Search Results

Search found 16914 results on 677 pages for 'single threaded'.

Page 98/677 | < Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >

  • Out-of-memory algorithms for addressing large arrays

    - by reve_etrange
    I am trying to deal with a very large dataset. I have k = ~4200 matrices (varying sizes) which must be compared combinatorially, skipping non-unique and self comparisons. Each of k(k-1)/2 comparisons produces a matrix, which must be indexed against its parents (i.e. can find out where it came from). The convenient way to do this is to (triangularly) fill a k-by-k cell array with the result of each comparison. These are ~100 X ~100 matrices, on average. Using single precision floats, it works out to 400 GB overall. I need to 1) generate the cell array or pieces of it without trying to place the whole thing in memory and 2) access its elements (and their elements) in like fashion. My attempts have been inefficient due to reliance on MATLAB's eval() as well as save and clear occurring in loops. for i=1:k [~,m] = size(data{i}); cur_var = ['H' int2str(i)]; %# if i == 1; save('FileName'); end; %# If using a single MAT file and need to create it. eval([cur_var ' = cell(1,k-i);']); for j=i+1:k [~,n] = size(data{j}); eval([cur_var '{i,j} = zeros(m,n,''single'');']); eval([cur_var '{i,j} = compare(data{i},data{j});']); end save(cur_var,cur_var); %# Add '-append' when using a single MAT file. clear(cur_var); end The other thing I have done is to perform the split when mod((i+j-1)/2,max(factor(k(k-1)/2))) == 0. This divides the result into the largest number of same-size pieces, which seems logical. The indexing is a little more complicated, but not too bad because a linear index could be used. Does anyone know/see a better way?

    Read the article

  • Returning C++ objects from Windows DLL

    - by R Samuel Klatchko
    Due to how Microsoft implements the heap in their non-DLL versions of the runtime, returning a C++ object from a DLL can cause problems: // dll.h DLL_EXPORT std::string somefunc(); and: // app.c - not part of DLL but in the main executable void doit() { std::string str(somefunc()); } The above code runs fine provided both the DLL and the EXE are built with the Multi-threaded DLL runtime library. But if the DLL and EXE are built without the DLL runtime library (either the single or multi-threaded versions), the code above fails (with a debug runtime, the code aborts immediately due to the assertion _CrtIsValidHeapPointer(pUserData) failing; with a non-debug runtime the heap gets corrupted and the program eventually fails elsewhere). Two questions: Is there a way to solve this other then requiring that all code use the DLL runtime? For people who distribute their libraries to third parties, how do you handle this? Do you not use C++ objects in your API? Do you require users of your library to use the DLL runtime? Something else?

    Read the article

  • What /else/ causes this?

    - by Mordachai
    MFC Toolbox Library.lib(SimpleFileIO.obj) : error LNK2005: _wcsnlen already defined in libcmtd.lib(wcslen_s.obj) fatal error LNK1169: one or more multiply defined symbols found This is driving me nuts. Normally, one would get this if the various projects that are a part of their solution do not agree on which CRT to use (single threaded, multi-threaded, release or debug). However, I have been over this thing about 500 times now, and they all agree. Background: this is a VS 2010 project just converted from VS 2008. MFC Toolbox Library.lib is set to compile as a static library, using /MTd, as is the target .exe I am trying to compile in this solution. Further, the solution that this is being converted from (VS 2008) already compiles & links properly!!! So it's not like that there is a disagreement between the two .vcproj's - or at least there wasn't before the conversion. Furthermore, the MFC Toolbox Library is used by about 25 other projects in another solution - and in that solution (Master Build English) it compiles & links against those other projects without complaint in both debug and release targets. I have just spent the last hour going over every single project property for this target project (Cimex Header Viewer) vs. several different target exe projects in Master Build English solution - and I cannot find a difference. They appear to be identical, excepting that they're different names. I've tried doing a clean & build all. I'm simply out of ideas. Does anyone have a thought on what else I might investigate??? I think I'm ready to start chewing glass. :(

    Read the article

  • I want to create a simple function to reset all input values without target input. (Javascript, Jque

    - by question_about_the_problem
    Hi, I want to create a simple function to reset all input values without target input. I don't know how i can do it. Thanks. Here is my sample codes: <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js"></script> <script> function reset_other_inputs(room) { $("input[name^='check_in_date_']").each(function () { if ( $("input[name!='check_in_date_'+room]") ) { this.val(""); } }); $("input[name^='check_out_date_']").each(function () { if ( $("input[name!='check_out_date_'+room]") ) { this.val(""); } }); } </script> <input type="text" name="check_in_date_single" value="single" onClick="reset_other_inputs('single');"> <input type="text" name="check_out_date_single" value="single" onClick="reset_other_inputs('single');"> <input type="text" name="check_in_date_double" value="double" onClick="reset_other_inputs('double');"> <input type="text" name="check_out_date_double" value="double" onClick="reset_other_inputs('double');"> <input type="text" name="check_in_date_triple" value="triple" onClick="reset_other_inputs('triple');"> <input type="text" name="check_out_date_triple" value="triple" onClick="reset_other_inputs('triple');"> <input type="text" name="check_in_date_suite" value="suite" onClick="reset_other_inputs('suite');"> <input type="text" name="check_out_date_suite" value="suite" onClick="reset_other_inputs('suite');">

    Read the article

  • How to efficiently use LOCK_ESCALATION mssql 2008

    - by Avias
    I'm currently having troubles with frequent deadlocks with a specific user table in MS SQL 2008. Here are some facts about this particular table: Has a large amount of rows (1 to 2 million) All the indexes used on this table only has "use row lock" ticked on its option rows are frequently updated by multiple transactions but are unique (e.g. probably a thousand or more update statements are executed to different unique rows every hour) the table does not use partitions. Upon checking the table on sys.tables, I found that the lock_escalation is set to TABLE I'm very tempted to turn the lock_escalation for this table to DISABLE but I'm not really sure what side effect this would incur. From What I understand, using DISABLE will minimize escalating locks to TABLE level which if combined with the row lock settings of the indexes should theoretically minimize the deadlocks I am encountering.. From what I have read in Determining threshold for lock escalation it seems that locking automatically escalates when a single transaction fetches 5000 rows.. What does a single transaction mean in this sense? A single session/connection getting 5000 rows thru individual update/select statements? Or is it a single sql update/select statement that fetches 5000 or more rows? Any insight is appreciated, btw, n00b DBA here Thanks

    Read the article

  • Need help INSERT record(s) MySQL DB

    - by JM4
    I have an online form which collects member(s) information and stores it into a very long MySQL database. We allow up to 16 members to enroll at a single time and originally structured the DB to allow such. For example: If 1 Member enrolls, his personal information (first name, last name, address, phone, email) are stored on a single row. If 15 Members enroll (all at once), their personal information are stored in the same single row. The row has information housing columns for all 'possible' inputs. I am trying to consolidate this code and having every nth member that enrolls put onto a new record within the database. I have seen sugestions before for inserting multiple records as such: INSERT INTO tablename VALUES (('$f1name', '$f1address', '$f1phone'), ('$f2name', '$f2address', '$f2phone')... The issue with this is two fold: I do not know how many records are being enrolled from person to person so the only way to make the statement above is to use a loop The information collected from the forms is NOT a single array so I can't loop through one array and have it parse out. My information is collected as individual input fields like such: Member1FirstName, Member1LastName, Member1Phone, Member2Firstname, Member2LastName, Member2Phone... and so on Is it possible to store information in separate rows WITHOUT using a loop (and therefore having to go back and completely restructure my form field names and such (which can't happen due to the way the validation rules are built.)

    Read the article

  • How to approach socket programming between C# -> Java (Android)

    - by Alex
    I've recently knocked up a server/client app for Windows & Android that allows one to send a file from Windows to an android phone over a socket connection. It works great for a single file but trying to send multiple files over in a single stream is causing me problems. I've also realised that aside from the binary data, I will need to send messages over the socket to indicate error states and other application messages. I have little experience with network programming and and wondering what is the best way forward. Basically the C# server side of the app just goes into a listening state and uses Socket.SendFile to transmit the file. On Android I use the standard Java Socket.getInputStream() to receive the file. That works great for a single file transfer, but how should I handle multiple files and error/messaging information? Do I need to use a different socket for each file? Should I be using a higher level framework to handle this or can I send everything over the single socket? Any other suggestions for frameworks or learning materials?

    Read the article

  • Is Berkeley DB a NoSQL solution?

    - by Gregory Burd
    Berkeley DB is a library. To use it to store data you must link the library into your application. You can use most programming languages to access the API, the calls across these APIs generally mimic the Berkeley DB C-API which makes perfect sense because Berkeley DB is written in C. The inspiration for Berkeley DB was the DBM library, a part of the earliest versions of UNIX written by AT&T's Ken Thompson in 1979. DBM was a simple key/value hashtable-based storage library. In the early 1990s as BSD UNIX was transitioning from version 4.3 to 4.4 and retrofitting commercial code owned by AT&T with unencumbered code, it was the future founders of Sleepycat Software who wrote libdb (aka Berkeley DB) as the replacement for DBM. The problem it addressed was fast, reliable local key/value storage. At that time databases almost always lived on a single node, even the most sophisticated databases only had simple fail-over two node solutions. If you had a lot of data to store you would choose between the few commercial RDBMS solutions or to write your own custom solution. Berkeley DB took the headache out of the custom approach. These basic market forces inspired other DBM implementations. There was the "New DBM" (ndbm) and the "GNU DBM" (GDBM) and a few others, but the theme was the same. Even today TokyoCabinet calls itself "a modern implementation of DBM" mimicking, and improving on, something first created over thirty years ago. In the mid-1990s, DBM was the name for what you needed if you were looking for fast, reliable local storage. Fast forward to today. What's changed? Systems are connected over fast, very reliable networks. Disks are cheep, fast, and capable of storing huge amounts of data. CPUs continued to follow Moore's Law, processing power that filled a room in 1990 now fits in your pocket. PCs, servers, and other computers proliferated both in business and the personal markets. In addition to the new hardware entire markets, social systems, and new modes of interpersonal communication moved onto the web and started evolving rapidly. These changes cause a massive explosion of data and a need to analyze and understand that data. Taken together this resulted in an entirely different landscape for database storage, new solutions were needed. A number of novel solutions stepped up and eventually a category called NoSQL emerged. The new market forces inspired the CAP theorem and the heated debate of BASE vs. ACID. But in essence this was simply the market looking at what to trade off to meet these new demands. These new database systems shared many qualities in common. There were designed to address massive amounts of data, millions of requests per second, and scale out across multiple systems. The first large-scale and successful solution was Dynamo, Amazon's distributed key/value database. Dynamo essentially took the next logical step and added a twist. Dynamo was to be the database of record, it would be distributed, data would be partitioned across many nodes, and it would tolerate failure by avoiding single points of failure. Amazon did this because they recognized that the majority of the dynamic content they provided to customers visiting their web store front didn't require the services of an RDBMS. The queries were simple, key/value look-ups or simple range queries with only a few queries that required more complex joins. They set about to use relational technology only in places where it was the best solution for the task, places like accounting and order fulfillment, but not in the myriad of other situations. The success of Dynamo, and it's design, inspired the next generation of Non-SQL, distributed database solutions including Cassandra, Riak and Voldemort. The problem their designers set out to solve was, "reliability at massive scale" so the first focal point was distributed database algorithms. Underneath Dynamo there is a local transactional database; either Berkeley DB, Berkeley DB Java Edition, MySQL or an in-memory key/value data structure. Dynamo was an evolution of local key/value storage onto networks. Cassandra, Riak, and Voldemort all faced similar design decisions and one, Voldemort, choose Berkeley DB Java Edition for it's node-local storage. Riak at first was entirely in-memory, but has recently added write-once, append-only log-based on-disk storage similar type of storage as Berkeley DB except that it is based on a hash table which must reside entirely in-memory rather than a btree which can live in-memory or on disk. Berkeley DB evolved too, we added high availability (HA) and a replication manager that makes it easy to setup replica groups. Berkeley DB's replication doesn't partitioned the data, every node keeps an entire copy of the database. For consistency, there is a single node where writes are committed first - a master - then those changes are delivered to the replica nodes as log records. Applications can choose to wait until all nodes are consistent, or fire and forget allowing Berkeley DB to eventually become consistent. Berkeley DB's HA scales-out quite well for read-intensive applications and also effectively eliminates the central point of failure by allowing replica nodes to be elected (using a PAXOS algorithm) to mastership if the master should fail. This implementation covers a wide variety of use cases. MemcacheDB is a server that implements the Memcache network protocol but uses Berkeley DB for storage and HA to replicate the cache state across all the nodes in the cache group. Google Accounts, the user authentication layer for all Google properties, was until recently running Berkeley DB HA. That scaled to a globally distributed system. That said, most NoSQL solutions try to partition (shard) data across nodes in the replication group and some allow writes as well as reads at any node, Berkeley DB HA does not. So, is Berkeley DB a "NoSQL" solution? Not really, but it certainly is a component of many of the existing NoSQL solutions out there. Forgetting all the noise about how NoSQL solutions are complex distributed databases when you boil them down to a single node you still have to store the data to some form of stable local storage. DBMs solved that problem a long time ago. NoSQL has more to do with the layers on top of the DBM; the distributed, sometimes-consistent, partitioned, scale-out storage that manage key/value or document sets and generally have some form of simple HTTP/REST-style network API. Does Berkeley DB do that? Not really. Is Berkeley DB a "NoSQL" solution today? Nope, but it's the most robust solution on which to build such a system. Re-inventing the node-local data storage isn't easy. A lot of people are starting to come to appreciate the sophisticated features found in Berkeley DB, even mimic them in some cases. Could Berkeley DB grow into a NoSQL solution? Absolutely. Our key/value API could be extended over the net using any of a number of existing network protocols such as memcache or HTTP/REST. We could adapt our node-local data partitioning out over replicated nodes. We even have a nice query language and cost-based query optimizer in our BDB XML product that we could reuse were we to build out a document-based NoSQL-style product. XML and JSON are not so different that we couldn't adapt one to work with the other interchangeably. Without too much effort we could add what's missing, we could jump into this No SQL market withing a single product development cycle. Why isn't Berkeley DB already a NoSQL solution? Why aren't we working on it? Why indeed...

    Read the article

  • MySQL – Scalability on Amazon RDS: Scale out to multiple RDS instances

    - by Pinal Dave
    Today, I’d like to discuss getting better MySQL scalability on Amazon RDS. The question of the day: “What can you do when a MySQL database needs to scale write-intensive workloads beyond the capabilities of the largest available machine on Amazon RDS?” Let’s take a look. In a typical EC2/RDS set-up, users connect to app servers from their mobile devices and tablets, computers, browsers, etc.  Then app servers connect to an RDS instance (web/cloud services) and in some cases they might leverage some read-only replicas.   Figure 1. A typical RDS instance is a single-instance database, with read replicas.  This is not very good at handling high write-based throughput. As your application becomes more popular you can expect an increasing number of users, more transactions, and more accumulated data.  User interactions can become more challenging as the application adds more sophisticated capabilities. The result of all this positive activity: your MySQL database will inevitably begin to experience scalability pressures. What can you do? Broadly speaking, there are four options available to improve MySQL scalability on RDS. 1. Larger RDS Instances – If you’re not already using the maximum available RDS instance, you can always scale up – to larger hardware.  Bigger CPUs, more compute power, more memory et cetera. But the largest available RDS instance is still limited.  And they get expensive. “High-Memory Quadruple Extra Large DB Instance”: 68 GB of memory 26 ECUs (8 virtual cores with 3.25 ECUs each) 64-bit platform High I/O Capacity Provisioned IOPS Optimized: 1000Mbps 2. Provisioned IOPs – You can get provisioned IOPs and higher throughput on the I/O level. However, there is a hard limit with a maximum instance size and maximum number of provisioned IOPs you can buy from Amazon and you simply cannot scale beyond these hardware specifications. 3. Leverage Read Replicas – If your application permits, you can leverage read replicas to offload some reads from the master databases. But there are a limited number of replicas you can utilize and Amazon generally requires some modifications to your existing application. And read-replicas don’t help with write-intensive applications. 4. Multiple Database Instances – Amazon offers a fourth option: “You can implement partitioning,thereby spreading your data across multiple database Instances” (Link) However, Amazon does not offer any guidance or facilities to help you with this. “Multiple database instances” is not an RDS feature.  And Amazon doesn’t explain how to implement this idea. In fact, when asked, this is the response on an Amazon forum: Q: Is there any documents that describe the partition DB across multiple RDS? I need to use DB with more 1TB but exist a limitation during the create process, but I read in the any FAQ that you need to partition database, but I don’t find any documents that describe it. A: “DB partitioning/sharding is not an official feature of Amazon RDS or MySQL, but a technique to scale out database by using multiple database instances. The appropriate way to split data depends on the characteristics of the application or data set. Therefore, there is no concrete and specific guidance.” So now what? The answer is to scale out with ScaleBase. Amazon RDS with ScaleBase: What you get – MySQL Scalability! ScaleBase is specifically designed to scale out a single MySQL RDS instance into multiple MySQL instances. Critically, this is accomplished with no changes to your application code.  Your application continues to “see” one database.   ScaleBase does all the work of managing and enforcing an optimized data distribution policy to create multiple MySQL instances. With ScaleBase, data distribution, transactions, concurrency control, and two-phase commit are all 100% transparent and 100% ACID-compliant, so applications, services and tooling continue to interact with your distributed RDS as if it were a single MySQL instance. The result: now you can cost-effectively leverage multiple MySQL RDS instance to scale out write-intensive workloads to an unlimited number of users, transactions, and data. Amazon RDS with ScaleBase: What you keep – Everything! And how does this change your Amazon environment? 1. Keep your application, unchanged – There is no change your application development life-cycle at all.  You still use your existing development tools, frameworks and libraries.  Application quality assurance and testing cycles stay the same. And, critically, you stay with an ACID-compliant MySQL environment. 2. Keep your RDS value-added services – The value-added services that you rely on are all still available. Amazon will continue to handle database maintenance and updates for you. You can still leverage High Availability via Multi A-Z.  And, if it benefits youra application throughput, you can still use read replicas. 3. Keep your RDS administration – Finally the RDS monitoring and provisioning tools you rely on still work as they did before. With your one large MySQL instance, now split into multiple instances, you can actually use less expensive, smallersmaller available RDS hardware and continue to see better database performance. Conclusion Amazon RDS is a tremendous service, but it doesn’t offer solutions to scale beyond a single MySQL instance. Larger RDS instances get more expensive.  And when you max-out on the available hardware, you’re stuck.  Amazon recommends scaling out your single instance into multiple instances for transaction-intensive apps, but offers no services or guidance to help you. This is where ScaleBase comes in to save the day. It gives you a simple and effective way to create multiple MySQL RDS instances, while removing all the complexities typically caused by “DIY” sharding andwith no changes to your applications . With ScaleBase you continue to leverage the AWS/RDS ecosystem: commodity hardware and value added services like read replicas, multi A-Z, maintenance/updates and administration with monitoring tools and provisioning. SCALEBASE ON AMAZON If you’re curious to try ScaleBase on Amazon, it can be found here – Download NOW. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Using Table-Valued Parameters in SQL Server

    - by Jesse
    I work with stored procedures in SQL Server pretty frequently and have often found myself with a need to pass in a list of values at run-time. Quite often this list contains a set of ids on which the stored procedure needs to operate the size and contents of which are not known at design time. In the past I’ve taken the collection of ids (which are usually integers), converted them to a string representation where each value is separated by a comma and passed that string into a VARCHAR parameter of a stored procedure. The body of the stored procedure would then need to parse that string into a table variable which could be easily consumed with set-based logic within the rest of the stored procedure. This approach works pretty well but the VARCHAR variable has always felt like an un-wanted “middle man” in this scenario. Of course, I could use a BULK INSERT operation to load the list of ids into a temporary table that the stored procedure could use, but that approach seems heavy-handed in situations where the list of values is usually going to contain only a few dozen values. Fortunately SQL Server 2008 introduced the concept of table-valued parameters which effectively eliminates the need for the clumsy middle man VARCHAR parameter. Example: Customer Transaction Summary Report Let’s say we have a report that can summarize the the transactions that we’ve conducted with customers over a period of time. The report returns a pretty simple dataset containing one row per customer with some key metrics about how much business that customer has conducted over the date range for which the report is being run. Sometimes the report is run for a single customer, sometimes it’s run for all customers, and sometimes it’s run for a handful of customers (i.e. a salesman runs it for the customers that fall into his sales territory). This report can be invoked from a website on-demand, or it can be scheduled for periodic delivery to certain users via SQL Server Reporting Services. Because the report can be created from different places and the query to generate the report is complex it’s been packed into a stored procedure that accepts three parameters: @startDate – The beginning of the date range for which the report should be run. @endDate – The end of the date range for which the report should be run. @customerIds – The customer Ids for which the report should be run. Obviously, the @startDate and @endDate parameters are DATETIME variables. The @customerIds parameter, however, needs to contain a list of the identity values (primary key) from the Customers table representing the customers that were selected for this particular run of the report. In prior versions of SQL Server we might have made this parameter a VARCHAR variable, but with SQL Server 2008 we can make it into a table-valued parameter. Defining And Using The Table Type In order to use a table-valued parameter, we first need to tell SQL Server about what the table will look like. We do this by creating a user defined type. For the purposes of this stored procedure we need a very simple type to model a table variable with a single integer column. We can create a generic type called ‘IntegerListTableType’ like this: CREATE TYPE IntegerListTableType AS TABLE (Value INT NOT NULL) Once defined, we can use this new type to define the @customerIds parameter in the signature of our stored procedure. The parameter list for the stored procedure definition might look like: 1: CREATE PROCEDURE dbo.rpt_CustomerTransactionSummary 2: @starDate datetime, 3: @endDate datetime, 4: @customerIds IntegerListTableTableType READONLY   Note the ‘READONLY’ statement following the declaration of the @customerIds parameter. SQL Server requires any table-valued parameter be marked as ‘READONLY’ and no DML (INSERT/UPDATE/DELETE) statements can be performed on a table-valued parameter within the routine in which it’s used. Aside from the DML restriction, however, you can do pretty much anything with a table-valued parameter as you could with a normal TABLE variable. With the user defined type and stored procedure defined as above, we could invoke like this: 1: DECLARE @cusomterIdList IntegerListTableType 2: INSERT @customerIdList VALUES (1) 3: INSERT @customerIdList VALUES (2) 4: INSERT @customerIdList VALUES (3) 5:  6: EXEC dbo.rpt_CustomerTransationSummary 7: @startDate = '2012-05-01', 8: @endDate = '2012-06-01' 9: @customerIds = @customerIdList   Note that we can simply declare a variable of type ‘IntegerListTableType’ just like any other normal variable and insert values into it just like a TABLE variable. We could also populate the variable with a SELECT … INTO or INSERT … SELECT statement if desired. Using The Table-Valued Parameter With ADO .NET Invoking a stored procedure with a table-valued parameter from ADO .NET is as simple as building a DataTable and passing it in as the Value of a SqlParameter. Here’s some example code for how we would construct the SqlParameter for the @customerIds parameter in our stored procedure: 1: var customerIdsParameter = new SqlParameter(); 2: customerIdParameter.Direction = ParameterDirection.Input; 3: customerIdParameter.TypeName = "IntegerListTableType"; 4: customerIdParameter.Value = selectedCustomerIds.ToIntegerListDataTable("Value");   All we’re doing here is new’ing up an instance of SqlParameter, setting the pamameters direction, specifying the name of the User Defined Type that this parameter uses, and setting its value. We’re assuming here that we have an IEnumerable<int> variable called ‘selectedCustomerIds’ containing all of the customer Ids for which the report should be run. The ‘ToIntegerListDataTable’ method is an extension method of the IEnumerable<int> type that looks like this: 1: public static DataTable ToIntegerListDataTable(this IEnumerable<int> intValues, string columnName) 2: { 3: var intergerListDataTable = new DataTable(); 4: intergerListDataTable.Columns.Add(columnName); 5: foreach(var intValue in intValues) 6: { 7: var nextRow = intergerListDataTable.NewRow(); 8: nextRow[columnName] = intValue; 9: intergerListDataTable.Rows.Add(nextRow); 10: } 11:  12: return intergerListDataTable; 13: }   Since the ‘IntegerListTableType’ has a single int column called ‘Value’, we pass that in for the ‘columnName’ parameter to the extension method. The method creates a new single-columned DataTable using the provided column name then iterates over the items in the IEnumerable<int> instance adding one row for each value. We can then use this SqlParameter instance when invoking the stored procedure just like we would use any other parameter. Advanced Functionality Using passing a list of integers into a stored procedure is a very simple usage scenario for the table-valued parameters feature, but I’ve found that it covers the majority of situations where I’ve needed to pass a collection of data for use in a query at run-time. I should note that BULK INSERT feature still makes sense for passing large amounts of data to SQL Server for processing. MSDN seems to suggest that 1000 rows of data is the tipping point where the overhead of a BULK INSERT operation can pay dividends. I should also note here that table-valued parameters can be used to deal with more complex data structures than single-columned tables of integers. A User Defined Type that backs a table-valued parameter can use things like identities and computed columns. That said, using some of these more advanced features might require the use the SqlDataRecord and SqlMetaData classes instead of a simple DataTable. Erland Sommarskog has a great article on his website that describes when and how to use these classes for table-valued parameters. What About Reporting Services? Earlier in the post I referenced the fact that our example stored procedure would be called from both a web application and a SQL Server Reporting Services report. Unfortunately, using table-valued parameters from SSRS reports can be a bit tricky and warrants its own blog post which I’ll be putting together and posting sometime in the near future.

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #032

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Complete Series of Database Coding Standards and Guidelines SQL SERVER Database Coding Standards and Guidelines – Introduction SQL SERVER – Database Coding Standards and Guidelines – Part 1 SQL SERVER – Database Coding Standards and Guidelines – Part 2 SQL SERVER Database Coding Standards and Guidelines Complete List Download Explanation and Example – SELF JOIN When all of the data you require is contained within a single table, but data needed to extract is related to each other in the table itself. Examples of this type of data relate to Employee information, where the table may have both an Employee’s ID number for each record and also a field that displays the ID number of an Employee’s supervisor or manager. To retrieve the data tables are required to relate/join to itself. Insert Multiple Records Using One Insert Statement – Use of UNION ALL This is very interesting question I have received from new developer. How can I insert multiple values in table using only one insert? Now this is interesting question. When there are multiple records are to be inserted in the table following is the common way using T-SQL. Function to Display Current Week Date and Day – Weekly Calendar Straight blog post with script to find current week date and day based on the parameters passed in the function.  2008 In my beginning years, I have almost same confusion as many of the developer had in their earlier years. Here are two of the interesting question which I have attempted to answer in my early year. Even if you are experienced developer may be you will still like to read following two questions: Order Of Column In Index Order of Conditions in WHERE Clauses Example of DISTINCT in Aggregate Functions Have you ever used DISTINCT with the Aggregation Function? Here is a simple example about how users can do it. Create a Comma Delimited List Using SELECT Clause From Table Column Straight to script example where I explained how to do something easy and quickly. Compound Assignment Operators SQL SERVER 2008 has introduced new concept of Compound Assignment Operators. Compound Assignment Operators are available in many other programming languages for quite some time. Compound Assignment Operators is operator where variables are operated upon and assigned on the same line. PIVOT and UNPIVOT Table Examples Here is a very interesting question – the answer to the question can be YES or NO both. “If we PIVOT any table and UNPIVOT that table do we get our original table?” Read the blog post to get the explanation of the question above. 2009 What is Interim Table – Simple Definition of Interim Table The interim table is a table that is generated by joining two tables and not the final result table. In other words, when two tables are joined they create an interim table as resultset but the resultset is not final yet. It may be possible that more tables are about to join on the interim table, and more operations are still to be applied on that table (e.g. Order By, Having etc). Besides, it may be possible that there is no interim table; sometimes final table is what is generated when the query is run. 2010 Stored Procedure and Transactions If Stored Procedure is transactional then, it should roll back complete transactions when it encounters any errors. Well, that does not happen in this case, which proves that Stored Procedure does not only provide just the transactional feature to a batch of T-SQL. Generate Database Script for SQL Azure When talking about SQL Azure the most common complaint I hear is that the script generated from stand-along SQL Server database is not compatible with SQL Azure. This was true for some time for sure but not any more. If you have SQL Server 2008 R2 installed you can follow the guideline below to generate a script which is compatible with SQL Azure. Convert IN to EXISTS – Performance Talk It is NOT necessary that every time when IN is replaced by EXISTS it gives better performance. However, in our case listed above it does for sure give better performance. You can read about this subject in the associated blog post. Subquery or Join – Various Options – SQL Server Engine Knows the Best Every single time whenever there is a performance tuning exercise, I hear the conversation from developer where some prefer subquery and some prefer join. In this two part blog post, I explain the same in the detail with examples. Part 1 | Part 2 Merge Operations – Insert, Update, Delete in Single Execution MERGE is a new feature that provides an efficient way to do multiple DML operations. In earlier versions of SQL Server, we had to write separate statements to INSERT, UPDATE, or DELETE data based on certain conditions; however, at present, by using the MERGE statement, we can include the logic of such data changes in one statement that even checks when the data is matched and then just update it, and similarly, when the data is unmatched, it is inserted. 2011 Puzzle – Statistics are not updated but are Created Once Here is the quick scenario about my setup. Create Table Insert 1000 Records Check the Statistics Now insert 10 times more 10,000 indexes Check the Statistics – it will be NOT updated – WHY? Question to You – When to use Function and When to use Stored Procedure Personally, I believe that they are both different things - they cannot be compared. I can say, it will be like comparing apples and oranges. Each has its own unique use. However, they can be used interchangeably at many times and in real life (i.e., production environment). I have personally seen both of these being used interchangeably many times. This is the precise reason for asking this question. 2012 In year 2012 I had two interesting series ran on the blog. If there is no fun in learning, the learning becomes a burden. For the same reason, I had decided to build a three part quiz around SEQUENCE. The quiz was to identify the next value of the sequence. I encourage all of you to take part in this fun quiz. Guess the Next Value – Puzzle 1 Guess the Next Value – Puzzle 2 Guess the Next Value – Puzzle 3 Guess the Next Value – Puzzle 4 Simple Example to Configure Resource Governor – Introduction to Resource Governor Resource Governor is a feature which can manage SQL Server Workload and System Resource Consumption. We can limit the amount of CPU and memory consumption by limiting /governing /throttling on the SQL Server. If there are different workloads running on SQL Server and each of the workload needs different resources or when workloads are competing for resources with each other and affecting the performance of the whole server resource governor is a very important task. Tricks to Replace SELECT * with Column Names – SQL in Sixty Seconds #017 – Video  Retrieves unnecessary columns and increases network traffic When a new columns are added views needs to be refreshed manually Leads to usage of sub-optimal execution plan Uses clustered index in most of the cases instead of using optimal index It is difficult to debug SQL SERVER – Load Generator – Free Tool From CodePlex The best part of this SQL Server Load Generator is that users can run multiple simultaneous queries again SQL Server using different login account and different application name. The interface of the tool is extremely easy to use and very intuitive as well. A Puzzle – Swap Value of Column Without Case Statement Let us assume there is a single column in the table called Gender. The challenge is to write a single update statement which will flip or swap the value in the column. For example if the value in the gender column is ‘male’ swap it with ‘female’ and if the value is ‘female’ swap it with ‘male’. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Integrating Oracle Hyperion Smart View Data Queries with MS Word and Power Point

    - by Andreea Vaduva
    Untitled Document table { border: thin solid; } Most Smart View users probably appreciate that they can use just one add-in to access data from the different sources they might work with, like Oracle Essbase, Oracle Hyperion Planning, Oracle Hyperion Financial Management and others. But not all of them are aware of the options to integrate data analyses not only in Excel, but also in MS Word or Power Point. While in the past, copying and pasting single numbers or tables from a recent analysis in Excel made the pasted content a static snapshot, copying so called Data Points now creates dynamic, updateable references to the data source. It also provides additional nice features, which can make life easier and less stressful for Smart View users. So, how does this option work: after building an ad-hoc analysis with Smart View as usual in an Excel worksheet, any area including data cells/numbers from the database can be highlighted in order to copy data points - even single data cells only.   TIP It is not necessary to highlight and copy the row or column descriptions   Next from the Smart View ribbon select Copy Data Point. Then transfer to the Word or Power Point document into which the selected content should be copied. Note that in these Office programs you will find a menu item Smart View;from it select the Paste Data Point icon. The copied details from the Excel report will be pasted, but showing #NEED_REFRESH in the data cells instead of the original numbers. =After clicking the Refresh icon on the Smart View menu the data will be retrieved and displayed. (Maybe at that moment a login window pops up and you need to provide your credentials.) It works in the same way if you just copy one single number without any row or column descriptions, for example in order to incorporate it into a continuous text: Before refresh: After refresh: From now on for any subsequent updates of the data shown in your documents you only need to refresh data by clicking the Refresh button on the Smart View menu, without copying and pasting the context or content again. As you might realize, trying out this feature on your own, there won’t be any Point of View shown in the Office document. Also you have seen in the example, where only a single data cell was copied, that there aren’t any member names or row/column descriptions copied, which are usually required in an ad-hoc report in order to exactly define where data comes from or how data is queried from the source. Well, these definitions are not visible, but they are transferred to the Word or Power Point document as well. They are stored in the background for each individual data cell copied and can be made visible by double-clicking the data cell as shown in the following screen shot (but which is taken from another context).   So for each cell/number the complete connection information is stored along with the exact member/cell intersection from the database. And that’s not all: you have the chance now to exchange the members originally selected in the Point of View (POV) in the Excel report. Remember, at that time we had the following selection:   By selecting the Manage POV option from the Smart View meny in Word or Power Point…   … the following POV Manager – Queries window opens:   You can now change your selection for each dimension from the original POV by either double-clicking the dimension member in the lower right box under POV: or by selecting the Member Selector icon on the top right hand side of the window. After confirming your changes you need to refresh your document again. Be aware, that this will update all (!) numbers taken from one and the same original Excel sheet, even if they appear in different locations in your Office document, reflecting your recent changes in the POV. TIP Build your original report already in a way that dimensions you might want to change from within Word or Power Point are placed in the POV. And there is another really nice feature I wouldn’t like to miss mentioning: Using Dynamic Data Points in the way described above, you will never miss or need to search again for your original Excel sheet from which values were taken and copied as data points into an Office document. Because from even only one single data cell Smart View is able to recreate the entire original report content with just a few clicks: Select one of the numbers from within your Word or Power Point document by double-clicking.   Then select the Visualize in Excel option from the Smart View menu. Excel will open and Smart View will rebuild the entire original report, including POV settings, and retrieve all data from the most recent actual state of the database. (It might be necessary to provide your credentials before data is displayed.) However, in order to make this work, an active online connection to your databases on the server is necessary and at least read access to the retrieved data. But apart from this, your newly built Excel report is fully functional for ad-hoc analysis and can be used in the common way for drilling, pivoting and all the other known functions and features. So far about embedding Dynamic Data Points into Office documents and linking them back into Excel worksheets. You can apply this in the described way with ad-hoc analyses directly on Essbase databases or using Hyperion Planning and Hyperion Financial Management ad-hoc web forms. If you are also interested in other new features and smart enhancements in Essbase or Hyperion Planning stay tuned for coming articles or check our training courses and web presentations. You can find general information about offerings for the Essbase and Planning curriculum or other Oracle-Hyperion products here (please make sure to select your country/region at the top of this page) or in the OU Learning paths section , where Planning, Essbase and other Hyperion products can be found under the Fusion Middleware heading (again, please select the right country/region). Or drop me a note directly: [email protected] . About the Author: Bernhard Kinkel started working for Hyperion Solutions as a Presales Consultant and Consultant in 1998 and moved to Hyperion Education Services in 1999. He joined Oracle University in 2007 where he is a Principal Education Consultant. Based on these many years of working with Hyperion products he has detailed product knowledge across several versions. He delivers both classroom and live virtual courses. His areas of expertise are Oracle/Hyperion Essbase, Oracle Hyperion Planning and Hyperion Web Analysis.  

    Read the article

  • Scheduling thread tiles with C++ AMP

    - by Daniel Moth
    This post assumes you are totally comfortable with, what some of us call, the simple model of C++ AMP, i.e. you could write your own matrix multiplication. We are now ready to explore the tiled model, which builds on top of the non-tiled one. Tiling the extent We know that when we pass a grid (which is just an extent under the covers) to the parallel_for_each call, it determines the number of threads to schedule and their index values (including dimensionality). For the single-, two-, and three- dimensional cases you can go a step further and subdivide the threads into what we call tiles of threads (others may call them thread groups). So here is a single-dimensional example: extent<1> e(20); // 20 units in a single dimension with indices from 0-19 grid<1> g(e);      // same as extent tiled_grid<4> tg = g.tile<4>(); …on the 3rd line we subdivided the single-dimensional space into 5 single-dimensional tiles each having 4 elements, and we captured that result in a concurrency::tiled_grid (a new class in amp.h). Let's move on swiftly to another example, in pictures, this time 2-dimensional: So we start on the left with a grid of a 2-dimensional extent which has 8*6=48 threads. We then have two different examples of tiling. In the first case, in the middle, we subdivide the 48 threads into tiles where each has 4*3=12 threads, hence we have 2*2=4 tiles. In the second example, on the right, we subdivide the original input into tiles where each has 2*2=4 threads, hence we have 4*3=12 tiles. Notice how you can play with the tile size and achieve different number of tiles. The numbers you pick must be such that the original total number of threads (in our example 48), remains the same, and every tile must have the same size. Of course, you still have no clue why you would do that, but stick with me. First, we should see how we can use this tiled_grid, since the parallel_for_each function that we know expects a grid. Tiled parallel_for_each and tiled_index It turns out that we have additional overloads of parallel_for_each that accept a tiled_grid instead of a grid. However, those overloads, also expect that the lambda you pass in accepts a concurrency::tiled_index (new in amp.h), not an index<N>. So how is a tiled_index different to an index? A tiled_index object, can have only 1 or 2 or 3 dimensions (matching exactly the tiled_grid), and consists of 4 index objects that are accessible via properties: global, local, tile_origin, and tile. The global index is the same as the index we know and love: the global thread ID. The local index is the local thread ID within the tile. The tile_origin index returns the global index of the thread that is at position 0,0 of this tile, and the tile index is the position of the tile in relation to the overall grid. Confused? Here is an example accompanied by a picture that hopefully clarifies things: array_view<int, 2> data(8, 6, p_my_data); parallel_for_each(data.grid.tile<2,2>(), [=] (tiled_index<2,2> t_idx) restrict(direct3d) { /* todo */ }); Given the code above and the picture on the right, what are the values of each of the 4 index objects that the t_idx variables exposes, when the lambda is executed by T (highlighted in the picture on the right)? If you can't work it out yourselves, the solution follows: t_idx.global       = index<2> (6,3) t_idx.local          = index<2> (0,1) t_idx.tile_origin = index<2> (6,2) t_idx.tile             = index<2> (3,1) Don't move on until you are comfortable with this… the picture really helps, so use it. Tiled Matrix Multiplication Example – part 1 Let's paste here the C++ AMP matrix multiplication example, bolding the lines we are going to change (can you guess what the changes will be?) 01: void MatrixMultiplyTiled_Part1(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M, N, vC); 07: parallel_for_each(c.grid, 08: [=](index<2> idx) restrict(direct3d) { 09: 10: int row = idx[0]; int col = idx[1]; 11: float sum = 0.0f; 12: for(int i = 0; i < W; i++) 13: sum += a(row, i) * b(i, col); 14: c[idx] = sum; 15: }); 16: } To turn this into a tiled example, first we need to decide our tile size. Let's say we want each tile to be 16*16 (which assumes that we'll have at least 256 threads to process, and that c.grid.extent.size() is divisible by 256, and moreover that c.grid.extent[0] and c.grid.extent[1] are divisible by 16). So we insert at line 03 the tile size (which must be a compile time constant). 03: static const int TS = 16; ...then we need to tile the grid to have tiles where each one has 16*16 threads, so we change line 07 to be as follows 07: parallel_for_each(c.grid.tile<TS,TS>(), ...that means that our index now has to be a tiled_index with the same characteristics as the tiled_grid, so we change line 08 08: [=](tiled_index<TS, TS> t_idx) restrict(direct3d) { ...which means, without changing our core algorithm, we need to be using the global index that the tiled_index gives us access to, so we insert line 09 as follows 09: index<2> idx = t_idx.global; ...and now this code just works and it is tiled! Closing thoughts on part 1 The process we followed just shows the mechanical transformation that can take place from the simple model to the tiled model (think of this as step 1). In fact, when we wrote the matrix multiplication example originally, the compiler was doing this mechanical transformation under the covers for us (and it has additional smarts to deal with the cases where the total number of threads scheduled cannot be divisible by the tile size). The point is that the thread scheduling is always tiled, even when you use the non-tiled model. But with this mechanical transformation, we haven't gained anything… Hint: our goal with explicitly using the tiled model is to gain even more performance. In the next post, we'll evolve this further (beyond what the compiler can automatically do for us, in this first release), so you can see the full usage of the tiled model and its benefits… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • The Inkremental Architect&acute;s Napkin - #4 - Make increments tangible

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/12/the-inkremental-architectacutes-napkin---4---make-increments-tangible.aspxThe driver of software development are increments, small increments, tiny increments. With an increment being a slice of the overall requirement scope thin enough to implement and get feedback from a product owner within 2 days max. Such an increment might concern Functionality or Quality.[1] To make such high frequency delivery of increments possible, the transition from talking to coding needs to be as easy as possible. A user story or some other documentation of what´s supposed to get implemented until tomorrow evening at latest is one side of the medal. The other is where to put the logic in all of the code base. To implement an increment, only logic statements are needed. Functionality like Quality are just about expressions and control flow statements. Think of Assembler code without the CALL/RET instructions. That´s all is needed. Forget about functions, forget about classes. To make a user happy none of that is really needed. It´s just about the right expressions and conditional executions paths plus some memory allocation. Automatic function inlining of compilers which makes it clear how unimportant functions are for delivering value to users at runtime. But why then are there functions? Because they were invented for optimization purposes. We need them for better Evolvability and Production Efficiency. Nothing more, nothing less. No software has become faster, more secure, more scalable, more functional because we gathered logic under the roof of a function or two or a thousand. Functions make logic easier to understand. Functions make us faster in producing logic. Functions make it easier to keep logic consistent. Functions help to conserve memory. That said, functions are important. They are even the pivotal element of software development. We can´t code without them - whether you write a function yourself or not. Because there´s always at least one function in play: the Entry Point of a program. In Ruby the simplest program looks like this:puts "Hello, world!" In C# more is necessary:class Program { public static void Main () { System.Console.Write("Hello, world!"); } } C# makes the Entry Point function explicit, not so Ruby. But still it´s there. So you can think of logic always running in some function. Which brings me back to increments: In order to make the transition from talking to code as easy as possible, it has to be crystal clear into which function you should put the logic. Product owners might be content once there is a sticky note a user story on the Scrum or Kanban board. But developers need an idea of what that sticky note means in term of functions. Because with a function in hand, with a signature to run tests against, they have something to focus on. All´s well once there is a function behind whose signature logic can be piled up. Then testing frameworks can be used to check if the logic is correct. Then practices like TDD can help to drive the implementation. That´s why most code katas define exactly how the API of a solution should look like. It´s a function, maybe two or three, not more. A requirement like “Write a function f which takes this as parameters and produces such and such output by doing x” makes a developer comfortable. Yes, there are all kinds of details to think about, like which algorithm or technology to use, or what kind of state and side effects to consider. Even a single function not only must deliver on Functionality, but also on Quality and Evolvability. Nevertheless, once it´s clear which function to put logic in, you have a tangible starting point. So, yes, what I´m suggesting is to find a single function to put all the logic in that´s necessary to deliver on a the requirements of an increment. Or to put it the other way around: Slice requirements in a way that each increment´s logic can be located under the roof of a single function. Entry points Of course, the logic of a software will always be spread across many, many functions. But there´s always an Entry Point. That´s the most important function for each increment, because that´s the root to put integration or even acceptance tests on. A batch program like the above hello-world application only has a single Entry Point. All logic is reached from there, regardless how deep it´s nested in classes. But a program with a user interface like this has at least two Entry Points: One is the main function called upon startup. The other is the button click event handler for “Show my score”. But maybe there are even more, like another Entry Point being a handler for the event fired when one of the choices gets selected; because then some logic could check if the button should be enabled because all questions got answered. Or another Entry Point for the logic to be executed when the program is close; because then the choices made should be persisted. You see, an Entry Point to me is a function which gets triggered by the user of a software. With batch programs that´s the main function. With GUI programs on the desktop that´s event handlers. With web programs that´s handlers for URL routes. And my basic suggestion to help you with slicing requirements for Spinning is: Slice them in a way so that each increment is related to only one Entry Point function.[2] Entry Points are the “outer functions” of a program. That´s where the environment triggers behavior. That´s where hardware meets software. Entry points always get called because something happened to hardware state, e.g. a key was pressed, a mouse button clicked, the system timer ticked, data arrived over a wire.[3] Viewed from the outside, software is just a collection of Entry Point functions made accessible via buttons to press, menu items to click, gestures, URLs to open, keys to enter. Collections of batch processors I´d thus say, we haven´t moved forward since the early days of software development. We´re still writing batch programs. Forget about “event-driven programming” with its fancy GUI applications. Software is just a collection of batch processors. Earlier it was just one per program, today it´s hundreds we bundle up into applications. Each batch processor is represented by an Entry Point as its root that works on a number of resources from which it reads data to process and to which it writes results. These resources can be the keyboard or main memory or a hard disk or a communication line or a display. Together many batch processors - large and small - form applications the user perceives as a single whole: Software development that way becomes quite simple: just implement one batch processor after another. Well, at least in principle ;-) Features Each batch processor entered through an Entry Point delivers value to the user. It´s an increment. Sometimes its logic is trivial, sometimes it´s very complex. Regardless, each Entry Point represents an increment. An Entry Point implemented thus is a step forward in terms of Agility. At the same time it´s a tangible unit for developers. Therefore, identifying the more or less numerous batch processors in a software system is a rewarding task for product owners and developers alike. That´s where user stories meet code. In this example the user story translates to the Entry Point triggered by clicking the login button on a dialog like this: The batch then retrieves what has been entered via keyboard, loads data from a user store, and finally outputs some kind of response on the screen, e.g. by displaying an error message or showing the next dialog. This is all very simple, but you see, there is not just one thing happening, but several. Get input (email address, password) Load user for email address If user not found report error Check password Hash password Compare hash to hash stored in user Show next dialog Viewed from 10,000 feet it´s all done by the Entry Point function. And of course that´s technically possible. It´s just a bunch of logic and calling a couple of API functions. However, I suggest to take these steps as distinct aspects of the overall requirement described by the user story. Such aspects of requirements I call Features. Features too are increments. Each provides some (small) value of its own to the user. Each can be checked individually by a product owner. Instead of implementing all the logic behind the Login() entry point at once you can move forward increment by increment, e.g. First implement the dialog, let the user enter any credentials, and log him/her in without any checks. Features 1 and 4. Then hard code a single user and check the email address. Features 2 and 2.1. Then check password without hashing it (or use a very simple hash like the length of the password). Features 3. and 3.2 Replace hard coded user with a persistent user directoy, but a very simple one, e.g. a CSV file. Refinement of feature 2. Calculate the real hash for the password. Feature 3.1. Switch to the final user directory technology. Each feature provides an opportunity to deliver results in a short amount of time and get feedback. If you´re in doubt whether you can implement the whole entry point function until tomorrow night, then just go for a couple of features or even just one. That´s also why I think, you should strive for wrapping feature logic into a function of its own. It´s a matter of Evolvability and Production Efficiency. A function per feature makes the code more readable, since the language of requirements analysis and design is carried over into implementation. It makes it easier to apply changes to features because it´s clear where their logic is located. And finally, of course, it lets you re-use features in different context (read: increments). Feature functions make it easier for you to think of features as Spinning increments, to implement them independently, to let the product owner check them for acceptance individually. Increments consist of features, entry point functions consist of feature functions. So you can view software as a hierarchy of requirements from broad to thin which map to a hierarchy of functions - with entry points at the top.   I like this image of software as a self-similar structure on many levels of abstraction where requirements and code match each other. That to me is true agile design: the core tenet of Agility to move forward in increments is carried over into implementation. Increments on paper are retained in code. This way developers can easily relate to product owners. Elusive and fuzzy requirements are not tangible. Software production is moving forward through requirements one increment at a time, and one function at a time. In closing Product owners and developers are different - but they need to work together towards a shared goal: working software. So their notions of software need to be made compatible, they need to be connected. The increments of the product owner - user stories and features - need to be mapped straightforwardly to something which is relevant to developers. To me that´s functions. Yes, functions, not classes nor components nor micro services. We´re talking about behavior, actions, activities, processes. Their natural representation is a function. Something has to be done. Logic has to be executed. That´s the purpose of functions. Later, classes and other containers are needed to stay on top of a growing amount of logic. But to connect developers and product owners functions are the appropriate glue. Functions which represent increments. Can there always be such a small increment be found to deliver until tomorrow evening? I boldly say yes. Yes, it´s always possible. But maybe you´ve to start thinking differently. Maybe the product owner needs to start thinking differently. Completion is not the goal anymore. Neither is checking the delivery of an increment through the user interface of a software. Product owners need to become comfortable using test beds for certain features. If it´s hard to slice requirements thin enough for Spinning the reason is too little knowledge of something. Maybe you don´t yet understand the problem domain well enough? Maybe you don´t yet feel comfortable with some tool or technology? Then it´s time to acknowledge this fact. Be honest about your not knowing. And instead of trying to deliver as a craftsman officially become a researcher. Research an check back with the product owner every day - until your understanding has grown to a level where you are able to define the next Spinning increment. ? Sometimes even thin requirement slices will cover several Entry Points, like “Add validation of email addresses to all relevant dialogs.” Validation then will it put into a dozen functons. Still, though, it´s important to determine which Entry Points exactly get affected. That´s much easier, if strive for keeping the number of Entry Points per increment to 1. ? If you like call Entry Point functions event handlers, because that´s what they are. They all handle events of some kind, whether that´s palpable in your code or note. A public void btnSave_Click(object sender, EventArgs e) {…} might look like an event handler to you, but public static void Main() {…} is one also - for then event “program started”. ?

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • Building a SOA/BPM/BAM Cluster Part I &ndash; Preparing the Environment

    - by antony.reynolds
    An increasing number of customers are using SOA Suite in a cluster configuration, I might hazard to say that the majority of production deployments are now using SOA clusters.  So I thought it may be useful to detail the steps in building an 11g cluster and explain a little about why things are done the way they are. In this series of posts I will explain how to build a SOA/BPM cluster using the Enterprise Deployment Guide. This post will explain the setting required to prepare the cluster for installation and configuration. Software Required The following software is required for an 11.1.1.3 SOA/BPM install. Software Version Notes Oracle Database Certified databases are listed here SOA & BPM Suites require a working database installation. Repository Creation Utility (RCU) 11.1.1.3 If upgrading an 11.1.1.2 repository then a separate script is available. Web Tier Utilities 11.1.1.3 Provides Web Server, 11.1.1.3 is an upgrade to 11.1.1.2, so 11.1.1.2 must be installed first. Web Tier Utilities 11.1.1.3 Web Server, 11.1.1.3 Patch.  You can use the 11.1.1.2 version without problems. Oracle WebLogic Server 11gR1 10.3.3 This is the host platform for 11.1.1.3 SOA/BPM Suites. SOA Suite 11.1.1.2 SOA Suite 11.1.1.3 is an upgrade to 11.1.1.2, so 11.1.1.2 must be installed first. SOA Suite 11.1.1.3 SOA Suite 11.1.1.3 patch, requires 11.1.12 to have been installed. My installation was performed on Oracle Enterprise Linux 5.4 64-bit. Database I will not cover setting up the database in this series other than to identify the database requirements.  If setting up a SOA cluster then ideally we would also be using a RAC database.  I assume that this is running on separate machines to the SOA cluster.  Section 2.1, “Database”, of the EDG covers the database configuration in detail. Settings The database should have processes set to at least 400 if running SOA/BPM and BAM. alter system set processes=400 scope=spfile Run RCU The Repository Creation Utility creates the necessary database tables for the SOA Suite.  The RCU can be run from any machine that can access the target database.  In 11g the RCU creates a number of pre-defined users and schema with a user defiend prefix.  This allows you to have multiple 11g installations in the same database. After running the RCU you need to grant some additional privileges to the soainfra user.  The soainfra user should have privileges on the transaction tables. grant select on sys.dba_pending_transactions to prefix_soainfra Grant force any transaction to prefix_soainfra Machines The cluster will be built on the following machines. EDG Name is the name used for this machine in the EDG. Notes are a description of the purpose of the machine. EDG Name Notes LB External load balancer to distribute load across and failover between web servers. WEBHOST1 Hosts a web server. WEBHOST2 Hosts a web server. SOAHOST1 Hosts SOA components. SOAHOST2 Hosts SOA components. BAMHOST1 Hosts BAM components. BAMHOST2 Hosts BAM components. Note that it is possible to collapse the BAM servers so that they run on the same machines as the SOA servers. In this case BAMHOST1 and SOAHOST1 would be the same, as would BAMHOST2 and SOAHOST2. The cluster may include more than 2 servers and in this case we add SOAHOST3, SOAHOST4 etc as needed. My cluster has WEBHOST1, SOAHOST1 and BAMHOST1 all running on a single machine. Software Components The cluster will use the following software components. EDG Name is the name used for this machine in the EDG. Type is the type of component, generally a WebLogic component. Notes are a description of the purpose of the component. EDG Name Type Notes AdminServer Admin Server Domain Admin Server WLS_WSM1 Managed Server Web Services Manager Policy Manager Server WLS_WSM2 Managed Server Web Services Manager Policy Manager Server WLS_SOA1 Managed Server SOA/BPM Managed Server WLS_SOA2 Managed Server SOA/BPM Managed Server WLS_BAM1 Managed Server BAM Managed Server running Active Data Cache WLS_BAM2 Managed Server BAM Manager Server without Active Data Cache   Node Manager Will run on all hosts with WLS servers OHS1 Web Server Oracle HTTP Server OHS2 Web Server Oracle HTTP Server LB Load Balancer Load Balancer, not part of SOA Suite The above assumes a 2 node cluster. Network Configuration The SOA cluster requires an extensive amount of network configuration.  I would recommend assigning a private sub-net (internal IP addresses such as 10.x.x.x, 192.168.x.x or 172.168.x.x) to the cluster for use by addresses that only need to be accessible to the Load Balancer or other cluster members.  Section 2.2, "Network", of the EDG covers the network configuration in detail. EDG Name is the hostname used in the EDG. IP Name is the IP address name used in the EDG. Type is the type of IP address: Fixed is fixed to a single machine. Floating is assigned to one of several machines to allow for server migration. Virtual is assigned to a load balancer and used to distribute load across several machines. Host is the host where this IP address is active.  Note for floating IP addresses a range of hosts is given. Bound By identifies which software component will use this IP address. Scope shows where this IP address needs to be resolved. Cluster scope addresses only have to be resolvable by machines in the cluster, i.e. the machines listed in the previous section.  These addresses are only used for inter-cluster communication or for access by the load balancer. Internal scope addresses Notes are comments on why that type of IP is used. EDG Name IP Name Type Host Bound By Scope Notes ADMINVHN VIP1 Floating SOAHOST1-SOAHOSTn AdminServer Cluster Admin server, must be able to migrate between SOA server machines. SOAHOST1 IP1 Fixed SOAHOST1 NodeManager, WLS_WSM1 Cluster WSM Server 1 does not require server migration. SOAHOST2 IP2 Fixed SOAHOST1 NodeManager, WLS_WSM2 Cluster WSM Server 2 does not require server migration SOAHOST1VHN VIP2 Floating SOAHOST1-SOAHOSTn WLS_SOA1 Cluster SOA server 1, must be able to migrate between SOA server machines SOAHOST2VHN VIP3 Floating SOAHOST1-SOAHOSTn WLS_SOA2 Cluster SOA server 2, must be able to migrate between SOA server machines BAMHOST1 IP4 Fixed BAMHOST1 NodeManager Cluster   BAMHOST1VHN VIP4 Floating BAMHOST1-BAMHOSTn WLS_BAM1 Cluster BAM server 1, must be able to migrate between BAM server machines BAMHOST2 IP3 Fixed BAMHOST2 NodeManager, WLS_BAM2 Cluster BAM server 2 does not require server migration WEBHOST1 IP5 Fixed WEBHOST1 OHS1 Cluster   WEBHOST2 IP6 Fixed WEBHOST2 OHS2 Cluster   soa.mycompany.com VIP5 Virtual LB LB Public External access point to SOA cluster. admin.mycompany.com VIP6 Virtual LB LB Internal Internal access to WLS console and EM soainternal.mycompany.com VIP7 Virtual LB LB Internal Internal access point to SOA cluster Floating IP addresses are IP addresses that may be re-assigned between machines in the cluster.  For example in the event of failure of SOAHOST1 then WLS_SOA1 will need to be migrated to another server.  In this case VIP2 (SOAHOST1VHN) will need to be activated on the new target machine.  Once set up the node manager will manage registration and removal of the floating IP addresses with the exception of the AdminServer floating IP address. Note that if the BAMHOSTs and SOAHOSTs are the same machine then you can obviously share the hostname and fixed IP addresses, but you still need separate floating IP addresses for the different managed servers.  The hostnames don’t have to be the ones given in the EDG, but they must be distinct in the same way as the ETC names are distinct.  If the type is a fixed IP then if the addresses are the same you can use the same hostname, for example if you collapse the soahost1, bamhost1 and webhost1 onto a single machine then you could refer to them all as HOST1 and give them the same IP address, however SOAHOST1VHN can never be the same as BAMHOST1VHN because these are floating IP addresses. Notes on DNS IP addresses that are of scope “Cluster” just need to be in the hosts file (/etc/hosts on Linux, C:\Windows\System32\drivers\etc\hosts on Windows) of all the machines in the cluster and the load balancer.  IP addresses that are of scope “Internal” need to be available on the internal DNS servers, whilst IP addresses of scope “Public” need to be available on external and internal DNS servers. Shared File System At a minimum the cluster needs shared storage for the domain configuration, XA transaction logs and JMS file stores.  It is also possible to place the software itself on a shared server.  I strongly recommend that all machines have the same file structure for their SOA installation otherwise you will experience pain!  Section 2.3, "Shared Storage and Recommended Directory Structure", of the EDG covers the shared storage recommendations in detail. The following shorthand is used for locations: ORACLE_BASE is the root of the file system used for software and configuration files. MW_HOME is the location used by the installed SOA/BPM Suite installation.  This is also used by the web server installation.  In my installation it is set to <ORACLE_BASE>/SOA11gPS2. ORACLE_HOME is the location of the Oracle SOA components or the Oracle Web components.  This directory is installed under the the MW_HOME but the name is decided by the user at installation, default values are Oracle_SOA1 and Oracle_Web1.  In my installation they are set to <MW_HOME>/Oracle_SOA and <MW_HOME>/Oracle _WEB. ORACLE_COMMON_HOME is the location of the common components and is located under the MW_HOME directory.  This is always <MW_HOME>/oracle_common. ORACLE_INSTANCE is used by the Oracle HTTP Server and/or Oracle Web Cache.  It is recommended to create it under <ORACLE_BASE>/admin.  In my installation they are set to <ORACLE_BASE>/admin/Web1, <ORACLE_BASE>/admin/Web2 and <ORACLE_BASE>/admin/WC1. WL_HOME is the WebLogic server home and is always found at <MW_HOME>/wlserver_10.3. Key file locations are shown below. Directory Notes <ORACLE_BASE>/admin/domain_name/aserver/domain_name Shared location for domain.  Used to allow admin server to manually fail over between machines.  When creating domain_name provide the aserver directory as the location for the domain. In my install this is <ORACLE_BASE>/admin/aserver/soa_domain as I only have one domain on the box. <ORACLE_BASE>/admin/domain_name/aserver/applications Shared location for deployed applications.  Needs to be provided when creating the domain. In my install this is <ORACLE_BASE>/admin/aserver/applications as I only have one domain on the box. <ORACLE_BASE>/admin/domain_name/mserver/domain_name Either unique location for each machine or can be shared between machines to simplify task of packing and unpacking domain.  This acts as the managed server configuration location.  Keeping it separate from Admin server helps to avoid problems with the managed servers messing up the Admin Server. In my install this is <ORACLE_BASE>/admin/mserver/soa_domain as I only have one domain on the box. <ORACLE_BASE>/admin/domain_name/mserver/applications Either unique location for each machine or can be shared between machines.  Holds deployed applications. In my install this is <ORACLE_BASE>/admin/mserver/applications as I only have one domain on the box. <ORACLE_BASE>/admin/domain_name/soa_cluster_name Shared directory to hold the following   dd – deployment descriptors   jms – shared JMS file stores   fadapter – shared file adapter co-ordination files   tlogs – shared transaction log files In my install this is <ORACLE_BASE>/admin/soa_cluster. <ORACLE_BASE>/admin/instance_name Local folder for web server (OHS) instance. In my install this is <ORACLE_BASE>/admin/web1 and <ORACLE_BASE>/admin/web2. I also have <ORACLE_BASE>/admin/wc1 for the Web Cache I use as a load balancer. <ORACLE_BASE>/product/fmw This can be a shared or local folder for the SOA/BPM Suite software.  I used a shared location so I only ran the installer once. In my install this is <ORACLE_BASE>/SOA11gPS2 All the shared files need to be put onto a shared storage media.  I am using NFS, but recommendation for production would be a SAN, with mirrored disks for resilience. Collapsing Environments To reduce the hardware requirements it is possible to collapse the BAMHOST, SOAHOST and WEBHOST machines onto a single physical machine.  This will require more memory but memory is a lot cheaper than additional machines.  For environments that require higher security then stay with a separate WEBHOST tier as per the EDG.  Similarly for high volume environments then keep a separate set of machines for BAM and/or Web tier as per the EDG. Notes on Dev Environments In a dev environment it is acceptable to use a a single node (non-RAC) database, but be aware that the config of the data sources is different (no need to use multi-data source in WLS).  Typically in a dev environment we will collapse the BAMHOST, SOAHOST and WEBHOST onto a single machine and use a software load balancer.  To test a cluster properly we will need at least 2 machines. For my test environment I used Oracle Web Cache as a load balancer.  I ran it on one of the SOA Suite machines and it load balanced across the Web Servers on both machines.  This was easy for me to set up and I could administer it from a web based console.

    Read the article

  • robocopy transfer file and not folder

    - by Bill McKay
    I'm trying to use robocopy to tranfer a single file from one location to another but robocopy seems to think I'm always specifying a folder. Here is an example: robocopy "c:\transfer_this.txt" "z:\transferred.txt" But I get this error instead: 2009/08/11 15:21:57 ERROR 123 (0x0000007B) Accessing Source Directory c:\transfer_this.txt\ (note the '\' at the end of transfer_this.txt) But if I treat it like an entire folder: robocopy "c:\folder" "z:\folder" It works but then I have to transfer everything in the folder. How can I only transfer a single file with robocopy?

    Read the article

  • How do I create multiple instances of Certificate Server on the same Windows installation?

    - by makerofthings7
    The following URLs describe a new feature of Windows Certificate server is the ability to install multiple instances on the same server. (see end of "transcript" link it's a zip file) http://www.digitalsupporttech.com/mskb/896/896733_TechNet_Support_WebCast:_Best_Practices_for_Public_Key_Infrastructure:_Steps_to_build_an_offline_root_certification_authority_%28part_1_of_2%29.htm Quote: "Multiple Certificate Server instances on a single physical server" http://winintro.ru/certsvr.en/html/cf5622e1-daa9-42cc-8b43-14953e34f8b6.htm Quote: "Multiple instances of the Certificate Enrollment Web Service can be installed on a single computer in order to support multiple CAs." Question How can I actually implement multiple CA instances on a Windows 2008R2 server?

    Read the article

  • Using multiple domain names on same server

    - by TheVillageIdiot
    Hi, I'm developing a website where users will be able to aggregate their RSS feeds and create custom pages. I want to give each user separate domain name like jonhdoe.com, xyz.org. I'll be keeping files on single server in one web application (I don't want to replace all the api for all users). Now the question: How can I make multiple domain names point to single web site?

    Read the article

  • Prevent gnome from automatically mounting partition when clicked in nautilus

    - by bjarkef
    Hi, I have two partitions on a hard drive in my machine that are formatted as ntfs, but must under no circumstance be mounted by my Ubuntu installation (unless I do some preparation first). However nautilus happily displays the partitions, and a single click will mount them automatically. This is very dangerous behaviour, how can I hide the partitions from nautilus and prevent accidentally mounting them by a single stray mouse click? Thanks

    Read the article

  • How to see if turbo boost is working on I7 860 CPU?

    - by Jan Derk
    I just build myself a new system with a Intel I7 860 CPU. When loading it using a single threaded application like Super PI, CPU-Z shows 2.933Ghz as speed. Now I understood that the I7 goes into turbo boost mode up to 3.46GHz for a single core. How can I check that? Is there a utility to monitor CPU speed per core?

    Read the article

  • SQuirrelSQL redirect ouput to a file?

    - by Oscar Reyes
    Does anybody knows if SQuirrel SQL client may output the of several SQL commands to a single result window in textplain or to a file ( as SQL+ would ) So I can: select * from dual; select * from dual; And have both results in a single "ready to" Ctrl-C format?

    Read the article

  • Load balancing with 2 wireless cards

    - by user2544786
    I'm thinking about building a wireless load balancer (if that makes sense). For example, the first wireless card will accept all connections for ip 192.168.1.1 and the second card will serve requests for 192.168.1.2. I know that I can assign both IPs to a single card and all requests will be served by a single wireless card. Would it be better (more bandwidth, more stable connection, etc?) to have two physical cards instead?

    Read the article

  • How do I parse file paths separated by a space in a string?

    - by user1130637
    Background: I am working in Automator on a wrapper to a command line utility. I need a way to separate an arbitrary number of file paths delimited by a single space from a single string, so that I may remove all but the first file path to pass to the program. Example input string: /Users/bobby/diddy dum/ding.mp4 /Users/jimmy/gone mia/come back jimmy.mp3 ... Desired output: /Users/bobby/diddy dum/ding.mp4 Part of the problem is the inflexibility on the Automator end of things. I'm using an Automator action which returns unescaped POSIX filepaths delimited by a space (or comma). This is unfortunate because: 1. I cannot ensure file/folder names will not contain either a space or comma, and 2. the only inadmissible character in Mac OS X filenames (as far as I can tell) is :. There are options which allow me to enclose the file paths in double or single quotes, or angle brackets. The program itself accepts the argument of the aforementioned input string, so there must be a way of separating the paths. I just do not have a keen enough eye to see how to do it with sed or awk. At first I thought I'll just use sed to replace every [space]/ with [newline]/ and then trim all but the first line, but that leaves the loophole open for folders whose names end with a space. If I use the comma delimiter, the same happens, just for a comma instead. If I encapsulate in double or single quotation marks, I am opening another can of worms for filenames with those characters. The image/link is the relevant part of my Automator workflow. -- UPDATE -- I was able to achieve what I wanted in a rather roundabout way. It's hardly elegant but here is working generalized code: path="/Users/bobby/diddy dum/ding.mp4 /Users/jimmy/gone mia/come back jimmy.mp3" # using colon because it's an inadmissible Mac OS X # filename character, perfect for separating # also, unlike [space], multiple colons do not collapse IFS=: # replace all spaces with colons colpath=$(echo "$path" | sed 's/ /:/g') # place words from colon-ized file path into array # e.g. three spaces -> three colons -> two empty words j=1 for word in $colpath do filearray[$j]="$word" j=$j+1 done # reconstruct file path word by word # after each addition, check file existence # if non-existent, re-add lost [space] and continue until found name="" for seg in "${filearray[@]}" do name="$name$seg" if [[ -f "$name" ]] then echo "$name" break fi name="$name " done All this trouble because the default IFS doesn't count "emptiness" between the spaces as words, but rather collapses them all.

    Read the article

< Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >