using a hidden field to store the value of a the drop down box as it is generated using a google address finder. My problem is that when I try to store the value directly in the hidden field : hfDdlVerifyID.Value = ddlVerifySS.SelectedValue; in the event of a button click, the value is stored but on postback is lost again. Whereas, if i try to use Scriptmanager to do it, nothing is stored. getBuild.AppendLine("$get('" + hfDdlVerifyID.ClientID + "').value = $get('" + ddlVerifySS.ClientID + ").value;"); ScriptManager.RegisterClientScriptBlock(this.Page, this.GetType(), "storeHidden", getBuild.ToString(), true); // Page.ClientScript.RegisterClientScriptBlock(this.GetType(), "storeHidden", getBuild.ToString(), true); string test = hfDdlVerifyID.Value.ToString(); The ascx page is : <asp:UpdatePanel ID = ddlUpdate runat="server"> <ContentTemplate> <asp:Panel ID="pVerify" runat="server"> <br /> <fieldset> <legend> <asp:Literal ID="lVerify" runat="server" /> </legend> <asp:CheckBox ID ="cbVerify" runat ="server" Text ="Use the value from the following list, (Uncheck to accept address as it is)." Checked ="true" /> <br /> <asp:DropDownList ID="ddlVerifySS" runat="server" onselectedindexchanged="ddlVerifySS_SelectIndexChange" /> <asp:HiddenField id ="hfDdlVerifyID" runat ="server" /> </fieldset> </asp:Panel> </ContentTemplate> </asp:UpdatePanel> <padrap:Button ID ="bVerify" runat ="server" CssClass ="btn" OnClick ="bVerify_Click" Text ="Verify Address" /> <asp:Button ID ="btnSubSite" runat ="server" text ="Save" CssCLass ="btn" OnClick ="save_btn_Click_subSite" onLoad="ddlVerify_Load" />

    Read the article

  • Very strange iSeries Provider behavior

    - by AJ
    We've been given a "stored procedure" from our RPG folks that returns six data tables. Attempting to call it from .NET (C#, 3.5) using the iSeries Provider for .NET (tried using both V5R4 and V6R1), we are seeing different results based on how we call the stored proc. Here's way that we'd prefer to do it: using (var dbConnection = new iDB2Connection("connectionString")) { dbConnection.Open(); using(var cmd = dbConnection.CreateCommand()) { cmd.CommandType = CommandType.StoredProcedure; cmd.CommandText = "StoredProcName"; cmd.Parameters.Add(new iDB2Parameter("InParm1", iDB2DbType.Varchar).Value = thing; var ds = new DataSet(); var da = new iDB2DataAdapter(cmd); da.Fill(ds); } } Doing it this way, we get FIVE tables back in the result set. However, if we do this: cmd.CommandType = CommandType.Text; cmd.CommandText = "CALL StoredProcName('" + thing + "')"; We get back the expected SIX tables. I realize that there aren't many of us sorry .NET-to-DB2 folks out here, but I'm hoping someone has seen this before. TIA.

    Read the article

< Previous Page | 93 94 95 96 97 98 99 100 101 102 103 104  | Next Page >