Search Results

Search found 2993 results on 120 pages for 'distributed transactions'.

Page 98/120 | < Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >

  • C# "Rename" Property in Derived Class

    - by Eric
    When you read this you'll be awfully tempted to give advice like "this is a bad idea for the following reason..." Bear with me. I know there are other ways to approach this. This question should be considered trivia. Lets say you have a class "Transaction" that has properties common to all transactions such as Invoice, Purchase Order, and Sales Receipt. Let's take the simple example of Transaction "Amount", which is the most important monetary amount for a given transaction. public class Transaction { public double Amount { get; set; } public TxnTypeEnum TransactionType { get; set; } } This Amount may have a more specific name in a derived type... at least in the real world. For example, the following values are all actually the same thing: Transaction - Amount Invoice - Subtotal PurchaseOrder - Total Sales Receipt - Amount So now I want a derived class "Invoice" that has a Subtotal rather than the generically-named Amount. Ideally both of the following would be true: In an instance of Transaction, the Amount property would be visible. In an instance of Invoice, the Amount property would be hidden, but the Subtotal property would refer to it internally. Invoice looks like this: public class Invoice : Transaction { new private double? Amount { get { return base.Amount; } set { base.Amount = value; } } // This property should hide the generic property "Amount" on Transaction public double? SubTotal { get { return Amount; } set { Amount = value; } } public double RemainingBalance { get; set; } } But of course Transaction.Amount is still visible on any instance of Invoice. Thanks for taking a look!

    Read the article

  • Entity and N-Tier architecture in C#

    - by acadia
    Hello, I have three tables as shown below Emp ---- empID int empName deptID empDetails ----------- empDetailsID int empID int empDocuments -------------- docID empID docName docType I am creating a entity class so that I can use n-tier architecture to do database transactions etc in C#. I started creating class for the same as shown below using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace employee { class emp { private int empID; private string empName; private int deptID; public int EmpID { get; set; } public string EmpName { get; set; } public int deptID { get; set; } } } My question is as empDetails and empDocuments are related to emp by empID. How do I have those in my emp class. I would appreciate if you can direct me to an example. Thanks

    Read the article

  • Using Java classes(whole module with Spring/Hibernate dependency) in Grails

    - by Sitaram
    I have a Java/Spring/Hibernate application with a payment module. Payment module has some domain classes for payment subscription and transactions etc. Corresponding hibernate mapping files are there. This module uses applicationContext.xml for some of the configuration it needs. Also, This module has a PaymentService which uses a paymentDAO to do all database related work. Now, I want to use this module as it is(without any or minimal re-writing) in my other application(Grails application). I want to bring in the payment module as a jar or copy the source files to src/java folder in Grails. With that background, I have following queries: Will the existing applicationContext.xml for Spring configuration in the module will work as it is in Grails? Does it merge with rest of Grails's Spring config? Where do I put the applicationContext.xml? classpath? src/java should work? Can I bundle the applicationContext.xml in Jar(If I use jar option) and can overwrite in Grails if anything needs to be changed? Multiple bean definition problems in that case? PaymentService recognized as regular service? Will it be auto-injected in controllers and/or other services? Will PaymentDAO use the datasource configuration of Grails? Where do I put the hbm files of this module? Can I bundle the hbm files in Jar(If I use jar option) and can overwrite in Grails if anything needs to be changed? Which hbms are picked? or, there will be problems with that? Too many questions! :) All these concerns are actually before trying. I am going to try this in next few days(busy currently). Any help is appreciated. Thanks. Sitaram Meena

    Read the article

  • C# threading solution for long queries

    - by Eddie
    Senerio We have an application that records incidents. An external database needs to be queried when an incident is approved by a supervisor. The queries to this external database are sometimes taking a while to run. This lag is experienced through the browser. Possible Solution I want to use threading to eliminate the simulated hang to the browser. I have used the Thread class before and heard about ThreadPool. But, I just found BackgroundWorker in this post. MSDN states: The BackgroundWorker class allows you to run an operation on a separate, dedicated thread. Time-consuming operations like downloads and database transactions can cause your user interface (UI) to seem as though it has stopped responding while they are running. When you want a responsive UI and you are faced with long delays associated with such operations, the BackgroundWorker class provides a convenient solution. Is BackgroundWorker the way to go when handling long running queries? What happens when 2 or more BackgroundWorker processes are ran simultaneously? Is it handled like a pool?

    Read the article

  • I have data about deadlocks, but I can't understand why they occur

    - by Alex
    I am receiving a lot of deadlocks in my big web application. http://stackoverflow.com/questions/2941233/how-to-automatically-re-run-deadlocked-transaction-asp-net-mvc-sql-server Here I wanted to re-run deadlocked transactions, but I was told to get rid of the deadlocks - it's much better, than trying to catch the deadlocks. So I spent the whole day with SQL Profiler, setting the tracing keys etc. And this is what I got. There's a Users table. I have a very high usable page with the following query (it's not the only query, but it's the one that causes troubles) UPDATE Users SET views = views + 1 WHERE ID IN (SELECT AuthorID FROM Articles WHERE ArticleID = @ArticleID) And then there's the following query in ALL pages: User = DB.Users.SingleOrDefault(u => u.Password == password && u.Name == username); That's where I get User from cookies. Very often a deadlock occurs and this second Linq-to-SQL query is chosen as a victim, so it's not run, and users of my site see an error screen. I read a lot about deadlocks... And I don't understand why this is causing a deadlock. So obviously both of this queries run very often. At least once a second. Maybe even more often (300-400 users online). So they can be run at the same time very easily, but why does it cause a deadlock? Please help. Thank you

    Read the article

  • How to use Transaction in Entity FrameWork?

    - by programmerist
    How to use Transaction in Entity FrameWork? i read some links on Stackoverflow : http://stackoverflow.com/questions/815586/entity-framework-using-transactions-or-savechangesfalse-and-acceptallchanges BUT; i have 3 table so i have 3 entities: CREATE TABLE Personel (PersonelID integer PRIMARY KEY identity not null, Ad varchar(30), Soyad varchar(30), Meslek varchar(100), DogumTarihi datetime, DogumYeri nvarchar(100), PirimToplami float); Go create TABLE Prim (PrimID integer PRIMARY KEY identity not null, PersonelID integer Foreign KEY references Personel(PersonelID), SatisTutari int, Prim float, SatisTarihi Datetime); Go CREATE TABLE Finans (ID integer PRIMARY KEY identity not null, Tutar float); Personel, Prim,Finans my tables. if you look Prim table you can see Prim value float value if i write a textbox not float value my transaction must run. using (TestEntities testCtx = new TestEntities()) { using (TransactionScope scope = new TransactionScope()) { // do someyihng... testCtx.Personel.SaveChanges(); // do someyihng... testCtx.Prim.SaveChanges(); // do someyihng... testCtx.Finans.SaveChanges(); scope .Complete(); success = true; } } How can i do that?

    Read the article

  • google app engine atomic section???

    - by bokertov
    hi, Say you retrieve a set of records from the datastore (something like: select * from MyClass where reserved='false'). how do i ensure that another user doesn't set the reserved is still false? I've looked in the Transaction documentation and got shocked from google's solution which is to catch the exception and retry in a loop. Any solution that I'm missing - it's hard to believe that there's no way to have an atomic operation in this environment. (btw - i could use 'syncronize' inside the servlet but i think it's not valid as there's no way to ensure that there's only one instance of the servlet object, isn't it? same applies to static variable solution) Any idea on how to solve??? (here's the google solution: http://code.google.com/appengine/docs/java/datastore/transactions.html#Entity_Groups look at: Key k = KeyFactory.createKey("Employee", "k12345"); Employee e = pm.getObjectById(Employee.class, k); e.counter += 1; pm.makePersistent(e); This requires a transaction because the value may be updated by another user after this code fetches the object, but before it saves the modified object. Without a transaction, the user's request will use the value of counter prior to the other user's update, and the save will overwrite the new value. With a transaction, the application is told about the other user's update. If the entity is updated during the transaction, then the transaction fails with an exception. The application can repeat the transaction to use the new data. THANKS!

    Read the article

  • MySQL Config File for Large System

    - by Jonathon
    We are running MySQL on a Windows 2003 Server Enterpise Edition box. MySQL is about the only program running on the box. We have approx. 8 slaves replicated to it, but my understanding is that having multiple slaves connecting to the same master does not significantly slow down performance, if at all. The master server has 16G RAM, 10 Terabyte drives in RAID 10, and four dual-core processors. From what I have seen from other sites, we have a really robust machine as our master db server. We just upgraded from a machine with only 4G RAM, but with similar hard drives, RAID, etc. It also ran Apache on it, so it was our db server and our application server. It was getting a little slow, so we split the db server onto this new machine and kept the application server on the first machine. We also distributed the application load amongst a few of our other slave servers, which also run the application. The problem is the new db server has mysqld.exe consuming 95-100% of CPU almost all the time and is really causing the app to run slowly. I know we have several queries and table structures that could be better optimized, but since they worked okay on the older, smaller server, I assume that our my.ini (MySQL config) file is not properly configured. Most of what I see on the net is for setting config files on small machines, so can anyone help me get the my.ini file correct for a large dedicated machine like ours? I just don't see how mysqld could get so bogged down! FYI: We have about 100 queries per second. We only use MyISAM tables, so skip-innodb is set in the ini file. And yes, I know it is reading the ini file correctly because I can change some settings (like the server-id and it will kill the server at startup). Here is the my.ini file: #MySQL Server Instance Configuration File # ---------------------------------------------------------------------- # Generated by the MySQL Server Instance Configuration Wizard # # # Installation Instructions # ---------------------------------------------------------------------- # # On Linux you can copy this file to /etc/my.cnf to set global options, # mysql-data-dir/my.cnf to set server-specific options # (@localstatedir@ for this installation) or to # ~/.my.cnf to set user-specific options. # # On Windows you should keep this file in the installation directory # of your server (e.g. C:\Program Files\MySQL\MySQL Server X.Y). To # make sure the server reads the config file use the startup option # "--defaults-file". # # To run run the server from the command line, execute this in a # command line shell, e.g. # mysqld --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" # # To install the server as a Windows service manually, execute this in a # command line shell, e.g. # mysqld --install MySQLXY --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" # # And then execute this in a command line shell to start the server, e.g. # net start MySQLXY # # # Guildlines for editing this file # ---------------------------------------------------------------------- # # In this file, you can use all long options that the program supports. # If you want to know the options a program supports, start the program # with the "--help" option. # # More detailed information about the individual options can also be # found in the manual. # # # CLIENT SECTION # ---------------------------------------------------------------------- # # The following options will be read by MySQL client applications. # Note that only client applications shipped by MySQL are guaranteed # to read this section. If you want your own MySQL client program to # honor these values, you need to specify it as an option during the # MySQL client library initialization. # [client] port=3306 [mysql] default-character-set=latin1 # SERVER SECTION # ---------------------------------------------------------------------- # # The following options will be read by the MySQL Server. Make sure that # you have installed the server correctly (see above) so it reads this # file. # [mysqld] # The TCP/IP Port the MySQL Server will listen on port=3306 #Path to installation directory. All paths are usually resolved relative to this. basedir="D:/MySQL/" #Path to the database root datadir="D:/MySQL/data" # The default character set that will be used when a new schema or table is # created and no character set is defined default-character-set=latin1 # The default storage engine that will be used when create new tables when default-storage-engine=MYISAM # Set the SQL mode to strict #sql-mode="STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION" # we changed this because there are a couple of queries that can get blocked otherwise sql-mode="" #performance configs skip-locking max_allowed_packet = 1M table_open_cache = 512 # The maximum amount of concurrent sessions the MySQL server will # allow. One of these connections will be reserved for a user with # SUPER privileges to allow the administrator to login even if the # connection limit has been reached. max_connections=1510 # Query cache is used to cache SELECT results and later return them # without actual executing the same query once again. Having the query # cache enabled may result in significant speed improvements, if your # have a lot of identical queries and rarely changing tables. See the # "Qcache_lowmem_prunes" status variable to check if the current value # is high enough for your load. # Note: In case your tables change very often or if your queries are # textually different every time, the query cache may result in a # slowdown instead of a performance improvement. query_cache_size=168M # The number of open tables for all threads. Increasing this value # increases the number of file descriptors that mysqld requires. # Therefore you have to make sure to set the amount of open files # allowed to at least 4096 in the variable "open-files-limit" in # section [mysqld_safe] table_cache=3020 # Maximum size for internal (in-memory) temporary tables. If a table # grows larger than this value, it is automatically converted to disk # based table This limitation is for a single table. There can be many # of them. tmp_table_size=30M # How many threads we should keep in a cache for reuse. When a client # disconnects, the client's threads are put in the cache if there aren't # more than thread_cache_size threads from before. This greatly reduces # the amount of thread creations needed if you have a lot of new # connections. (Normally this doesn't give a notable performance # improvement if you have a good thread implementation.) thread_cache_size=64 #*** MyISAM Specific options # The maximum size of the temporary file MySQL is allowed to use while # recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. # If the file-size would be bigger than this, the index will be created # through the key cache (which is slower). myisam_max_sort_file_size=100G # If the temporary file used for fast index creation would be bigger # than using the key cache by the amount specified here, then prefer the # key cache method. This is mainly used to force long character keys in # large tables to use the slower key cache method to create the index. myisam_sort_buffer_size=64M # Size of the Key Buffer, used to cache index blocks for MyISAM tables. # Do not set it larger than 30% of your available memory, as some memory # is also required by the OS to cache rows. Even if you're not using # MyISAM tables, you should still set it to 8-64M as it will also be # used for internal temporary disk tables. key_buffer_size=3072M # Size of the buffer used for doing full table scans of MyISAM tables. # Allocated per thread, if a full scan is needed. read_buffer_size=2M read_rnd_buffer_size=8M # This buffer is allocated when MySQL needs to rebuild the index in # REPAIR, OPTIMZE, ALTER table statements as well as in LOAD DATA INFILE # into an empty table. It is allocated per thread so be careful with # large settings. sort_buffer_size=2M #*** INNODB Specific options *** innodb_data_home_dir="D:/MySQL InnoDB Datafiles/" # Use this option if you have a MySQL server with InnoDB support enabled # but you do not plan to use it. This will save memory and disk space # and speed up some things. skip-innodb # Additional memory pool that is used by InnoDB to store metadata # information. If InnoDB requires more memory for this purpose it will # start to allocate it from the OS. As this is fast enough on most # recent operating systems, you normally do not need to change this # value. SHOW INNODB STATUS will display the current amount used. innodb_additional_mem_pool_size=11M # If set to 1, InnoDB will flush (fsync) the transaction logs to the # disk at each commit, which offers full ACID behavior. If you are # willing to compromise this safety, and you are running small # transactions, you may set this to 0 or 2 to reduce disk I/O to the # logs. Value 0 means that the log is only written to the log file and # the log file flushed to disk approximately once per second. Value 2 # means the log is written to the log file at each commit, but the log # file is only flushed to disk approximately once per second. innodb_flush_log_at_trx_commit=1 # The size of the buffer InnoDB uses for buffering log data. As soon as # it is full, InnoDB will have to flush it to disk. As it is flushed # once per second anyway, it does not make sense to have it very large # (even with long transactions). innodb_log_buffer_size=6M # InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and # row data. The bigger you set this the less disk I/O is needed to # access data in tables. On a dedicated database server you may set this # parameter up to 80% of the machine physical memory size. Do not set it # too large, though, because competition of the physical memory may # cause paging in the operating system. Note that on 32bit systems you # might be limited to 2-3.5G of user level memory per process, so do not # set it too high. innodb_buffer_pool_size=500M # Size of each log file in a log group. You should set the combined size # of log files to about 25%-100% of your buffer pool size to avoid # unneeded buffer pool flush activity on log file overwrite. However, # note that a larger logfile size will increase the time needed for the # recovery process. innodb_log_file_size=100M # Number of threads allowed inside the InnoDB kernel. The optimal value # depends highly on the application, hardware as well as the OS # scheduler properties. A too high value may lead to thread thrashing. innodb_thread_concurrency=10 #replication settings (this is the master) log-bin=log server-id = 1 Thanks for all the help. It is greatly appreciated.

    Read the article

  • Mono Text Based Web Browser

    - by powerbox
    Hi guys, is there any public text based web browser implementation for C# or on mono base api that I can use to fill up web forms automatically? I'll be using it to automate some web task that does not require any image authentication. I'm currently using a web browser control available on .Net Framework and waits for the event WebBrowserDocumentCompletedEventHandler to fire after a page is successfully loaded and invoke some actions like Submit or simulating a mouse click on some links. It actually does the job but I can't process bulk transactions since I needed to wait for the whole page to be loaded together with the images and other stuff. It is easy to use HttpWebRequest to fill up some forms , provide some data and then submit. But on some occasions I only need to simulate a mouse click to a certain link which I don't know how to do with HttpWebRequest. By the way using HttpWebRequest will still download all the images of a web page that I see pointless since I only need to provide correct data back to the server. I hope someone can pinpoint me the correct way of doing this kind of automation and thanks in advance!

    Read the article

  • Are reads and (transactional) writes faster for entities of the same group than otherwise?

    - by indiehacker
    What advantage is there to designing child-parent relationships, which allow us to do writes in transactions, when there is never a real concern for consistency and contention and those sort of more complex issues? Does it make writes and reads faster? Consider my situation where there are many .png images that are referenced to one mosaic layer, and these .png images are written just once by a single user. The user can design many mosaic layers and her mosaic layers and referenced image entities are never changed/updated, they are just deleted some time in the future. Other users can come to the web project site and interactively view the mosaic layer as different layouts/configurations of the images as they play (query) with different criteria. So reads should be very fast. So there is no real worry of contention, or users conflicting with one another with writing new image entities. And because of that I am assuming there is no "requirement" for the .png image entities to be grouped by their same mosaic layer in child-parent relationship. However, perhaps, since the documentation says they are stored close to one another, if the many image entities were grouped as children to a single mosaic layer parent than this has the advantage that the writing (in transaction) and reading will happen much faster?

    Read the article

  • including pre-built java classes into an android project

    - by moonlightcheese
    i'm trying to include a maven java project into my android project. the maven project is the greader-unofficial project which allows developers access to google reader accounts, and handles all of the http transactions and URI/URL building, making grabbing feeds and items from google reader transparent to the developer. the project is available here: http://code.google.com/p/greader-unofficial/ the code is originally written for the standard jdk and uses classes from java.net that are not a part of the standard Android SDK. i actually tried to manually resolve all dependencies and ran into a problem when i got as far as including com.sun.syndication pieces required by the class be.lechtitseb.google.reader.api.util.AtomUtil.java... some of the classes in java.net that are in the standard jdk (i'm using 1.6) are not in the Android SDK. in addition, resolving all of these dependencies manually is just ridiculous when i'm compiling a maven project that should be pretty simple. however, i can use maven to compile the sources with no issue. how can i include this maven project, which is dependent on the complete jdk, into my android project in such a way that it will compile so that i can access the GoogleReader class from my android project? and for the record, i don't have the expertise to rewrite this entire api to work with the standard Android SDK.

    Read the article

  • How to properly cast a global memory array using the uint4 vector in CUDA to increase memory throughput?

    - by charis
    There are generally two techniques to increase the memory throughput of the global memory on a CUDA kernel; memory accesses coalescence and accessing words of at least 4 bytes. With the first technique accesses to the same memory segment by threads of the same half-warp are coalesced to fewer transactions while be accessing words of at least 4 bytes this memory segment is effectively increased from 32 bytes to 128. To access 16-byte instead of 1-byte words when there are unsigned chars stored in the global memory, the uint4 vector is commonly used by casting the memory array to uint4: uint4 *text4 = ( uint4 * ) d_text; var = text4[i]; In order to extract the 16 chars from var, i am currently using bitwise operations. For example: s_array[j * 16 + 0] = var.x & 0x000000FF; s_array[j * 16 + 1] = (var.x >> 8) & 0x000000FF; s_array[j * 16 + 2] = (var.x >> 16) & 0x000000FF; s_array[j * 16 + 3] = (var.x >> 24) & 0x000000FF; My question is, is it possible to recast var (or for that matter *text4) to unsigned char in order to avoid the additional overhead of the bitwise operations?

    Read the article

  • Database solution for 200million writes/day, monthly summarization queries

    - by sb
    Hello. I'm looking for help deciding on which database system to use. (I've been googling and reading for the past few hours; it now seems worthwhile to ask for help from someone with firsthand knowledge.) I need to log around 200 million rows (or more) per 8 hour workday to a database, then perform weekly/monthly/yearly summary queries on that data. The summary queries would be for collecting data for things like billing statements, eg. "How many transactions of type A did each user run this month?" (could be more complex, but that's the general idea). I can spread the database amongst several machines, as necessary, but I don't think I can take old data offline. I'll definitely need to be able to query a month's worth of data, maybe a year. These queries would be for my own use, and wouldn't need to be generated in real-time for an end-user (they could run overnight, if needed). Does anyone have any suggestions as to which databases would be a good fit? P.S. Cassandra looks like it would have no problem handling the writes, but what about the huge monthly table scans? Is anyone familiar with Cassandra/Hadoop MapReduce performance?

    Read the article

  • Common Properties: Consolidating Loan, Purchase, Inventory and Sale tables into one Transaction tabl

    - by Frank Computer
    Pawnshop Application: I have separate tables for Loan, Purchase, Inventory & Sales transactions. Each tables rows are joined to their respective customer rows by: customer.pk [serial] = loan.fk [integer]; = purchase.fk [integer]; = inventory.fk [integer]; = sale.fk [integer]; Since there are so many common properties within the four tables, I consolidated the four tables into one table called "transaction", where a column: transaction.trx_type char(1) {L=Loan, P=Purchase, I=Inventory, S=Sale} Scenario: A customer initially pawns merchandise, makes a couple of interest payments, then decides he wants to sell the merchandise to the pawnshop, who then places merchandise in Inventory and eventually sells it to another customer. I designed a generic transaction table where for example: transaction.main_amount DECIMAL(7,2) in a loan transaction holds the pawn amount, in a purchase holds the purchase price, in inventory and sale holds sale price. This is clearly a denormalized design, but has made programming alot easier and improved performance. Any type of transaction can now be performed from within one screen, without the need to change to different tables.

    Read the article

  • How to efficiently use LOCK_ESCALATION mssql 2008

    - by Avias
    I'm currently having troubles with frequent deadlocks with a specific user table in MS SQL 2008. Here are some facts about this particular table: Has a large amount of rows (1 to 2 million) All the indexes used on this table only has "use row lock" ticked on its option rows are frequently updated by multiple transactions but are unique (e.g. probably a thousand or more update statements are executed to different unique rows every hour) the table does not use partitions. Upon checking the table on sys.tables, I found that the lock_escalation is set to TABLE I'm very tempted to turn the lock_escalation for this table to DISABLE but I'm not really sure what side effect this would incur. From What I understand, using DISABLE will minimize escalating locks to TABLE level which if combined with the row lock settings of the indexes should theoretically minimize the deadlocks I am encountering.. From what I have read in Determining threshold for lock escalation it seems that locking automatically escalates when a single transaction fetches 5000 rows.. What does a single transaction mean in this sense? A single session/connection getting 5000 rows thru individual update/select statements? Or is it a single sql update/select statement that fetches 5000 or more rows? Any insight is appreciated, btw, n00b DBA here Thanks

    Read the article

  • I have data about deadlocks, but I can't understand why they occur (MS SQL/ASP.NET MVC)

    - by Alex
    I am receiving a lot of deadlocks in my big web application. http://stackoverflow.com/questions/2941233/how-to-automatically-re-run-deadlocked-transaction-asp-net-mvc-sql-server Here I wanted to re-run deadlocked transactions, but I was told to get rid of the deadlocks - it's much better, than trying to catch the deadlocks. So I spent the whole day with SQL profiler, setting the tracing keys etc. And this is what I got. There's a Users table. I have a very high usable page with the following query (it's not the only query, but it's the one that causes troubles) UPDATE Users SET views = views + 1 WHERE ID IN (SELECT AuthorID FROM Articles WHERE ArticleID = @ArticleID) And then there's the following query in ALL pages: User = DB.Users.SingleOrDefault(u => u.Password == password && u.Name == username); That's where I get User from cookies. Very often a deadlock occurs and this second LINQ TO SQL query is chosen as a victim, so it's not run, and users of my site see an error screen. I read a lot about deadlocks... And I don't understand why this is causing a deadlock. So obviously both of this queries run very often. At least once a second. Maybe even more often (300-400 users online). So they can be run at the same time very easily, but why does it cause a deadlock? Please help. Thank you

    Read the article

  • Using ddply() to Get Frequency of Certain IDs, by Appearance in Multiple Rows (in R)

    - by EconomiCurtis
    Goal If the following description is hard follow, please see the example "before" and "after" to see a straightforward example. I have bartering data, with unique trade ids, and two sides of the trade. Side1 and Side2 are baskets, lists of item ids that represent both sides of the barter transaction. I'd like to count the frequency each ITEM appears in TRADES. E.g, if item "001" appeared in 3 trades, I'd have a count of 3 (ignoring how many times the item appeared in each trade). Further, I'd like to do this with the plyr ddply function. (If you're interested as to my motivation, I working over many hundreds of thousands of transactions and am already using a ddply to calculate several other summary statistics. I'd like to add this to the ddply I'm already using, rather than calculate it after, and merge it into the ddply output.... sorry if that was difficult to follow.) In terms of pseudo code I'm working off of: merge each row of Side1 and Side2 by row, get unique() appearances of each item id apply table() function transpose and relabel output from table Example of the structure of my data, and the output I desire. Data Example (before): df <- data.frame(TradeID = c("01","02","03","04")) df$Side1 = list(c("001","001","002"), c("002","002","003"), c("001","004"), c("001","002","003","004")) df$Side2 = list(c("001"),c("007"),c("009"),c()) Desired Output (after): df.ItemRelFreq_byTradeID <- data.frame(ItemID = c("001","002","003","004","007","009"), RelFreq_byTrade = c(3,3,2,2,1,1)) One method to do this without ddply I've worked out one way to do this below. My problem is that I can't quite seem to get ddply to do this for me. temp <- table(unlist(sapply(mapply(c,df$Side1,df$Side2), unique))) df.ItemRelFreq_byTradeID <- data.frame(ItemID = names(temp), RelFreq_byTrade = temp[]) Thanks for any help you can offer! Curtis

    Read the article

  • Infrastructure for high transactional system (language & hosting suggestion help)

    - by RPS
    Some of our friends (University students) are trying to develop a twitter type application, I want to plan for at least 1000 transactions per second (I know it's wishful thinking) for initial launch. This involves several people connecting and getting updates and posting (text + images) to site. In the back end db will server the data and also calculates rankings of what to push to user based on complex algorithm on the fly real-time. Our group is familiar with Java and Tomcat/MySQL. We can also easily learn/code in PHP/MySQL. What is the best suited platform for our purpose ? Though Java seem to be easy to implement for us I am afraid that hosting will be a bit difficult. I could find cloud based php hosting services (like rackspace cloudsites) at reasonable cost. Amazon EC2 is a bit over our heads to manage on day-to-day. Also any recommendation on hosting ? (PHP or Java) We don't have millions in seed money but about $20K to start with. Any advice on above or any thing in general approach is much appreciated.

    Read the article

  • HAProxy causing delay

    - by user1221444
    I am trying to configure HAProxy to do load balancing for a custom webserver I created. Right now I am noticing an increasing delay with HAProxy as the size of the return message increases. For example, I ran four different tests, here are the results: Response 15kb through HAProxy: Avg. response time: .34 secs Transacation rate: 763 trans/sec Throughput: 11.08 MB/sec Response 2kb through HAProxy: Avg. response time: .08 secs Transaction rate: 1171 trans / sec Throughput: 2.51 MB/sec Response 15kb directly to server: Avg. response time: .11 sec Transaction rate: 1046 trans/sec throughput: 15.20 MB/sec Response 2kb directly to server: Avg. Response time: .05 secs Transaction rate: 1158 trans/sec Throughput: 2.48 MB/sec All transactions are HTTP requests. As you can see, there seems to be a much bigger difference between response times for when the response is bigger, than when it is smaller. I understand there will be a slight delay when using HAProxy. Not sure if it matters, but the test itself was run using siege. And during the test there was only one server behind the HAProxy(the same that was used in the direct to server tests). Here is my haproxy.config file: global log 127.0.0.1 local0 log 127.0.0.1 local1 notice maxconn 10000 user haproxy group haproxy daemon #debug defaults log global mode http option httplog option dontlognull retries 3 option redispatch option httpclose maxconn 10000 contimeout 10000 clitimeout 50000 srvtimeout 50000 balance roundrobin stats enable stats uri /stats listen lb1 10.1.10.26:80 maxconn 10000 server app1 10.1.10.200:8080 maxconn 5000 I couldn't find much in terms of options in this file that would help my problem. I have heard suggestions that I may have to adjust a few of my sysctl settings. I could not find a lot of information on this however, most documentation is for Linux 2.4 and 2.6 on the sysctl stuff, I am running 3.2(Ubuntu server 12.04), which seems to auto tuning, so I have no clue what I should or shouldn't be changing. Most settings changes I tried had no effect or a negative effect on performance. Just a notice, this is a very preliminary test, and my hope is that at deployment time, my HAProxy will be able to balance 10k-20k requests/sec to many servers, so if anyone could provide information to help me reach that goal, it would be much appreciated. Thank you very much for any information you can provide. And if you need anymore information from me please let me know, I will get you anything I can.

    Read the article

  • 64-bit linux kernel only seeing 3 of 4GB after upgrade...

    - by Blaine
    Hey everyone. I am running Ubuntu 9.04 64-bit on my macbook. I had 2GB of ram before, and everything ran great. I just upgraded to 2x2GB (4GB), but my system only sees 3GB of it. OS X, which I am dual booting, sees all 4GB. Also, my video performance is incredibly lacking. Before the upgrade my compiz benchmark was full at 80fps, and now it is at 22fps with very choppy window dragging. Has anyone ever heard of this on a 64-bit kernel? I just don't quite understand what could be the issue. 10$ uname -a Linux macbook 2.6.28-15-generic #49-Ubuntu SMP Tue Aug 18 19:25:34 UTC 2009 x86_64 GNU/Linux $ free -m total used free shared buffers cached Mem: 2953 1031 1921 0 114 427 -/+ buffers/cache: 489 2463 Swap: 7812 0 7812 9$ lsmod Module Size Used by i915 77960 2 drm 123232 3 i915 binfmt_misc 18572 1 ppdev 16904 0 btusb 21784 2 bridge 63776 0 stp 11140 1 bridge bnep 22912 2 vboxnetadp 109356 0 vboxnetflt 116972 0 vboxdrv 1721612 1 vboxnetflt uvcvideo 69640 0 compat_ioctl32 18304 1 uvcvideo videodev 45184 2 uvcvideo,compat_ioctl32 v4l1_compat 23940 2 uvcvideo,videodev lp 19588 0 parport 49584 2 ppdev,lp snd_hda_intel 557492 3 snd_pcm_oss 52352 0 snd_mixer_oss 24960 1 snd_pcm_oss snd_pcm 99464 2 snd_hda_intel,snd_pcm_oss arc4 10240 2 snd_seq_dummy 11524 0 ecb 11392 2 snd_seq_oss 41984 0 snd_seq_midi 15744 0 snd_rawmidi 33920 1 snd_seq_midi snd_seq_midi_event 16512 2 snd_seq_oss,snd_seq_midi snd_seq 66272 6 snd_seq_dummy,snd_seq_oss,snd_seq_midi,snd_seq_midi_event ath9k 310584 0 snd_timer 34064 2 snd_pcm,snd_seq snd_seq_device 16276 5 snd_seq_dummy,snd_seq_oss,snd_seq_midi,snd_rawmidi,snd_seq mac80211 251528 1 ath9k iTCO_wdt 21712 0 iTCO_vendor_support 12420 1 iTCO_wdt joydev 20992 0 video 29204 0 snd 78920 15 snd_hda_intel,snd_pcm_oss,snd_mixer_oss,snd_pcm,snd_seq_oss,snd_rawmidi,snd_seq,snd_timer,snd_seq_device applesmc 37700 0 output 11648 1 video soundcore 16800 1 snd pcspkr 11136 0 cfg80211 43680 1 mac80211 appletouch 19972 0 isight_firmware 11520 0 input_polldev 12688 1 applesmc intel_agp 39408 1 snd_page_alloc 18704 2 snd_hda_intel,snd_pcm led_class 13064 2 ath9k,applesmc hid_apple 15872 0 usbhid 47040 0 ohci1394 42164 0 ieee1394 108288 1 ohci1394 sky2 63364 0 fbcon 49792 0 tileblit 11264 1 fbcon font 17024 1 fbcon bitblit 14464 1 fbcon softcursor 10368 1 bitblit Some information from dmesg: [ 795.820163] ACPI: EC: GPE storm detected, transactions will use polling mode [ 1762.709516] [drm:i915_getparam] *ERROR* Unknown parameter 6 [ 1763.078130] [drm:i915_getparam] *ERROR* Unknown parameter 6 [ 2362.760889] [drm:i915_getparam] *ERROR* Unknown parameter 6 [ 2416.352084] ACPI: EC: missing confirmations, switch off interrupt mode. [ 3718.721095] [drm:i915_getparam] *ERROR* Unknown parameter 6 [ 3719.108914] [drm:i915_getparam] *ERROR* Unknown parameter 6 [ 4318.773266] [drm:i915_getparam] *ERROR* Unknown parameter 6 [ 9513.813066] CE: hpet increasing min_delta_ns to 15000 nsec [ 9693.815684] npviewer.bin[6736]

    Read the article

  • PCI-DSS compliance for business with only swipe terminals [migrated]

    - by rowatt
    I support the IT infrastructure for a small retail business which is now required to undergo a PCI-DSS assessment. The payment service and terminal provider (Streamline) has asked that we use Trustwave to do the PCI-DSS certification. The problem I face is that if I answer all questions and follow Trustwave's requirements to the letter, we will have to invest significantly in networking equipment to segment LANs and /or do internal vulnerability scanning, while at the same time Streamline assures me that the terminals we have (Verifone VX670-B and MagIC3 X-8) are secure, don't store any credit card information and are PCI-DSS compliant so by implication we don't need to take any action to ensure their network security. I'm looking for any suggestions as to how we can most easily meet the networking requirements for PCI-DSS. Some background on our current network setup: single wired LAN, also with WiFi turned on (though if this creates any PCI-DSS complexities we can turn it off). single Netgear ADSL router. This is the only firewall we have in place, and the firewall is out the box configuration (i.e. no DMZ, SNMP etc). Passwords have been changed though :-) a few windows PCs and 2 windows based tills, none of which ever see any credit card information at all. two swipe terminals. Until a few months ago (before we were told we had to be PCI-DSS certified) these terminals did auth/capture over the phone. Streamline suggested we moved to their IP Broadband service, which instead uses an SSL encrypted channel over the internet to do auth/capture, so we now use that service. We don't do any ecommerce or receive payments over the internet. All transactions are either cardholder present, or MOTO with details given over phone and typed direct into terminal. We're based in the UK. As I currently understand it we have three options in order to get PCI-DSS certification. segment our network so the POS terminals are isolated from all PCs, and set up internal vulnerability scanning on that network. don't segment the network, and have to do more internal scanning and have more onerous management of PCs than I think we need (for example, though the tills are Windows based, they are fully managed so I have no control over software update policies, anti virus etc). All PCs have anti virus (MSE) and windows updates automatically applied, but we don't have any centralised go back to auth/capture over phone lines. I can't imagine we are the first merchant to be in this situation. I'm looking for any recommendations a simple, cost effective way to be PCI-DSS compliant - either by doing 1 or 2 above with (hopefully) simple and inexpensive equipment/software, or any other ways if there's a better way to do this. Or... should we just go back to the digital stone age and do auth/capture over the phone, which means we don't need to do anything on our network to be PCI-DSS certified?

    Read the article

  • How do i enable innodb on ubuntu server 10.04

    - by Matt
    Here is my entire my.cnf [client] port = 3306 socket = /var/run/mysqld/mysqld.sock # Here is entries for some specific programs # The following values assume you have at least 32M ram # This was formally known as [safe_mysqld]. Both versions are currently parsed. [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] key_buffer = 224M sort_buffer_size = 4M read_buffer_size = 4M read_rnd_buffer_size = 4M myisam_sort_buffer_size = 12M query_cache_size = 44M # # * Basic Settings # # # * IMPORTANT # If you make changes to these settings and your system uses apparmor, you may # also need to also adjust /etc/apparmor.d/usr.sbin.mysqld. # user = mysql socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp skip-external-locking # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. bind-address = 127.0.0.1 # # * Fine Tuning # #key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #max_connections = 100 #table_cache = 64 #thread_concurrency = 10 # # * Query Cache Configuration # query_cache_limit = 1M #query_cache_size = 16M # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. # As of 5.1 you can enable the log at runtime! #general_log_file = /var/log/mysql/mysql.log #general_log = 1 log_error = /var/log/mysql/error.log # Here you can see queries with especially long duration #log_slow_queries = /var/log/mysql/mysql-slow.log #long_query_time = 2 #log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. #server-id = 1 #log_bin = /var/log/mysql/mysql-bin.log expire_logs_days = 10 max_binlog_size = 100M #binlog_do_db = include_database_name #binlog_ignore_db = include_database_name # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 16M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 16M # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/ And here is my show engines call....i have no idea what i need to do to enable innodb show engines; +------------+---------+----------------------------------------------------------------+--------------+------+------------+ | Engine | Support | Comment | Transactions | XA | Savepoints | +------------+---------+----------------------------------------------------------------+--------------+------+------------+ | MyISAM | DEFAULT | Default engine as of MySQL 3.23 with great performance | NO | NO | NO | | MRG_MYISAM | YES | Collection of identical MyISAM tables | NO | NO | NO | | BLACKHOLE | YES | /dev/null storage engine (anything you write to it disappears) | NO | NO | NO | | CSV | YES | CSV storage engine | NO | NO | NO | | MEMORY | YES | Hash based, stored in memory, useful for temporary tables | NO | NO | NO | | FEDERATED | NO | Federated MySQL storage engine | NULL | NULL | NULL | | ARCHIVE | YES | Archive storage engine | NO | NO | NO | +------------+---------+----------------------------------------------------------------+--------------+------+------------+ 7 rows in set (0.00 sec)

    Read the article

  • High CPU usage - symptoms moving from server to server after bouncing

    - by grt3kl
    First off, I apologize if I didn't include enough information to properly troubleshoot this issue. This sort of thing isn't my specialty, so it is a learning process. If there's something I need to provide, please let me know and I'll be happy to do what I can. The images associated with my question are at the bottom of this post. We are dealing with a clustered environment of four WebLogic 9.2 Java application servers. The cluster utilizes a round-robin load algorithm. Other details include: Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_12-b04) BEA JRockit(R) (build R27.4.0-90_CR352234-91983-1.5.0_12-20071115-1605-linux-x86_64, compiled mode) Basically, I started looking at the servers' performance because our customers are seeing lots of lag at various times of the day. Our servers should easily handle the loads they are given, so it's not clear what's going on. Using HP Performance Manager, I generated some graphs that indicate that the CPU usage is completely out of whack. It seems that, at any given point, one or more of the servers has a CPU utilization of over 50%. I know this isn't particularly high, but I would say it is a red flag based on the CPU utilization of the other servers in the WebLogic cluster. Interesting things to note: The high CPU utilization was occurring only on server02 for several weeks. The server crashed (extremely rare; we are not sure if it's related to this) and upon starting it back up, the CPU utilization was normal on all 4 servers. We restarted all 4 managed servers and the application server (on server01) yesterday, on 2/28. As you can see, server03 and server04 picked up the behavior that was seen on server02 before. The CPU utilization is a Java process owned by the application user (appown). The number of transactions is consistent across all servers. It doesn't seem like any one server is actually handling more than another. If anyone has any ideas or can at least point me in the right direction, that would be great. Again, please let me know if there is any additional information I should post. Thanks!

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • What's New in ASP.NET 4

    - by Navaneeth
    The .NET Framework version 4 includes enhancements for ASP.NET 4 in targeted areas. Visual Studio 2010 and Microsoft Visual Web Developer Express also include enhancements and new features for improved Web development. This document provides an overview of many of the new features that are included in the upcoming release. This topic contains the following sections: ASP.NET Core Services ASP.NET Web Forms ASP.NET MVC Dynamic Data ASP.NET Chart Control Visual Web Developer Enhancements Web Application Deployment with Visual Studio 2010 Enhancements to ASP.NET Multi-Targeting ASP.NET Core Services ASP.NET 4 introduces many features that improve core ASP.NET services such as output caching and session state storage. Extensible Output Caching Since the time that ASP.NET 1.0 was released, output caching has enabled developers to store the generated output of pages, controls, and HTTP responses in memory. On subsequent Web requests, ASP.NET can serve content more quickly by retrieving the generated output from memory instead of regenerating the output from scratch. However, this approach has a limitation — generated content always has to be stored in memory. On servers that experience heavy traffic, the memory requirements for output caching can compete with memory requirements for other parts of a Web application. ASP.NET 4 adds extensibility to output caching that enables you to configure one or more custom output-cache providers. Output-cache providers can use any storage mechanism to persist HTML content. These storage options can include local or remote disks, cloud storage, and distributed cache engines. Output-cache provider extensibility in ASP.NET 4 lets you design more aggressive and more intelligent output-caching strategies for Web sites. For example, you can create an output-cache provider that caches the "Top 10" pages of a site in memory, while caching pages that get lower traffic on disk. Alternatively, you can cache every vary-by combination for a rendered page, but use a distributed cache so that the memory consumption is offloaded from front-end Web servers. You create a custom output-cache provider as a class that derives from the OutputCacheProvider type. You can then configure the provider in the Web.config file by using the new providers subsection of the outputCache element For more information and for examples that show how to configure the output cache, see outputCache Element for caching (ASP.NET Settings Schema). For more information about the classes that support caching, see the documentation for the OutputCache and OutputCacheProvider classes. By default, in ASP.NET 4, all HTTP responses, rendered pages, and controls use the in-memory output cache. The defaultProvider attribute for ASP.NET is AspNetInternalProvider. You can change the default output-cache provider used for a Web application by specifying a different provider name for defaultProvider attribute. In addition, you can select different output-cache providers for individual control and for individual requests and programmatically specify which provider to use. For more information, see the HttpApplication.GetOutputCacheProviderName(HttpContext) method. The easiest way to choose a different output-cache provider for different Web user controls is to do so declaratively by using the new providerName attribute in a page or control directive, as shown in the following example: <%@ OutputCache Duration="60" VaryByParam="None" providerName="DiskCache" %> Preloading Web Applications Some Web applications must load large amounts of data or must perform expensive initialization processing before serving the first request. In earlier versions of ASP.NET, for these situations you had to devise custom approaches to "wake up" an ASP.NET application and then run initialization code during the Application_Load method in the Global.asax file. To address this scenario, a new application preload manager (autostart feature) is available when ASP.NET 4 runs on IIS 7.5 on Windows Server 2008 R2. The preload feature provides a controlled approach for starting up an application pool, initializing an ASP.NET application, and then accepting HTTP requests. It lets you perform expensive application initialization prior to processing the first HTTP request. For example, you can use the application preload manager to initialize an application and then signal a load-balancer that the application was initialized and ready to accept HTTP traffic. To use the application preload manager, an IIS administrator sets an application pool in IIS 7.5 to be automatically started by using the following configuration in the applicationHost.config file: <applicationPools> <add name="MyApplicationPool" startMode="AlwaysRunning" /> </applicationPools> Because a single application pool can contain multiple applications, you specify individual applications to be automatically started by using the following configuration in the applicationHost.config file: <sites> <site name="MySite" id="1"> <application path="/" serviceAutoStartEnabled="true" serviceAutoStartProvider="PrewarmMyCache" > <!-- Additional content --> </application> </site> </sites> <!-- Additional content --> <serviceAutoStartProviders> <add name="PrewarmMyCache" type="MyNamespace.CustomInitialization, MyLibrary" /> </serviceAutoStartProviders> When an IIS 7.5 server is cold-started or when an individual application pool is recycled, IIS 7.5 uses the information in the applicationHost.config file to determine which Web applications have to be automatically started. For each application that is marked for preload, IIS7.5 sends a request to ASP.NET 4 to start the application in a state during which the application temporarily does not accept HTTP requests. When it is in this state, ASP.NET instantiates the type defined by the serviceAutoStartProvider attribute (as shown in the previous example) and calls into its public entry point. You create a managed preload type that has the required entry point by implementing the IProcessHostPreloadClient interface, as shown in the following example: public class CustomInitialization : System.Web.Hosting.IProcessHostPreloadClient { public void Preload(string[] parameters) { // Perform initialization. } } After your initialization code runs in the Preload method and after the method returns, the ASP.NET application is ready to process requests. Permanently Redirecting a Page Content in Web applications is often moved over the lifetime of the application. This can lead to links to be out of date, such as the links that are returned by search engines. In ASP.NET, developers have traditionally handled requests to old URLs by using the Redirect method to forward a request to the new URL. However, the Redirect method issues an HTTP 302 (Found) response (which is used for a temporary redirect). This results in an extra HTTP round trip. ASP.NET 4 adds a RedirectPermanent helper method that makes it easy to issue HTTP 301 (Moved Permanently) responses, as in the following example: RedirectPermanent("/newpath/foroldcontent.aspx"); Search engines and other user agents that recognize permanent redirects will store the new URL that is associated with the content, which eliminates the unnecessary round trip made by the browser for temporary redirects. Session State Compression By default, ASP.NET provides two options for storing session state across a Web farm. The first option is a session state provider that invokes an out-of-process session state server. The second option is a session state provider that stores data in a Microsoft SQL Server database. Because both options store state information outside a Web application's worker process, session state has to be serialized before it is sent to remote storage. If a large amount of data is saved in session state, the size of the serialized data can become very large. ASP.NET 4 introduces a new compression option for both kinds of out-of-process session state providers. By using this option, applications that have spare CPU cycles on Web servers can achieve substantial reductions in the size of serialized session state data. You can set this option using the new compressionEnabled attribute of the sessionState element in the configuration file. When the compressionEnabled configuration option is set to true, ASP.NET compresses (and decompresses) serialized session state by using the .NET Framework GZipStreamclass. The following example shows how to set this attribute. <sessionState mode="SqlServer" sqlConnectionString="data source=dbserver;Initial Catalog=aspnetstate" allowCustomSqlDatabase="true" compressionEnabled="true" /> ASP.NET Web Forms Web Forms has been a core feature in ASP.NET since the release of ASP.NET 1.0. Many enhancements have been in this area for ASP.NET 4, such as the following: The ability to set meta tags. More control over view state. Support for recently introduced browsers and devices. Easier ways to work with browser capabilities. Support for using ASP.NET routing with Web Forms. More control over generated IDs. The ability to persist selected rows in data controls. More control over rendered HTML in the FormView and ListView controls. Filtering support for data source controls. Enhanced support for Web standards and accessibility Setting Meta Tags with the Page.MetaKeywords and Page.MetaDescription Properties Two properties have been added to the Page class: MetaKeywords and MetaDescription. These two properties represent corresponding meta tags in the HTML rendered for a page, as shown in the following example: <head id="Head1" runat="server"> <title>Untitled Page</title> <meta name="keywords" content="keyword1, keyword2' /> <meta name="description" content="Description of my page" /> </head> These two properties work like the Title property does, and they can be set in the @ Page directive. For more information, see Page.MetaKeywords and Page.MetaDescription. Enabling View State for Individual Controls A new property has been added to the Control class: ViewStateMode. You can use this property to disable view state for all controls on a page except those for which you explicitly enable view state. View state data is included in a page's HTML and increases the amount of time it takes to send a page to the client and post it back. Storing more view state than is necessary can cause significant decrease in performance. In earlier versions of ASP.NET, you could reduce the impact of view state on a page's performance by disabling view state for specific controls. But sometimes it is easier to enable view state for a few controls that need it instead of disabling it for many that do not need it. For more information, see Control.ViewStateMode. Support for Recently Introduced Browsers and Devices ASP.NET includes a feature that is named browser capabilities that lets you determine the capabilities of the browser that a user is using. Browser capabilities are represented by the HttpBrowserCapabilities object which is stored in the HttpRequest.Browser property. Information about a particular browser's capabilities is defined by a browser definition file. In ASP.NET 4, these browser definition files have been updated to contain information about recently introduced browsers and devices such as Google Chrome, Research in Motion BlackBerry smart phones, and Apple iPhone. Existing browser definition files have also been updated. For more information, see How to: Upgrade an ASP.NET Web Application to ASP.NET 4 and ASP.NET Web Server Controls and Browser Capabilities. The browser definition files that are included with ASP.NET 4 are shown in the following list: •blackberry.browser •chrome.browser •Default.browser •firefox.browser •gateway.browser •generic.browser •ie.browser •iemobile.browser •iphone.browser •opera.browser •safari.browser A New Way to Define Browser Capabilities ASP.NET 4 includes a new feature referred to as browser capabilities providers. As the name suggests, this lets you build a provider that in turn lets you write custom code to determine browser capabilities. In ASP.NET version 3.5 Service Pack 1, you define browser capabilities in an XML file. This file resides in a machine-level folder or an application-level folder. Most developers do not need to customize these files, but for those who do, the provider approach can be easier than dealing with complex XML syntax. The provider approach makes it possible to simplify the process by implementing a common browser definition syntax, or a database that contains up-to-date browser definitions, or even a Web service for such a database. For more information about the new browser capabilities provider, see the What's New for ASP.NET 4 White Paper. Routing in ASP.NET 4 ASP.NET 4 adds built-in support for routing with Web Forms. Routing is a feature that was introduced with ASP.NET 3.5 SP1 and lets you configure an application to use URLs that are meaningful to users and to search engines because they do not have to specify physical file names. This can make your site more user-friendly and your site content more discoverable by search engines. For example, the URL for a page that displays product categories in your application might look like the following example: http://website/products.aspx?categoryid=12 By using routing, you can use the following URL to render the same information: http://website/products/software The second URL lets the user know what to expect and can result in significantly improved rankings in search engine results. the new features include the following: The PageRouteHandler class is a simple HTTP handler that you use when you define routes. You no longer have to write a custom route handler. The HttpRequest.RequestContext and Page.RouteData properties make it easier to access information that is passed in URL parameters. The RouteUrl expression provides a simple way to create a routed URL in markup. The RouteValue expression provides a simple way to extract URL parameter values in markup. The RouteParameter class makes it easier to pass URL parameter values to a query for a data source control (similar to FormParameter). You no longer have to change the Web.config file to enable routing. For more information about routing, see the following topics: ASP.NET Routing Walkthrough: Using ASP.NET Routing in a Web Forms Application How to: Define Routes for Web Forms Applications How to: Construct URLs from Routes How to: Access URL Parameters in a Routed Page Setting Client IDs The new ClientIDMode property makes it easier to write client script that references HTML elements rendered for server controls. Increasing use of Microsoft Ajax makes the need to do this more common. For example, you may have a data control that renders a long list of products with prices and you want to use client script to make a Web service call and update individual prices in the list as they change without refreshing the entire page. Typically you get a reference to an HTML element in client script by using the document.GetElementById method. You pass to this method the value of the id attribute of the HTML element you want to reference. In the case of elements that are rendered for ASP.NET server controls earlier versions of ASP.NET could make this difficult or impossible. You were not always able to predict what id values ASP.NET would generate, or ASP.NET could generate very long id values. The problem was especially difficult for data controls that would generate multiple rows for a single instance of the control in your markup. ASP.NET 4 adds two new algorithms for generating id attributes. These algorithms can generate id attributes that are easier to work with in client script because they are more predictable and that are easier to work with because they are simpler. For more information about how to use the new algorithms, see the following topics: ASP.NET Web Server Control Identification Walkthrough: Making Data-Bound Controls Easier to Access from JavaScript Walkthrough: Making Controls Located in Web User Controls Easier to Access from JavaScript How to: Access Controls from JavaScript by ID Persisting Row Selection in Data Controls The GridView and ListView controls enable users to select a row. In previous versions of ASP.NET, row selection was based on the row index on the page. For example, if you select the third item on page 1 and then move to page 2, the third item on page 2 is selected. In most cases, is more desirable not to select any rows on page 2. ASP.NET 4 supports Persisted Selection, a new feature that was initially supported only in Dynamic Data projects in the .NET Framework 3.5 SP1. When this feature is enabled, the selected item is based on the row data key. This means that if you select the third row on page 1 and move to page 2, nothing is selected on page 2. When you move back to page 1, the third row is still selected. This is a much more natural behavior than the behavior in earlier versions of ASP.NET. Persisted selection is now supported for the GridView and ListView controls in all projects. You can enable this feature in the GridView control, for example, by setting the EnablePersistedSelection property, as shown in the following example: <asp:GridView id="GridView2" runat="server" PersistedSelection="true"> </asp:GridView> FormView Control Enhancements The FormView control is enhanced to make it easier to style the content of the control with CSS. In previous versions of ASP.NET, the FormView control rendered it contents using an item template. This made styling more difficult in the markup because unexpected table row and table cell tags were rendered by the control. The FormView control supports RenderOuterTable, a property in ASP.NET 4. When this property is set to false, as show in the following example, the table tags are not rendered. This makes it easier to apply CSS style to the contents of the control. <asp:FormView ID="FormView1" runat="server" RenderTable="false"> For more information, see FormView Web Server Control Overview. ListView Control Enhancements The ListView control, which was introduced in ASP.NET 3.5, has all the functionality of the GridView control while giving you complete control over the output. This control has been made easier to use in ASP.NET 4. The earlier version of the control required that you specify a layout template that contained a server control with a known ID. The following markup shows a typical example of how to use the ListView control in ASP.NET 3.5. <asp:ListView ID="ListView1" runat="server"> <LayoutTemplate> <asp:PlaceHolder ID="ItemPlaceHolder" runat="server"></asp:PlaceHolder> </LayoutTemplate> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> In ASP.NET 4, the ListView control does not require a layout template. The markup shown in the previous example can be replaced with the following markup: <asp:ListView ID="ListView1" runat="server"> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> For more information, see ListView Web Server Control Overview. Filtering Data with the QueryExtender Control A very common task for developers who create data-driven Web pages is to filter data. This traditionally has been performed by building Where clauses in data source controls. This approach can be complicated, and in some cases the Where syntax does not let you take advantage of the full functionality of the underlying database. To make filtering easier, a new QueryExtender control has been added in ASP.NET 4. This control can be added to EntityDataSource or LinqDataSource controls in order to filter the data returned by these controls. Because the QueryExtender control relies on LINQ, but you do not to need to know how to write LINQ queries to use the query extender. The QueryExtender control supports a variety of filter options. The following lists QueryExtender filter options. Term Definition SearchExpression Searches a field or fields for string values and compares them to a specified string value. RangeExpression Searches a field or fields for values in a range specified by a pair of values. PropertyExpression Compares a specified value to a property value in a field. If the expression evaluates to true, the data that is being examined is returned. OrderByExpression Sorts data by a specified column and sort direction. CustomExpression Calls a function that defines custom filter in the page. For more information, see QueryExtenderQueryExtender Web Server Control Overview. Enhanced Support for Web Standards and Accessibility Earlier versions of ASP.NET controls sometimes render markup that does not conform to HTML, XHTML, or accessibility standards. ASP.NET 4 eliminates most of these exceptions. For details about how the HTML that is rendered by each control meets accessibility standards, see ASP.NET Controls and Accessibility. CSS for Controls that Can be Disabled In ASP.NET 3.5, when a control is disabled (see WebControl.Enabled), a disabled attribute is added to the rendered HTML element. For example, the following markup creates a Label control that is disabled: <asp:Label id="Label1" runat="server"   Text="Test" Enabled="false" /> In ASP.NET 3.5, the previous control settings generate the following HTML: <span id="Label1" disabled="disabled">Test</span> In HTML 4.01, the disabled attribute is not considered valid on span elements. It is valid only on input elements because it specifies that they cannot be accessed. On display-only elements such as span elements, browsers typically support rendering for a disabled appearance, but a Web page that relies on this non-standard behavior is not robust according to accessibility standards. For display-only elements, you should use CSS to indicate a disabled visual appearance. Therefore, by default ASP.NET 4 generates the following HTML for the control settings shown previously: <span id="Label1" class="aspNetDisabled">Test</span> You can change the value of the class attribute that is rendered by default when a control is disabled by setting the DisabledCssClass property. CSS for Validation Controls In ASP.NET 3.5, validation controls render a default color of red as an inline style. For example, the following markup creates a RequiredFieldValidator control: <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"   ErrorMessage="Required Field" ControlToValidate="RadioButtonList1" /> ASP.NET 3.5 renders the following HTML for the validator control: <span id="RequiredFieldValidator1"   style="color:Red;visibility:hidden;">RequiredFieldValidator</span> By default, ASP.NET 4 does not render an inline style to set the color to red. An inline style is used only to hide or show the validator, as shown in the following example: <span id="RequiredFieldValidator1"   style"visibility:hidden;">RequiredFieldValidator</span> Therefore, ASP.NET 4 does not automatically show error messages in red. For information about how to use CSS to specify a visual style for a validation control, see Validating User Input in ASP.NET Web Pages. CSS for the Hidden Fields Div Element ASP.NET uses hidden fields to store state information such as view state and control state. These hidden fields are contained by a div element. In ASP.NET 3.5, this div element does not have a class attribute or an id attribute. Therefore, CSS rules that affect all div elements could unintentionally cause this div to be visible. To avoid this problem, ASP.NET 4 renders the div element for hidden fields with a CSS class that you can use to differentiate the hidden fields div from others. The new classvalue is shown in the following example: <div class="aspNetHidden"> CSS for the Table, Image, and ImageButton Controls By default, in ASP.NET 3.5, some controls set the border attribute of rendered HTML to zero (0). The following example shows HTML that is generated by the Table control in ASP.NET 3.5: <table id="Table2" border="0"> The Image control and the ImageButton control also do this. Because this is not necessary and provides visual formatting information that should be provided by using CSS, the attribute is not generated in ASP.NET 4. CSS for the UpdatePanel and UpdateProgress Controls In ASP.NET 3.5, the UpdatePanel and UpdateProgress controls do not support expando attributes. This makes it impossible to set a CSS class on the HTMLelements that they render. In ASP.NET 4 these controls have been changed to accept expando attributes, as shown in the following example: <asp:UpdatePanel runat="server" class="myStyle"> </asp:UpdatePanel> The following HTML is rendered for this markup: <div id="ctl00_MainContent_UpdatePanel1" class="expandoclass"> </div> Eliminating Unnecessary Outer Tables In ASP.NET 3.5, the HTML that is rendered for the following controls is wrapped in a table element whose purpose is to apply inline styles to the entire control: FormView Login PasswordRecovery ChangePassword If you use templates to customize the appearance of these controls, you can specify CSS styles in the markup that you provide in the templates. In that case, no extra outer table is required. In ASP.NET 4, you can prevent the table from being rendered by setting the new RenderOuterTable property to false. Layout Templates for Wizard Controls In ASP.NET 3.5, the Wizard and CreateUserWizard controls generate an HTML table element that is used for visual formatting. In ASP.NET 4 you can use a LayoutTemplate element to specify the layout. If you do this, the HTML table element is not generated. In the template, you create placeholder controls to indicate where items should be dynamically inserted into the control. (This is similar to how the template model for the ListView control works.) For more information, see the Wizard.LayoutTemplate property. New HTML Formatting Options for the CheckBoxList and RadioButtonList Controls ASP.NET 3.5 uses HTML table elements to format the output for the CheckBoxList and RadioButtonList controls. To provide an alternative that does not use tables for visual formatting, ASP.NET 4 adds two new options to the RepeatLayout enumeration: UnorderedList. This option causes the HTML output to be formatted by using ul and li elements instead of a table. OrderedList. This option causes the HTML output to be formatted by using ol and li elements instead of a table. For examples of HTML that is rendered for the new options, see the RepeatLayout enumeration. Header and Footer Elements for the Table Control In ASP.NET 3.5, the Table control can be configured to render thead and tfoot elements by setting the TableSection property of the TableHeaderRow class and the TableFooterRow class. In ASP.NET 4 these properties are set to the appropriate values by default. CSS and ARIA Support for the Menu Control In ASP.NET 3.5, the Menu control uses HTML table elements for visual formatting, and in some configurations it is not keyboard-accessible. ASP.NET 4 addresses these problems and improves accessibility in the following ways: The generated HTML is structured as an unordered list (ul and li elements). CSS is used for visual formatting. The menu behaves in accordance with ARIA standards for keyboard access. You can use arrow keys to navigate menu items. (For information about ARIA, see Accessibility in Visual Studio and ASP.NET.) ARIA role and property attributes are added to the generated HTML. (Attributes are added by using JavaScript instead of included in the HTML, to avoid generating HTML that would cause markup validation errors.) Styles for the Menu control are rendered in a style block at the top of the page, instead of inline with the rendered HTML elements. If you want to use a separate CSS file so that you can modify the menu styles, you can set the Menu control's new IncludeStyleBlock property to false, in which case the style block is not generated. Valid XHTML for the HtmlForm Control In ASP.NET 3.5, the HtmlForm control (which is created implicitly by the <form runat="server"> tag) renders an HTML form element that has both name and id attributes. The name attribute is deprecated in XHTML 1.1. Therefore, this control does not render the name attribute in ASP.NET 4. Maintaining Backward Compatibility in Control Rendering An existing ASP.NET Web site might have code in it that assumes that controls are rendering HTML the way they do in ASP.NET 3.5. To avoid causing backward compatibility problems when you upgrade the site to ASP.NET 4, you can have ASP.NET continue to generate HTML the way it does in ASP.NET 3.5 after you upgrade the site. To do so, you can set the controlRenderingCompatibilityVersion attribute of the pages element to "3.5" in the Web.config file of an ASP.NET 4 Web site, as shown in the following example: <system.web>   <pages controlRenderingCompatibilityVersion="3.5"/> </system.web> If this setting is omitted, the default value is the same as the version of ASP.NET that the Web site targets. (For information about multi-targeting in ASP.NET, see .NET Framework Multi-Targeting for ASP.NET Web Projects.) ASP.NET MVC ASP.NET MVC helps Web developers build compelling standards-based Web sites that are easy to maintain because it decreases the dependency among application layers by using the Model-View-Controller (MVC) pattern. MVC provides complete control over the page markup. It also improves testability by inherently supporting Test Driven Development (TDD). Web sites created using ASP.NET MVC have a modular architecture. This allows members of a team to work independently on the various modules and can be used to improve collaboration. For example, developers can work on the model and controller layers (data and logic), while the designer work on the view (presentation). For tutorials, walkthroughs, conceptual content, code samples, and a complete API reference, see ASP.NET MVC 2. Dynamic Data Dynamic Data was introduced in the .NET Framework 3.5 SP1 release in mid-2008. This feature provides many enhancements for creating data-driven applications, such as the following: A RAD experience for quickly building a data-driven Web site. Automatic validation that is based on constraints defined in the data model. The ability to easily change the markup that is generated for fields in the GridView and DetailsView controls by using field templates that are part of your Dynamic Data project. For ASP.NET 4, Dynamic Data has been enhanced to give developers even more power for quickly building data-driven Web sites. For more information, see ASP.NET Dynamic Data Content Map. Enabling Dynamic Data for Individual Data-Bound Controls in Existing Web Applications You can use Dynamic Data features in existing ASP.NET Web applications that do not use scaffolding by enabling Dynamic Data for individual data-bound controls. Dynamic Data provides the presentation and data layer support for rendering these controls. When you enable Dynamic Data for data-bound controls, you get the following benefits: Setting default values for data fields. Dynamic Data enables you to provide default values at run time for fields in a data control. Interacting with the database without creating and registering a data model. Automatically validating the data that is entered by the user without writing any code. For more information, see Walkthrough: Enabling Dynamic Data in ASP.NET Data-Bound Controls. New Field Templates for URLs and E-mail Addresses ASP.NET 4 introduces two new built-in field templates, EmailAddress.ascx and Url.ascx. These templates are used for fields that are marked as EmailAddress or Url using the DataTypeAttribute attribute. For EmailAddress objects, the field is displayed as a hyperlink that is created by using the mailto: protocol. When users click the link, it opens the user's e-mail client and creates a skeleton message. Objects typed as Url are displayed as ordinary hyperlinks. The following example shows how to mark fields. [DataType(DataType.EmailAddress)] public object HomeEmail { get; set; } [DataType(DataType.Url)] public object Website { get; set; } Creating Links with the DynamicHyperLink Control Dynamic Data uses the new routing feature that was added in the .NET Framework 3.5 SP1 to control the URLs that users see when they access the Web site. The new DynamicHyperLink control makes it easy to build links to pages in a Dynamic Data site. For information, see How to: Create Table Action Links in Dynamic Data Support for Inheritance in the Data Model Both the ADO.NET Entity Framework and LINQ to SQL support inheritance in their data models. An example of this might be a database that has an InsurancePolicy table. It might also contain CarPolicy and HousePolicy tables that have the same fields as InsurancePolicy and then add more fields. Dynamic Data has been modified to understand inherited objects in the data model and to support scaffolding for the inherited tables. For more information, see Walkthrough: Mapping Table-per-Hierarchy Inheritance in Dynamic Data. Support for Many-to-Many Relationships (Entity Framework Only) The Entity Framework has rich support for many-to-many relationships between tables, which is implemented by exposing the relationship as a collection on an Entity object. New field templates (ManyToMany.ascx and ManyToMany_Edit.ascx) have been added to provide support for displaying and editing data that is involved in many-to-many relationships. For more information, see Working with Many-to-Many Data Relationships in Dynamic Data. New Attributes to Control Display and Support Enumerations The DisplayAttribute has been added to give you additional control over how fields are displayed. The DisplayNameAttribute attribute in earlier versions of Dynamic Data enabled you to change the name that is used as a caption for a field. The new DisplayAttribute class lets you specify more options for displaying a field, such as the order in which a field is displayed and whether a field will be used as a filter. The attribute also provides independent control of the name that is used for the labels in a GridView control, the name that is used in a DetailsView control, the help text for the field, and the watermark used for the field (if the field accepts text input). The EnumDataTypeAttribute class has been added to let you map fields to enumerations. When you apply this attribute to a field, you specify an enumeration type. Dynamic Data uses the new Enumeration.ascx field template to create UI for displaying and editing enumeration values. The template maps the values from the database to the names in the enumeration. Enhanced Support for Filters Dynamic Data 1.0 had built-in filters for Boolean columns and foreign-key columns. The filters did not let you specify the order in which they were displayed. The new DisplayAttribute attribute addresses this by giving you control over whether a column appears as a filter and in what order it will be displayed. An additional enhancement is that filtering support has been rewritten to use the new QueryExtender feature of Web Forms. This lets you create filters without requiring knowledge of the data source control that the filters will be used with. Along with these extensions, filters have also been turned into template controls, which lets you add new ones. Finally, the DisplayAttribute class mentioned earlier allows the default filter to be overridden, in the same way that UIHint allows the default field template for a column to be overridden. For more information, see Walkthrough: Filtering Rows in Tables That Have a Parent-Child Relationship and QueryableFilterRepeater. ASP.NET Chart Control The ASP.NET chart server control enables you to create ASP.NET pages applications that have simple, intuitive charts for complex statistical or financial analysis. The chart control supports the following features: Data series, chart areas, axes, legends, labels, titles, and more. Data binding. Data manipulation, such as copying, splitting, merging, alignment, grouping, sorting, searching, and filtering. Statistical formulas and financial formulas. Advanced chart appearance, such as 3-D, anti-aliasing, lighting, and perspective. Events and customizations. Interactivity and Microsoft Ajax. Support for the Ajax Content Delivery Network (CDN), which provides an optimized way for you to add Microsoft Ajax Library and jQuery scripts to your Web applications. For more information, see Chart Web Server Control Overview. Visual Web Developer Enhancements The following sections provide information about enhancements and new features in Visual Studio 2010 and Visual Web Developer Express. The Web page designer in Visual Studio 2010 has been enhanced for better CSS compatibility, includes additional support for HTML and ASP.NET markup snippets, and features a redesigned version of IntelliSense for JScript. Improved CSS Compatibility The Visual Web Developer designer in Visual Studio 2010 has been updated to improve CSS 2.1 standards compliance. The designer better preserves HTML source code and is more robust than in previous versions of Visual Studio. HTML and JScript Snippets In the HTML editor, IntelliSense auto-completes tag names. The IntelliSense Snippets feature auto-completes whole tags and more. In Visual Studio 2010, IntelliSense snippets are supported for JScript, alongside C# and Visual Basic, which were supported in earlier versions of Visual Studio. Visual Studio 2010 includes over 200 snippets that help you auto-complete common ASP.NET and HTML tags, including required attributes (such as runat="server") and common attributes specific to a tag (such as ID, DataSourceID, ControlToValidate, and Text). You can download additional snippets, or you can write your own snippets that encapsulate the blocks of markup that you or your team use for common tasks. For more information on HTML snippets, see Walkthrough: Using HTML Snippets. JScript IntelliSense Enhancements In Visual 2010, JScript IntelliSense has been redesigned to provide an even richer editing experience. IntelliSense now recognizes objects that have been dynamically generated by methods such as registerNamespace and by similar techniques used by other JavaScript frameworks. Performance has been improved to analyze large libraries of script and to display IntelliSense with little or no processing delay. Compatibility has been significantly increased to support almost all third-party libraries and to support diverse coding styles. Documentation comments are now parsed as you type and are immediately leveraged by IntelliSense. Web Application Deployment with Visual Studio 2010 For Web application projects, Visual Studio now provides tools that work with the IIS Web Deployment Tool (Web Deploy) to automate many processes that had to be done manually in earlier versions of ASP.NET. For example, the following tasks can now be automated: Creating an IIS application on the destination computer and configuring IIS settings. Copying files to the destination computer. Changing Web.config settings that must be different in the destination environment. Propagating changes to data or data structures in SQL Server databases that are used by the Web application. For more information about Web application deployment, see ASP.NET Deployment Content Map. Enhancements to ASP.NET Multi-Targeting ASP.NET 4 adds new features to the multi-targeting feature to make it easier to work with projects that target earlier versions of the .NET Framework. Multi-targeting was introduced in ASP.NET 3.5 to enable you to use the latest version of Visual Studio without having to upgrade existing Web sites or Web services to the latest version of the .NET Framework. In Visual Studio 2008, when you work with a project targeted for an earlier version of the .NET Framework, most features of the development environment adapt to the targeted version. However, IntelliSense displays language features that are available in the current version, and property windows display properties available in the current version. In Visual Studio 2010, only language features and properties available in the targeted version of the .NET Framework are shown. For more information about multi-targeting, see the following topics: .NET Framework Multi-Targeting for ASP.NET Web Projects ASP.NET Side-by-Side Execution Overview How to: Host Web Applications That Use Different Versions of the .NET Framework on the Same Server How to: Deploy Web Site Projects Targeted for Earlier Versions of the .NET Framework

    Read the article

< Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >