Search Results

Search found 15456 results on 619 pages for 'global temporary tables'.

Page 98/619 | < Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >

  • Can I lock tables in an IF statement in MySQL?

    - by MalcomTucker
    This is throwing a syntax error - --from body of a stored proc IF (name = in_name) SET out_id = temp; ELSE LOCK TABLE People WRITE; INSERT INTO People (Name) VALUES (in_name); UNLOCK TABLE; SELECT LAST_INSERT_ID() INTO out_id END IF do I have to lock any tables I need at the start of the SP?

    Read the article

  • How can I set a default sort for tables in PHPMyAdmin (i.e. always "Primary key - Descending")

    - by jeremyclarke
    Even though its obnoxious in a lot of ways I use PHPMyAdmin all the time to debug database issues while writing PHP. By default it sorts tables by primary key ascending. 99% of the time I would rather have the newest data (my test data) shown at the top by default rather than the useless first few records ever saved. Is there a way to configure PHPMyAdmin to show the newest records by default? To alter similar behavior?

    Read the article

  • MSSQL. Compare columns in two tables.

    - by maxt3r
    Hi, i've recently done a migration from a really old version of some application to the current version and i faced some problems while migrating databases. I need a query that could help me to compare columns in two tables. I mean not the data in rows, i need to compare the columns itself to figure out, what changes in table structure i've missed.

    Read the article

  • Have 2 separate tables or an additional field in 1 table?

    - by hkansal
    Hello, I am making a small personal application regarding my trade of shares of various companies. The actions can be selling shares of a company or buying. Therefore, the details to be saved in both cases would be: Number of Shares Average Price Would it be better to use a separate tables for "buy" and "sell" or just use one table for "trade" and keep a field that demarcates "buy" from "sell"?

    Read the article

  • Allow users to pull temporary data then delete table?

    - by JM4
    I don't know the best way to title this question but am trying to accomplish the following goal: When a client logs into their profile, they are presented with a link to download data from an existing database in CSV format. The process works, however, I would like for this data to be 'fresh' each time they click the link so my plan was - once a user has clicked the link and downloaded the CSV file, the database table would 'erase' all of its data and start fresh (be empty) until the next set of data populated it. My EXISTING CSV creation code: <?php $host = 'localhost'; $user = 'username'; $pass = 'password'; $db = 'database'; $table = 'tablename'; $file = 'export'; $link = mysql_connect($host, $user, $pass) or die("Can not connect." . mysql_error()); mysql_select_db($db) or die("Can not connect."); $result = mysql_query("SHOW COLUMNS FROM ".$table.""); $i = 0; if (mysql_num_rows($result) > 0) { while ($row = mysql_fetch_assoc($result)) { $csv_output .= $row['Field'].", "; $i++; } } $csv_output .= "\n"; $values = mysql_query("SELECT * FROM ".$table.""); while ($rowr = mysql_fetch_row($values)) { for ($j=0;$j<$i;$j++) { $csv_output .= '"'.$rowr[$j].'",'; } $csv_output .= "\n"; } $filename = $file."_".date("Y-m-d",time()); header("Content-type: application/vnd.ms-excel"); header("Content-disposition: csv" . date("Y-m-d") . ".csv"); header( "Content-disposition: filename=".$filename.".csv"); print $csv_output; exit; ?> any ideas?

    Read the article

  • c++ link temporary allocations in fuction to custom allocator?

    - by user300713
    Hi, I am currently working on some simple custom allocators in c++ which generally works allready. I also overloaded the new/delete operators to allocate memory from my own allocator. Anyways I came across some scenarios where I don't really know where the memory comes from like this: void myFunc(){ myObj testObj(); ....do something with it } In this case testObj would only be valid inside the function, but where would its memory come from? Is there anyway I could link it to my allocator? Would I have to create to object using new and delete or is there another way? Thanks

    Read the article

  • Is it possible to download a large database using mysql query

    - by Rose
    i am downloading files from server using WinSCP.Is it possible to write a query to download a large database using mysql query? Or using any other method i have tried with this code but i am not able to get the whole database structure <?php if(file_exists('backup_sql/my_backup.zip')) { unlink('backup_sql/my_backup.zip'); } $tables='*'; $host='MY HOST NAME'; $user='MY_USERNAME'; $pass='MYPASSWORD'; $name='MY_DB_NAME'; $link = mysql_connect($host,$user,$pass); mysql_select_db($name,$link); //get all of the tables if($tables == '*') { $tables = array(); $result = mysql_query('SHOW TABLES'); while($row = mysql_fetch_row($result)) { $tables[] = $row[0]; } } else { $tables = is_array($tables) ? $tables : explode(',',$tables); } $return=''; //cycle through foreach($tables as $table) { $result = mysql_query('SELECT * FROM '.$table); $num_fields = mysql_num_fields($result); //$return.= 'DROP TABLE '.$table.';'; $row2 = mysql_fetch_row(mysql_query('SHOW CREATE TABLE '.$table)); $return.= "\n\n".$row2[1].";\n\n"; for ($i = 0; $i < $num_fields; $i++) { while($row = mysql_fetch_row($result)) { $return.= 'INSERT INTO '.$table.' VALUES('; for($j=0; $j<$num_fields; $j++) { $row[$j] = addslashes($row[$j]); //$row[$j] = ereg_replace("\n","\\n",$row[$j]); if (isset($row[$j])) { $return.= '"'.$row[$j].'"' ; } else { $return.= '""'; } if ($j<($num_fields-1)) { $return.= ','; } } $return.= ");\n"; } } $return.="\n\n\n"; } $rand_var=time(); $files_to_zip = array( "'backup_sql/db-backup-'.$rand_var.'.sql'", ); $name = 'db-backup-'.$rand_var.'.sql'; $data = $return; ?> any one please help me... thank you

    Read the article

  • Unable to generate a temporary class (result=1). error CS0030: Cannot convert type 'Type[]' to 'Type'?

    - by grady
    I get this error after I created a class from my xsd file using the xsd.exe tool. So I searched the net and found a solution. Here is the link: http://satov.blogspot.com/2006/12/xsdexe-generated-classes-causing.html Problem is that this makes the code run, but somehow the deserialized data seems corrupt. I did what the site suggests and in the end the 2nd array dimension is always empty (see the comments of the site, somebody also had this problem). Question is, how do I solve this issue now? Is there another tool to create the xsd file? I tried Xsd2Code, without success. Thanks :-)

    Read the article

  • Allow users to pull temporary data then delete table data (headers remain)?

    - by JM4
    I don't know the best way to title this question but am trying to accomplish the following goal: When a client logs into their profile, they are presented with a link to download data from an existing database in CSV format. The process works, however, I would like for this data to be 'fresh' each time they click the link so my plan was - once a user has clicked the link and downloaded the CSV file, the database table would 'erase' all of its data and start fresh (be empty) until the next set of data populated it. My EXISTING CSV creation code: <?php $host = 'localhost'; $user = 'username'; $pass = 'password'; $db = 'database'; $table = 'tablename'; $file = 'export'; $link = mysql_connect($host, $user, $pass) or die("Can not connect." . mysql_error()); mysql_select_db($db) or die("Can not connect."); $result = mysql_query("SHOW COLUMNS FROM ".$table.""); $i = 0; if (mysql_num_rows($result) > 0) { while ($row = mysql_fetch_assoc($result)) { $csv_output .= $row['Field'].", "; $i++; } } $csv_output .= "\n"; $values = mysql_query("SELECT * FROM ".$table.""); while ($rowr = mysql_fetch_row($values)) { for ($j=0;$j<$i;$j++) { $csv_output .= '"'.$rowr[$j].'",'; } $csv_output .= "\n"; } $filename = $file."_".date("Y-m-d",time()); header("Content-type: application/vnd.ms-excel"); header("Content-disposition: csv" . date("Y-m-d") . ".csv"); header( "Content-disposition: filename=".$filename.".csv"); print $csv_output; exit; ?> any ideas?

    Read the article

  • Unable to receive any emails using postfix, dovecot, mysql, and virtual domain/mailboxes

    - by stkdev248
    I have been working on configuring my mail server for the last couple of weeks using postfix, dovecot, and mysql. I have one virtual domain and a few virtual mailboxes. Using squirrelmail I have been able to log into my accounts and send emails out (e.g. I can send to googlemail just fine), however I am not able to receive any emails--not from the outside world nor from within my own network. I am able to telnet in using localhost, my private ip, and my public ip on port 25 without any problems (I've tried it from the server itself and from another computer on my network). This is what I get in my logs when I send an email from my googlemail account to my mail server: mail.log Apr 14 07:36:06 server1 postfix/qmgr[1721]: BE01B520538: from=, size=733, nrcpt=1 (queue active) Apr 14 07:36:06 server1 postfix/pipe[3371]: 78BC0520510: to=, relay=dovecot, delay=45421, delays=45421/0/0/0.13, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied) Apr 14 07:36:06 server1 postfix/pipe[3391]: 8261B520534: to=, relay=dovecot, delay=38036, delays=38036/0.06/0/0.12, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3378]: 63927520532: to=, relay=dovecot, delay=38105, delays=38105/0.02/0/0.17, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3375]: 07F65520522: to=, relay=dovecot, delay=39467, delays=39467/0.01/0/0.17, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3381]: EEDE9520527: to=, relay=dovecot, delay=38361, delays=38360/0.04/0/0.15, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3379]: 67DFF520517: to=, relay=dovecot, delay=40475, delays=40475/0.03/0/0.16, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3387]: 3C7A052052E: to=, relay=dovecot, delay=38259, delays=38259/0.05/0/0.13, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3394]: BE01B520538: to=, relay=dovecot, delay=37682, delays=37682/0.07/0/0.11, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:07 server1 postfix/pipe[3384]: 3C7A052052E: to=, relay=dovecot, delay=38261, delays=38259/0.04/0/1.3, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:39:23 server1 postfix/anvil[3368]: statistics: max connection rate 1/60s for (smtp:209.85.213.169) at Apr 14 07:35:32 Apr 14 07:39:23 server1 postfix/anvil[3368]: statistics: max connection count 1 for (smtp:209.85.213.169) at Apr 14 07:35:32 Apr 14 07:39:23 server1 postfix/anvil[3368]: statistics: max cache size 1 at Apr 14 07:35:32 Apr 14 07:41:06 server1 postfix/qmgr[1721]: ED6005203B7: from=, size=1463, nrcpt=1 (queue active) Apr 14 07:41:06 server1 postfix/pipe[4594]: ED6005203B7: to=, relay=dovecot, delay=334, delays=334/0.01/0/0.13, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:51:06 server1 postfix/qmgr[1721]: ED6005203B7: from=, size=1463, nrcpt=1 (queue active) Apr 14 07:51:06 server1 postfix/pipe[4604]: ED6005203B7: to=, relay=dovecot, delay=933, delays=933/0.02/0/0.12, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) mail-dovecot-log (the log I set for debugging): Apr 14 07:28:26 auth: Info: mysql(127.0.0.1): Connected to database postfixadmin Apr 14 07:28:26 auth: Debug: sql([email protected],127.0.0.1): query: SELECT password FROM mailbox WHERE username = '[email protected]' Apr 14 07:28:26 auth: Debug: client out: OK 1 [email protected] Apr 14 07:28:26 auth: Debug: master in: REQUEST 1809973249 3356 1 7cfb822db820fc5da67d0776b107cb3f Apr 14 07:28:26 auth: Debug: sql([email protected],127.0.0.1): SELECT '/home/vmail/mydomain.com/some.user1' as home, 5000 AS uid, 5000 AS gid FROM mailbox WHERE username = '[email protected]' Apr 14 07:28:26 auth: Debug: master out: USER 1809973249 [email protected] home=/home/vmail/mydomain.com/some.user1 uid=5000 gid=5000 Apr 14 07:28:26 imap-login: Info: Login: user=, method=PLAIN, rip=127.0.0.1, lip=127.0.0.1, mpid=3360, secured Apr 14 07:28:26 imap([email protected]): Debug: Effective uid=5000, gid=5000, home=/home/vmail/mydomain.com/some.user1 Apr 14 07:28:26 imap([email protected]): Debug: maildir++: root=/home/vmail/mydomain.com/some.user1/Maildir, index=/home/vmail/mydomain.com/some.user1/Maildir/indexes, control=, inbox=/home/vmail/mydomain.com/some.user1/Maildir Apr 14 07:48:31 imap([email protected]): Info: Disconnected: Logged out bytes=85/681 From the output above I'm pretty sure that my problems all stem from (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ), but I have no idea why I'm getting that error. I've have the permissions to that log set just like the other mail logs: root@server1:~# ls -l /var/log/mail* -rw-r----- 1 syslog adm 196653 2012-04-14 07:58 /var/log/mail-dovecot.log -rw-r----- 1 syslog adm 62778 2012-04-13 21:04 /var/log/mail.err -rw-r----- 1 syslog adm 497767 2012-04-14 08:01 /var/log/mail.log Does anyone have any idea what I may be doing wrong? Here are my main.cf and master.cf files: main.cf: # See /usr/share/postfix/main.cf.dist for a commented, more complete version # Debian specific: Specifying a file name will cause the first # line of that file to be used as the name. The Debian default # is /etc/mailname. #myorigin = /etc/mailname smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu) biff = no # appending .domain is the MUA's job. append_dot_mydomain = no # Uncomment the next line to generate "delayed mail" warnings #delay_warning_time = 4h readme_directory = no # TLS parameters smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key smtpd_use_tls=yes smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache # See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc package for # information on enabling SSL in the smtp client. myhostname = server1.mydomain.com alias_maps = hash:/etc/aliases alias_database = hash:/etc/aliases myorigin = /etc/mailname mydestination = relayhost = mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128 mailbox_command = procmail -a "$EXTENSION" mailbox_size_limit = 0 recipient_delimiter = + inet_interfaces = all # Virtual Configs virtual_uid_maps = static:5000 virtual_gid_maps = static:5000 virtual_mailbox_base = /home/vmail virtual_mailbox_domains = mysql:/etc/postfix/mysql_virtual_mailbox_domains.cf virtual_mailbox_maps = mysql:/etc/postfix/mysql_virtual_mailbox_maps.cf virtual_alias_maps = mysql:/etc/postfix/mysql_virtual_alias_maps.cf relay_domains = mysql:/etc/postfix/mysql_relay_domains.cf smtpd_recipient_restrictions = permit_mynetworks, permit_sasl_authenticated, reject_non_fqdn_hostname, reject_non_fqdn_sender, reject_non_fqdn_recipient, reject_unauth_destination, reject_unauth_pipelining, reject_invalid_hostname smtpd_sasl_auth_enable = yes smtpd_sasl_security_options = noanonymous virtual_transport=dovecot dovecot_destination_recipient_limit = 1 master.cf: # # Postfix master process configuration file. For details on the format # of the file, see the master(5) manual page (command: "man 5 master"). # # Do not forget to execute "postfix reload" after editing this file. # # ========================================================================== # service type private unpriv chroot wakeup maxproc command + args # (yes) (yes) (yes) (never) (100) # ========================================================================== smtp inet n - - - - smtpd #smtp inet n - - - 1 postscreen #smtpd pass - - - - - smtpd #dnsblog unix - - - - 0 dnsblog #tlsproxy unix - - - - 0 tlsproxy #submission inet n - - - - smtpd # -o smtpd_tls_security_level=encrypt # -o smtpd_sasl_auth_enable=yes # -o smtpd_client_restrictions=permit_sasl_authenticated,reject # -o milter_macro_daemon_name=ORIGINATING #smtps inet n - - - - smtpd # -o smtpd_tls_wrappermode=yes # -o smtpd_sasl_auth_enable=yes # -o smtpd_client_restrictions=permit_sasl_authenticated,reject # -o milter_macro_daemon_name=ORIGINATING #628 inet n - - - - qmqpd pickup fifo n - - 60 1 pickup cleanup unix n - - - 0 cleanup qmgr fifo n - n 300 1 qmgr #qmgr fifo n - - 300 1 oqmgr tlsmgr unix - - - 1000? 1 tlsmgr rewrite unix - - - - - trivial-rewrite bounce unix - - - - 0 bounce defer unix - - - - 0 bounce trace unix - - - - 0 bounce verify unix - - - - 1 verify flush unix n - - 1000? 0 flush proxymap unix - - n - - proxymap proxywrite unix - - n - 1 proxymap smtp unix - - - - - smtp # When relaying mail as backup MX, disable fallback_relay to avoid MX loops relay unix - - - - - smtp -o smtp_fallback_relay= # -o smtp_helo_timeout=5 -o smtp_connect_timeout=5 showq unix n - - - - showq error unix - - - - - error retry unix - - - - - error discard unix - - - - - discard local unix - n n - - local virtual unix - n n - - virtual lmtp unix - - - - - lmtp anvil unix - - - - 1 anvil scache unix - - - - 1 scache # # ==================================================================== # Interfaces to non-Postfix software. Be sure to examine the manual # pages of the non-Postfix software to find out what options it wants. # # Many of the following services use the Postfix pipe(8) delivery # agent. See the pipe(8) man page for information about ${recipient} # and other message envelope options. # ==================================================================== # # maildrop. See the Postfix MAILDROP_README file for details. # Also specify in main.cf: maildrop_destination_recipient_limit=1 # maildrop unix - n n - - pipe flags=DRhu user=vmail argv=/usr/bin/maildrop -d ${recipient} # # ==================================================================== # # Recent Cyrus versions can use the existing "lmtp" master.cf entry. # # Specify in cyrus.conf: # lmtp cmd="lmtpd -a" listen="localhost:lmtp" proto=tcp4 # # Specify in main.cf one or more of the following: # mailbox_transport = lmtp:inet:localhost # virtual_transport = lmtp:inet:localhost # # ==================================================================== # # Cyrus 2.1.5 (Amos Gouaux) # Also specify in main.cf: cyrus_destination_recipient_limit=1 # #cyrus unix - n n - - pipe # user=cyrus argv=/cyrus/bin/deliver -e -r ${sender} -m ${extension} ${user} # # ==================================================================== # Old example of delivery via Cyrus. # #old-cyrus unix - n n - - pipe # flags=R user=cyrus argv=/cyrus/bin/deliver -e -m ${extension} ${user} # # ==================================================================== # # See the Postfix UUCP_README file for configuration details. # uucp unix - n n - - pipe flags=Fqhu user=uucp argv=uux -r -n -z -a$sender - $nexthop!rmail ($recipient) # # Other external delivery methods. # ifmail unix - n n - - pipe flags=F user=ftn argv=/usr/lib/ifmail/ifmail -r $nexthop ($recipient) bsmtp unix - n n - - pipe flags=Fq. user=bsmtp argv=/usr/lib/bsmtp/bsmtp -t$nexthop -f$sender $recipient scalemail-backend unix - n n - 2 pipe flags=R user=scalemail argv=/usr/lib/scalemail/bin/scalemail-store ${nexthop} ${user} ${extension} mailman unix - n n - - pipe flags=FR user=list argv=/usr/lib/mailman/bin/postfix-to-mailman.py ${nexthop} ${user} dovecot unix - n n - - pipe flags=DRhu user=vmail:vmail argv=/usr/lib/dovecot/deliver -d ${recipient}

    Read the article

  • Server slowdown

    - by Clinton Bosch
    I have a GWT application running on Tomcat on a cloud linux(Ubuntu) server, recently I released a new version of the application and suddenly my server response times have gone from 500ms average to 15s average. I have run every monitoring tool I know. iostat says my disks are 0.03% utilised mysqltuner.pl says I am OK other see below top says my processor is 99% idle and load average: 0.20, 0.31, 0.33 memory usage is 50% (-/+ buffers/cache: 3997 3974) mysqltuner output [OK] Logged in using credentials from debian maintenance account. -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.1.63-0ubuntu0.10.04.1-log [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +Archive -BDB -Federated +InnoDB -ISAM -NDBCluster [--] Data in MyISAM tables: 370M (Tables: 52) [--] Data in InnoDB tables: 697M (Tables: 1749) [!!] Total fragmented tables: 1754 -------- Security Recommendations ------------------------------------------- [OK] All database users have passwords assigned -------- Performance Metrics ------------------------------------------------- [--] Up for: 19h 25m 41s (1M q [28.122 qps], 1K conn, TX: 2B, RX: 1B) [--] Reads / Writes: 98% / 2% [--] Total buffers: 1.0G global + 2.7M per thread (500 max threads) [OK] Maximum possible memory usage: 2.4G (30% of installed RAM) [OK] Slow queries: 0% (1/1M) [OK] Highest usage of available connections: 34% (173/500) [OK] Key buffer size / total MyISAM indexes: 16.0M/279.0K [OK] Key buffer hit rate: 99.9% (50K cached / 40 reads) [OK] Query cache efficiency: 61.4% (844K cached / 1M selects) [!!] Query cache prunes per day: 553779 [OK] Sorts requiring temporary tables: 0% (0 temp sorts / 34K sorts) [OK] Temporary tables created on disk: 4% (4K on disk / 102K total) [OK] Thread cache hit rate: 84% (185 created / 1K connections) [!!] Table cache hit rate: 0% (256 open / 27K opened) [OK] Open file limit used: 0% (20/2K) [OK] Table locks acquired immediately: 100% (692K immediate / 692K locks) [OK] InnoDB data size / buffer pool: 697.2M/1.0G -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Enable the slow query log to troubleshoot bad queries Increase table_cache gradually to avoid file descriptor limits Variables to adjust: query_cache_size (> 16M) table_cache (> 256)

    Read the article

  • MysqlTunner and query_cache_size dilemma

    - by wbad
    On a busy mysql server MySQLTuner 1.2.0 always recommends to add query_cache_size no matter how I increase the value (I tried up to 512MB). On the other hand it warns that : Increasing the query_cache size over 128M may reduce performance Here are the last results: >> MySQLTuner 1.2.0 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.5.25-1~dotdeb.0-log [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +Archive -BDB -Federated +InnoDB -ISAM -NDBCluster [--] Data in InnoDB tables: 6G (Tables: 195) [--] Data in PERFORMANCE_SCHEMA tables: 0B (Tables: 17) [!!] Total fragmented tables: 51 -------- Security Recommendations ------------------------------------------- [OK] All database users have passwords assigned -------- Performance Metrics ------------------------------------------------- [--] Up for: 1d 19h 17m 8s (254M q [1K qps], 5M conn, TX: 139B, RX: 32B) [--] Reads / Writes: 89% / 11% [--] Total buffers: 24.2G global + 92.2M per thread (1200 max threads) [!!] Maximum possible memory usage: 132.2G (139% of installed RAM) [OK] Slow queries: 0% (2K/254M) [OK] Highest usage of available connections: 32% (391/1200) [OK] Key buffer size / total MyISAM indexes: 128.0M/92.0K [OK] Key buffer hit rate: 100.0% (8B cached / 0 reads) [OK] Query cache efficiency: 79.9% (181M cached / 226M selects) [!!] Query cache prunes per day: 1033203 [OK] Sorts requiring temporary tables: 0% (341 temp sorts / 4M sorts) [OK] Temporary tables created on disk: 14% (760K on disk / 5M total) [OK] Thread cache hit rate: 99% (676 created / 5M connections) [OK] Table cache hit rate: 22% (1K open / 8K opened) [OK] Open file limit used: 0% (49/13K) [OK] Table locks acquired immediately: 99% (64M immediate / 64M locks) [OK] InnoDB data size / buffer pool: 6.1G/19.5G -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance Reduce your overall MySQL memory footprint for system stability Increasing the query_cache size over 128M may reduce performance Variables to adjust: *** MySQL's maximum memory usage is dangerously high *** *** Add RAM before increasing MySQL buffer variables *** query_cache_size (> 192M) [see warning above] The server has 76GB ram and dual E5-2650. The load is usually below 2. I appreciate your hints to interpret the recommendation and optimize the database configs.

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Can not parse table information from html document.

    - by Harikrishna
    I am parsing many html documents.I am using html agility pack And I want to parse the tabular information from each document. And there may be any number of tables in each document.But I want to extract only one table from each document which has column header name NAME,PHONE NO,ADDRESS.And this table can be anywhere in the document,like in the document there is ten tables and from ten table there is one table which has many nested tables and from nested table there may be a table what I want to extract means table can be anywhere in the document and I want to find that table from the document by column header name.If I got that table then I want to then extract the information from that table. Now I can find the table which has column header NAME,PHONE NO,ADDRESS and also can extract the information from that.I am doing for that is, first I find the all tables in a document by foreach (var table in doc.DocumentNode.Descendants("table")) then for each table got I find the row for each table like, var rows = table.Descendants("tr"); and then for each row I am checking that row has that header name NAME,ADDRESS,PHONENO and if it is then I skip that row and extract all information after that row foreach (var row in rows.Skip(rowNo)) { var data = new List<string>(); foreach (var column in row.Descendants("td")) { data.Add(properText); } } Such that I am extracting all information from almost many document. But now problem is sometimes what happened that in some document I can not parse the information.Like a document in which there are like 10 tables and from these 10 tables 1 table is like there are many nested tables in that table. And from these nested tables I want to find the table which tabel has column header like NAME,ADDRESS,PHONE NO.So if table may be anywhere in the document even in the nested tables or anywhere it can be find through column header name.So I can parse the information from that table and skip the outer tabular information from that table.

    Read the article

  • Can not parse tabular information from html document.

    - by Harikrishna
    I am parsing many html documents.I am using html agility pack And I want to parse the tabular information from each document. And there may be any number of tables in each document.But I want to extract only one table from each document which has column header name NAME,PHONE NO,ADDRESS.And this table can be anywhere in the document,like in the document there is ten tables and from ten table there is one table which has many nested tables and from nested table there may be a table what I want to extract means table can be anywhere in the document and I want to find that table from the document by column header name.If I got that table then I want to then extract the information from that table. Now I can find the table which has column header NAME,PHONE NO,ADDRESS and also can extract the information from that.I am doing for that is, first I find the all tables in a document by foreach (var table in doc.DocumentNode.Descendants("table")) then for each table got I find the row for each table like, var rows = table.Descendants("tr"); and then for each row I am checking that row has that header name NAME,ADDRESS,PHONENO and if it is then I skip that row and extract all information after that row foreach (var row in rows.Skip(rowNo)) { var data = new List<string>(); foreach (var column in row.Descendants("td")) { data.Add(properText); } } Such that I am extracting all information from almost many document. But now problem is sometimes what happened that in some document I can not parse the information.Like a document in which there are like 10 tables and from these 10 tables 1 table is like there are many nested tables in that table. And from these nested tables I want to find the table which tabel has column header like NAME,ADDRESS,PHONE NO.So if table may be anywhere in the document even in the nested tables or anywhere it can be find through column header name.So I can parse the information from that table and skip the outer tabular information of that table.

    Read the article

  • Long running transactions with Spring and Hibernate?

    - by jimbokun
    The underlying problem I want to solve is running a task that generates several temporary tables in MySQL, which need to stay around long enough to fetch results from Java after they are created. Because of the size of the data involved, the task must be completed in batches. Each batch is a call to a stored procedure called through JDBC. The entire process can take half an hour or more for a large data set. To ensure access to the temporary tables, I run the entire task, start to finish, in a single Spring transaction with a TransactionCallbackWithoutResult. Otherwise, I could get a different connection that does not have access to the temporary tables (this would happen occasionally before I wrapped everything in a transaction). This worked fine in my development environment. However, in production I got the following exception: java.sql.SQLException: Lock wait timeout exceeded; try restarting transaction This happened when a different task tried to access some of the same tables during the execution of my long running transaction. What confuses me is that the long running transaction only inserts or updates into temporary tables. All access to non-temporary tables are selects only. From what documentation I can find, the default Spring transaction isolation level should not cause MySQL to block in this case. So my first question, is this the right approach? Can I ensure that I repeatedly get the same connection through a Hibernate template without a long running transaction? If the long running transaction approach is the correct one, what should I check in terms of isolation levels? Is my understanding correct that the default isolation level in Spring/MySQL transactions should not lock tables that are only accessed through selects? What can I do to debug which tables are causing the conflict, and prevent those tables from being locked by the transaction?

    Read the article

  • Object reference not set to an instance of an object

    - by MBTHQ
    Can anyone help with the following code? I'm trying to get data from the database colum to the datagridview... I'm getting error over here "Dim sql_1 As String = "SELECT * FROM item where item_id = '" + DataGridView_stockout.CurrentCell.Value.ToString() + "'"" Private Sub DataGridView_stockout_CellMouseClick(ByVal sender As Object, ByVal e As System.Windows.Forms.DataGridViewCellMouseEventArgs) Handles DataGridView_stockout.CellMouseClick Dim i As Integer = Stock_checkDataSet1.Tables(0).Rows.Count > 0 Dim thiscur_stok As New System.Data.SqlClient.SqlConnection("Data Source=MBTHQ\SQLEXPRESS;Initial Catalog=stock_check;Integrated Security=True") ' Sql Query Dim sql_1 As String = "SELECT * FROM item where item_id = '" + DataGridView_stockout.CurrentCell.Value.ToString() + "'" ' Create Data Adapter Dim da_1 As New SqlDataAdapter(sql_1, thiscur_stok) ' Fill Dataset and Get Data Table da_1.Fill(Stock_checkDataSet1, "item") Dim dt_1 As DataTable = Stock_checkDataSet1.Tables("item") If i >= DataGridView_stockout.Rows.Count Then 'MessageBox.Show("Sorry, DataGridView_stockout doesn't any row at index " & i.ToString()) Exit Sub End If If 1 >= Stock_checkDataSet1.Tables.Count Then 'MessageBox.Show("Sorry, Stock_checkDataSet1 doesn't any table at index 1") Exit Sub End If If i >= Stock_checkDataSet1.Tables(1).Rows.Count Then 'MessageBox.Show("Sorry, Stock_checkDataSet1.Tables(1) doesn't any row at index " & i.ToString()) Exit Sub End If If Not Stock_checkDataSet1.Tables(1).Columns.Contains("os") Then 'MessageBox.Show("Sorry, Stock_checkDataSet1.Tables(1) doesn't any column named 'os'") Exit Sub End If 'DataGridView_stockout.Item("cs_stockout", i).Value = Stock_checkDataSet1.Tables(0).Rows(i).Item("os") Dim ab As String = Stock_checkDataSet1.Tables(0).Rows(i)(0).ToString() End Sub I keep on getting the error saying "Object reference not set to an instance of an object" I dont know where I'm going wrong. Help really appreciated!!

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • MYSQL inserting records form table A into tables B and C (linked by foreign key) depending on column values in table A

    - by Chez
    Hi All, Have been searching high and low for a simple solution to a mysql insert problem. The problem is as follows: I am putting together an organisational database consisting of departments and desks. A department may or may not have n number of desks. Both departments and desks have their own table linked by a foreign key in desks to the relevant record in departments (i.e. the pk). I have a temporary table which I use to place all new department data (n records long)...In this table n number of desk records for a department follow the department record directly below. In the TEMP table, if a column department_name has a value,it is a department, if it doesn't it will have a value for the column desk and therefore will be a desk which is related to the above department. As I said there maybe several desk records until you get to the next department record. Ok, so what I want to do is the following: Insert the departments into the departments table and its desks into the desks table , generating a foreign key in the desk record to the relevant departments id. In pseudo-ish code: for each record in TEMP table if Department INSERT the record into Departments get the id of the newly created Department record and store it somewhere else if Desk INSERT the desk into the desks table with the relevant departments id as the foreignkey note once again that all departments desks directly follow the department in the TEMP Table Many Thanks

    Read the article

  • JavaScript: Reference a functions local scope as an object

    - by eBusiness
    When I call a function, a local scope is erected for that call. Is there any way to directly reference that scope as an object? Just like window is a reference for the global scope object. Example: function test(foo){ var bar=1 //Now, can I access the object containing foo, bar, arguments and anything //else within the local scope like this: magicIdentifier.bar } Alternately, does anyone have a complete list of what is in the global scope on top of custom variables? Background: I'm trying to get down to a way of completely shifting to global scope from within a function call, the with statement is a joke, call works a little better, but it still breaks for anything declared in function scope but not in global scope, therefore I would declare these few cases in global scope, but that requires me to know what they are. The IE function execScript makes a complete shift, but that only solves the problem for IE. Note: To anyone loading JavaScript dynamically, setTimeout(code,1) is a simple effective hack to achieve global scope, but it will not execute immediately.

    Read the article

< Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >