Search Results

Search found 3434 results on 138 pages for 'c lang'.

Page 99/138 | < Previous Page | 95 96 97 98 99 100 101 102 103 104 105 106  | Next Page >

  • SSH client not showing prompt after successful login

    - by user431949
    I'm having problems with my SSH client on Ubuntu 10.10. When I switch on my computer and open a Terminal and execute the command ssh user@host, it gives me a password prompt after which I enter the right password, I then get a prompt to execute my commands on the remote computer. Now the problem is, after a little while (probably around 10 minutes), the terminal window stops accepting commands (No matter what I type, nothing shows). Once this happens, I close the Terminal window and try to start all over again by opening another Terminal window. But this time around, after entering the right password, I don't get a welcome message or prompt. The cursor just keeps blinking on a new line. I ran the ssh command with -v parameter and the message I get after a successful login is: debug1: Authentication succeeded (password). debug1: channel 0: new [client-session] debug1: Entering interactive session. debug1: Sending environment. debug1: Sending env LANG = en_GB.utf8 Still the cursor keeps blinking on a new line without a prompt. However, Putty SSH client works perfectly on the same machine. Thank you very much for your time. Your help would be greating appreciated.

    Read the article

  • Tomcat Custom MBean

    - by Darran
    Does anyone know how to deploy a custom MBean to Tomcat? So far I`ve found this http://www.junlu.com/list/3/8871.html. I copied my jar with my MBean to Tomcat lib directory so the Custom class loader should pick it up. I then followed the instructions but I kept getting the exception below. My MBean does definitely have a public constructor. If I removed the jar from the tomcat lib directory I get the same message which suggests its not picking up my jar or my jar is being loaded after the Apache MBean Modeler is running in Tomcat. 06-Aug-2010 12:14:23 org.apache.tomcat.util.modeler.modules.MbeansSource execute SEVERE: Error creating mbean Bean:type=Bean javax.management.NotCompliantMBeanException: MBean class must have public constructor at com.sun.jmx.mbeanserver.Introspector.testCreation(Introspector.java:127) at com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.createMBean(DefaultMBeanServerInterceptor.java:2 at com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.createMBean(DefaultMBeanServerInterceptor.java:1 at com.sun.jmx.mbeanserver.JmxMBeanServer.createMBean(JmxMBeanServer.java:393) at org.apache.tomcat.util.modeler.modules.MbeansSource.execute(MbeansSource.java:207) at org.apache.tomcat.util.modeler.modules.MbeansSource.load(MbeansSource.java:137) at org.apache.catalina.core.StandardEngine.readEngineMbeans(StandardEngine.java:517) at org.apache.catalina.core.StandardEngine.init(StandardEngine.java:321) at org.apache.catalina.core.StandardEngine.start(StandardEngine.java:411) at org.apache.catalina.core.StandardService.start(StandardService.java:519) at org.apache.catalina.core.StandardServer.start(StandardServer.java:710) at org.apache.catalina.startup.Catalina.start(Catalina.java:581) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:289) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:414)

    Read the article

  • Unattended Kickstart Install

    - by Eric
    I've looked around quite a bit and have seen similar setup and questions, but none seem to work for me. I'm using the following command to create a custom ISO: /usr/bin/livecd-creator --config=/usr/share/livecd-tools/test.ks --fslabel=TestAppliance --cache=/var/cache/live This works great and it creates the ISO with all of the packages and configs I want on it. My issue is that I want the install to be unattended. However, every time I start the CD, it asks for all of the info such as keyboard, time zone, root password, etc. These are my basic settings I have in my kickstart script prior to the packages section. cdrom install autopart autostep xconfig --startxonboot rootpw testpassword lang en_US.UTF-8 keyboard us timezone --utc America/New_York auth --useshadow --enablemd5 selinux --disabled services --enabled=iptables,rsyslog,sshd,ntpd,NetworkManager,network --disabled=sendmail,cups,firstboot,ip6tables clearpart --all So after looking around, I was told that I need to modify my isolinux.cfg file to either do "ks=http://X.X.X.X/location/to/test.ks" or "ks=cdrom:/test.ks". I've tried both methods and it still forces me to go through the install process. When I tail the apache logs on the server, I see that the ISO never even tries to get the file. Below are the exact syntax I'm trying on my isolinux.cfg file. label http menu label HTTP kernel vmlinuz0 append initrd=initrd0.img ks=http://192.168.56.101/files/test.ks ksdevice=eth0 label localks menu label LocalKS kernel vmlinuz0 append initrd=initrd0.img ks=cdrom:/test.ks label install0 menu label Install kernel vmlinuz0 append initrd=initrd0.img root=live:CDLABEL=PerimeterAppliance rootfstype=auto ro liveimg liveinst noswap rd_NO_LUKS rd_NO_MD rd_NO_DM menu default EOF_boot_menu The first 2 give me a "dracut: fatal: no or empty root=" error until I give it a root= option and then it just skips the kickstart completely. The last one is my default option that works fine, but just requires a lot of user input. Any help would be greatly appreciated.

    Read the article

  • port forwarding with socks over proxy

    - by Oz123
    I am trying to browse a wiki that runs on a server inside one domain from another domain. The wiki is accessible only on the LAN, but I need to browse it from another LAN to which I connect with an SSH tunnel ... Here is my setup and the steps I did so far: ~.ssh/confing on wikihost: Host gateway User kisteuser Port 443 Hostname gateway.companydomain.com ProxyCommand /home/myuser/bin/ssh-https-tunnel %h %p # ssh-https-tunnel: # http://ttcplinux.sourceforge.net/tools/stunnel Protocol 2 IdentityFile ~/.ssh/key_dsa LocalForward 11069 localhost:11069 Host server1 User kisteuser Hostname localhost Port 11069 LocalForward 8022 server1:22 LocalForward 17001 server1:7100 LocalForward 8080 www-proxy:3128 RemoteForward 11069 localhost:22 from wikihost myuser@wikihost: ssh -XC -t gateway.companydomain.com ssh -L11069:localhost:22 server1 on another terminal: ssh gateway.companydomain.com Now, on my companydomain I would like to start firefox and browse the wiki on wikihost. I did: [email protected] ~ $ ssh gateway Have a lot of fun... kisteuser@gateway ~ $ ssh -D 8383 localhost user@localhost's password: user@wikiserver:~> My .ssh/config on that side looks like that: host server1 localforward 11069 localhost:11069 host localhost user myuser port 11069 host wikiserver forwardagent yes user myuser port 11069 hostname localhost Now, I started firefox on the server called gateway, and edited the proxy settings to use SOCKSv5, specifying that the proxy should be gateway and use the port 8383... kisteuser@gateway ~ $ LANG=C firefox -P --no-remote And, now I get the following error popping in the Terminal of wikiserver: myuser@wikiserver:~> channel 3: open failed: connect failed: Connection refused channel 3: open failed: connect failed: Connection refused channel 3: open failed: connect failed: Connection refused Confused? Me too ... Please help me understand how to properly build the tunnels and browse the wiki over SOCKS protocol. update: I managed to browse the wiki on wikiserver with the following changes: host wikiserver forwardagent yes user myuser port 11069 hostname localhost localforward 8339 localhost:8443 Now when I ssh gateway I launch Firefox and go to localhost:8339 and I hit the start page of the wiki, which is served on Port 8443. Now I ask myself is SOCKS really needed? Can someone elaborate on that ?

    Read the article

  • Tomcat6 getting crashed at regular intervals installed in Ubuntu

    - by Milesh Rout
    I have installed Tomcat6 in Ubuntu OS and when I run my web application the server gets crashed at regular intervals. I have tried a lot but not getting the solution. I have increased the memory upto 2048mb but still getting such error. Following is the error I am getting. Any help would be really appreciated. org.apache.tomcat.util.http.Parameters processParametersINFO: Invalid chunk starting at byte [312] and ending at byte [312] with a value of [null] ignoredException in thread "Timer-1" Exception in thread "com.mchange.v2.async.ThreadPoolAsynchronousRunner$PoolThread-#0" Exception in thread "com.mchange.v2.async.ThreadPoolAsynchronousRunner$PoolThread-#2" Exception in thread "com.mchange.v2.async.ThreadPoolAsynchronousRunner$PoolThread-#1" Exception in thread "Timer-2" Exception in thread "http-8080-4" Exception in thread "http-8080-8" Exception in thread "http-8080-17" Exception in thread "org.hibernate.cache.StandardQueryCache.data" Exception in thread "org.hibernate.cache.UpdateTimestampsCache.data" Exception in thread "org.hibernate.cache.StandardQueryCache.data" Exception in thread "org.hibernate.cache.StandardQueryCache.data" Exception in thread "org.hibernate.cache.UpdateTimestampsCache.data" Exception in thread "org.hibernate.cache.StandardQueryCache.data" Exception in thread "org.hibernate.cache.StandardQueryCache.data" Exception in thread "org.hibernate.cache.UpdateTimestampsCache.data" Exception in thread "com.safenet.usermgmt.User.data" Exception in thread "http-8080-7" Exception in thread "http-8080-12" Exception in thread "http-8080-16" Exception in thread "http-8080-14" Exception in thread "http-8080-13" Exception in thread "http-8080-15" Exception in thread "http-8080-6" OpenJDK Client VM warning: Exception java.lang.OutOfMemoryError occurred dispatching signal SIGTERM to handler- the VM may need to be forcibly terminated

    Read the article

  • Server getting overloaded

    - by taras
    Hi, I have 2 setups tomcat5.5.20 on Redhat and mysql 4.1.22 on another Redhat server. Recently my webserver started getting overloaded up to 80-90%. After checking i found repeating errors(each seconds) in catalina.out. Can it cause the server overload or where else can be the root of the problem ? catalina.out: DBCP object created 2010-12-22 13:33:12 by the following code was never closed: java.lang.Exception at org.apache.tomcat.dbcp.dbcp.AbandonedTrace.init(AbandonedTrace.java:96) i have to restart tomcat once a day when server load reaches 80-90%. Also catalina.out file is growing too fast which every few hours need to clear the logs. My datasource config: <bean id="myDataSource" class="org.apache.tomcat.dbcp.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName"> <value>com.mysql.jdbc.Driver</value> </property> jdbc:mysql://XXX/XXX?autoReconnect=true 20 20 <property name="maxIdle"> <value>50</value> </property> <property name="maxActive"> <value>50</value> </property> <property name="removeAbandoned"> <value>false</value> </property> <property name="removeAbandonedTimeout"> <value>2400</value> </property> <property name="username"> <value>XXX</value> </property> <property name="password"> <value>XXX</value> </property> </bean> Thanks for any direction.

    Read the article

  • Webapp in Jetty can't find properties file after running a couple days

    - by Cuga
    I have a webapp running in Jetty on Mac OS 10.6. After a few days of it running and without the server losing power or rebooting, it seems to stop working saying it can't find a properties file. This properties file is included inside the .war file deployed to the /webapps directory. If I restart Jetty as the superuser the web service works again just fine. Can anyone lend any advice to what's going on and how I can fix it? The error being shown when it isn't working is: Problem accessing /my-web-service. Reason: INTERNAL_SERVER_ERROR Caused by: java.lang.NullPointerException at com.company.service.Dao.readFromPropertiesFile(BwDao.java:35) at com.company.service.ServletHandler.doGet(ProxyClass.java:66) ... at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:404) at org.mortbay.io.nio.SelectChannelEndPoint.run(SelectChannelEndPoint.java:410) at org.mortbay.thread.QueuedThreadPool$PoolThread.run(QueuedThreadPool.java:582) Here's where the properties files exist that it's trying to read from the .war file: And this is how the properties are being read from the classpath: Properties properties = new Properties(); properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream( "app.properties")); Again, this does work just fine if I have just restarted the server, but it seems to fail after running a few days.

    Read the article

  • Start & shutdown as tomcat as non-root user

    - by user53864
    How to start, shutdown and restart tomcat as non-root user. I have tomcat5.x installed on ubuntu machine(usr/share/tomcat). The tomcat directory has full permissions. When I shutdown(/usr/share/tomcat/bin/shudown.sh) or startup(/usr/share/tomcat/startup.sh) tomcat as normal user, it starts & shuts down normally as if it is executed as root user but I could not access webpage even after starting tomcat as non-root user. user1@station2:/usr/share/tomcat/webapps$ ../bin/shutdown.sh Using CATALINA_BASE: /usr/share/tomcat Using CATALINA_HOME: /usr/share/tomcat Using CATALINA_TMPDIR: /usr/share/tomcat/temp Using JRE_HOME: /usr 4 Oct, 2010 6:41:11 PM org.apache.catalina.startup.Catalina stopServer SEVERE: Catalina.stop: java.net.ConnectException: Connection refused at java.net.PlainSocketImpl.socketConnect(Native Method) at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:310) at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:176) at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:163) at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:384) at java.net.Socket.connect(Socket.java:546) at java.net.Socket.connect(Socket.java:495) at java.net.Socket.<init>(Socket.java:392) at java.net.Socket.<init>(Socket.java:206) at org.apache.catalina.startup.Catalina.stopServer(Catalina.java:421) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.catalina.startup.Bootstrap.stopServer(Bootstrap.java:337) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:415)

    Read the article

  • tomcat 'document base does not exist' error (but it does)

    - by SpliFF
    Gentoo / Tomcat 6 INFO: Starting Servlet Engine: Apache Tomcat/6.0.20 Sep 8, 2009 10:34:51 AM org.apache.catalina.core.StandardContext resourcesStart SEVERE: Error starting static Resources java.lang.IllegalArgumentException: Document base /www/rivervalley/site does not exist or is not a readable directory at org.apache.naming.resources.FileDirContext.setDocBase(Unknown Source) at org.apache.catalina.core.StandardContext.resourcesStart(Unknown Source) at org.apache.catalina.core.StandardContext.start(Unknown Source) at org.apache.catalina.core.ContainerBase.start(Unknown Source) at org.apache.catalina.core.StandardHost.start(Unknown Source) at org.apache.catalina.core.ContainerBase.start(Unknown Source) oh really? then how come: ls -la /www/rivervalley/site/ drwxr-xr-x 12 tomcat tomcat 4096 Sep 8 09:56 . drwxr-xr-x 16 tomcat tomcat 4096 Jun 29 16:22 .. -rwxr--r-- 1 tomcat tomcat 520 Jul 3 02:15 Application.cfm drwxr-xr-x 2 tomcat tomcat 4096 Sep 8 09:56 WEB-INF and ... tomcat 18916 1.0 5.5 1159188 167892 ? Ssl 10:37 0:11 /opt/sun-jdk-1.5.0.18/bin/java -Djava.util.loggin Hell, ANY account can read that directory so the claim is utter nonsense. What else can cause this? Here's my relevant server.xml section: <Host name="rivervalley" appBase="webapps" unpackWARs="false" autoDeploy="false" xmlValidation="false" xmlNamespaceAware="false"> <Context path="" docBase="/www/rivervalley/site" /> </Host>

    Read the article

  • Selecting Interface for SSH Port Forwarding

    - by Eric Pruitt
    I have a server that we'll call hub-server.tld with three IP addresses 100.200.130.121, 100.200.130.122, and 100.200.130.123. I have three different machines that are behind a firewall, but I want to use SSH to port forward one machine to each IP address. For example: machine-one should listen for SSH on port 22 on 100.200.130.121, while machine-two should do the same on 100.200.130.122, and so on for different services on ports that may be the same across all of the machines. The SSH man page has -R [bind_address:]port:host:hostport listed I have gateway ports enabled, but when using -R with a specific IP address, server still listens on the port across all interfaces: machine-one: # ssh -NR 100.200.130.121:22:localhost:22 [email protected] hub-server.tld (Listens for SSH on port 2222): # netstat -tan | grep LISTEN tcp 0 0 100.200.130.121:2222 0.0.0.0:* LISTEN tcp 0 0 :::22 :::* LISTEN tcp 0 0 :::80 :::* LISTEN Is there a way to make SSH forward only connections on a specific IP address to machine-one so I can listen to port 22 on the other IP addresses at the same time, or will I have to do something with iptables? Here are all the lines in my ssh config that are not comments / defaults: Port 2222 Protocol 2 SyslogFacility AUTHPRIV PasswordAuthentication yes ChallengeResponseAuthentication no GSSAPIAuthentication no GSSAPICleanupCredentials no UsePAM yes AcceptEnv LANG LC_CTYPE LC_NUMERIC LC_TIME LC_COLLATE LC_MONETARY LC_MESSAGES AcceptEnv LC_PAPER LC_NAME LC_ADDRESS LC_TELEPHONE LC_MEASUREMENT AcceptEnv LC_IDENTIFICATION LC_ALL AllowTcpForwarding yes GatewayPorts yes X11Forwarding yes ClientAliveInterval 30 ClientAliveCountMax 1000000 UseDNS no Subsystem sftp /usr/libexec/openssh/sftp-server

    Read the article

  • Windows is very slow with my new SSD

    - by Maksym H.
    I have a laptop HP probook 4520s with Core i5 M480 @ 2.67Ghz, 4Gb RAM, 640 GB HDD Radeon HD 6370m 1GB video card. It would seem like a good stack for work, right? But My HDD has crashed after everyday walking with laptop about 1 year. After buying my new SSD (Patriot memory - Torqx II 128 Gb SATA II) and installing new Windows 8 from scratch - it was amazing fast. But I had only install windows updates, and I feel that the speed become the same as my old HDD, after install other software for my work, it becomes so slow, so when I use my PC with old lower configuration and it really works better than my awesome laptop... I checked that TRIM and AHCI mode are turned on. So why's that? I asked for help in Patriot Memory support, they suggested to send them ATTO test results, done, sent. Here is the response: "Thank you very much for the attached results. Looking at the results, I can see that your SSD speed is a lot lower than it should be. Can you tell me your system specs?" Until they checked my email, I re-installed Windows 8 to Windows 7 and it was again perfect, but the story repeats it becomes slower and slower after every installing new software. Check out some screenshots.. (sorry for the screenshot with russian TaskManager, I hope you will recognize those parameters accordingly with your english or other lang TaskManager) So the main issue that something everytime loads the disc on 100% and the response time is jumping around 1000-3000 ms. Why am I asking about Windows? Because I tried to install Linux Mint (x86) and It just flies. So great performance independent on how many programs I have installed. Only Windows (any 7 or 8) has this problem. So guys, I appreciate any ideas about how to fix that and may be answers of main question - "why is it so.?" Thanks!

    Read the article

  • Flash drive suddenly died. Why? Can I recover it?

    - by mg
    Hi, I have a flash drive that I used not too much but, after few month of inactivity, it died. I know that flash drives have a limited write cycles but I am sure that this is not the problem. I tried to create a new partition table and format the drive nothing worked. This is the output of mkfs.ext2. marco@pinguina:~$ sudo LANG=en.UTF-8 mkfs.ext2 -v -c /dev/sdc1 [sudo] password for marco: mke2fs 1.41.11 (14-Mar-2010) fs_types for mke2fs.conf resolution: 'ext2', 'default' Calling BLKDISCARD from 0 to 4001431552 failed. Filesystem label= OS type: Linux Block size=4096 (log=2) Fragment size=4096 (log=2) Stride=0 blocks, Stripe width=0 blocks 244320 inodes, 976912 blocks 48845 blocks (5.00%) reserved for the super user First data block=0 Maximum filesystem blocks=1002438656 30 block groups 32768 blocks per group, 32768 fragments per group 8144 inodes per group Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736 Running command: badblocks -b 4096 -X -s /dev/sdc1 976911 badblocks: Input/output error during ext2fs_sync_device Checking for bad blocks (read-only test): done Block 0 in primary superblock/group descriptor area bad. Blocks 0 through 2 must be good in order to build a filesystem. Aborting.... Is there something I can do to recover it?

    Read the article

  • scponly worked but didn't chroot the home folder, the user can still browse the entire server.

    - by Mint
    So I followed the "Chroot and Debian" tutorial in http://sublimation.org/scponly/wiki/index.php/FAQ Then when I log into user "upload" via ssh I have no access to the command line (this is what I wanted). But then when I SFTP into the upload user I can still see all the root files (/), it didn't chroot me to just /home/upload whats going on? …. I added this to the end of my /etc/ssh/sshd_config file, then done a restart Subsystem sftp internal-sftp UsePAM yes Match User upload ChrootDirectory /home/upload AllowTCPForwarding no X11Forwarding no ForceCommand internal-sftp Then when I log into sftp I can only see my upload folder (this is what I want), but now scp doesn't work :P SCP will accept my password then: debug1: Next authentication method: password [email protected]'s password: debug1: Authentication succeeded (password). debug1: channel 0: new [client-session] debug1: Requesting [email protected] debug1: Entering interactive session. debug1: Sending environment. debug1: Sending env LANG = en_NZ.UTF-8 debug1: Sending command: scp -v -t /test It will hang on that last debug message. Any help would be greatly appreciated. Note, running Debian Lenny

    Read the article

  • umask seems to vary by user

    - by paullb
    I've got a development Ubuntu system for which I have several users: myself (with full sudo) and about 5 other users. (I've set up the system so everything in this respect is still at its default setting) I'm trying to set the system up so that multiple people can collaborate in a single directory by using grouing and I want the default permissions to be 664. However when some users edit files the permissions were 644. After a lot of investigating most users have a umask (checked at the prompt) of 0002 and when they create files they are 664 (as expected) but there are 2 (myself and one other) who have 0022 umask (so the files that come out are 644 and nobody else can write to them). I've looked everywhere but can't figure out why a couple users wind up with a different umask e.g. there is nothing the .bash_profile or anything like that) Any ideas for the source of the discrepancy? /etc/bashrc if [ $UID -gt 199 ] && [ "`id -gn`" = "`id -un`" ]; then umask 002 else umask 022 fi /etc/profile if [ $UID -gt 199 ] && [ "`id -gn`" = "`id -un`" ]; then umask 002 else umask 022 fi EDIT: My (bad) ~/.bashrc # .bashrc # Source global definitions if [ -f /etc/bashrc ]; then . /etc/bashrc fi # User specific aliases and functions export LANG=en_US.utf8 Other user (good) .bashrc # .bashrc # Source global definitions if [ -f /etc/bashrc ]; then . /etc/bashrc fi # User specific aliases and functions

    Read the article

  • How can I make grub2 boot into Windows 7?

    - by Grzenio
    I had Windows 7 installed on my system, then I installed Debian testing with grub2 as its boot manager. Initially I couldn't see windows entry in grub at all, so I ran: aptitude install os-prober kcpuload update-grub Now I can see the entry, but when I select it I get only Win7 system restore, instead of the the real thing. Any ides how to make it work? EDIT: I tried the suggested approach to add a new file to /etc/grub.d, which generated an entry in grub.cfg, but it does not appear in the grub menu on boot :( I have this: grzes:/home/ga# cat /etc/grub.d/11_Windows #! /bin/sh -e echo Adding Windows >&2 cat << EOF menuentry “Windows 7? { set root=(hd0,2) chainloader +1 } And I have the following grub.cfg file: grzes:/home/ga# cat /boot/grub/grub.cfg # # DO NOT EDIT THIS FILE # # It is automatically generated by /usr/sbin/grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then load_env fi set default="0" if [ ${prev_saved_entry} ]; then set saved_entry=${prev_saved_entry} save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z ${boot_once} ]; then saved_entry=${chosen} save_env saved_entry fi } insmod ext2 set root=(hd0,3) search --no-floppy --fs-uuid --set 6ce3ff31-0ef7-41df-a6f5-b6b886db3a94 if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=640x480 insmod gfxterm insmod vbe if terminal_output gfxterm ; then true ; else # For backward compatibility with versions of terminal.mod that don't # understand terminal_output terminal gfxterm fi fi set locale_dir=/boot/grub/locale set lang=en insmod gettext set timeout=5 ### END /etc/grub.d/00_header ###

    Read the article

  • Kickstarting an Ubuntu Server 10.04 installation (DHCP fails)

    - by William
    I'm trying to automate the network installation of Ubuntu 10.04 LTS with an anaconda kickstart and everything seems to running except for the initial DHCP autoconfiguration. The installer attempts to configure the install via DHCP but fails on its first attempt. This brings me to a prompt where I can retry DHCP and it seems to always work on the second attempt. My issue is that this is not really automated if I have to hit retry for DHCP. Is there something I can add to the kickstart file so that it will automatically retry or better yet not fail the first time? Thanks. Kickstart: # System language lang en_US # Language modules to install langsupport en_US # System keyboard keyboard us # System mouse mouse # System timezone timezone America/New_York # Root password rootpw --iscrypted $1$unrsWyF2$B0W.k2h1roBSSFmUDsW0r/ # Initial user user --disabled # Reboot after installation reboot # Use text mode install text # Install OS instead of upgrade install # Use Web installation url --url=http://10.16.0.1/cobbler/ks_mirror/ubuntu-10.04-x86_64/ # System bootloader configuration bootloader --location=mbr # Clear the Master Boot Record zerombr yes # Partition clearing information clearpart --all --initlabel # Disk partitioning information part swap --size 512 part / --fstype ext3 --size 1 --grow # System authorization infomation auth --useshadow --enablemd5 %include /tmp/pre_install_ubuntu_network_config # Always install the server kernel. preseed --owner d-i base-installer/kernel/override-image string linux-server # Install the Ubuntu Server seed. preseed --owner tasksel tasksel/force-tasks string server # Firewall configuration firewall --disabled # Do not configure the X Window System skipx %pre wget "http://10.16.0.1/cblr/svc/op/trig/mode/pre/system/Test-D" -O /dev/null # Network information # Start pre_install_network_config generated code # Start of code to match cobbler system interfaces to physical interfaces by their mac addresses # Start eth0 # Configuring eth0 (00:1A:64:36:B1:C8) if ip -o link show | grep -i 00:1A:64:36:B1:C8 then IFNAME=$(ip -o link show | grep -i 00:1A:64:36:B1:C8 | cut -d" " -f2 | tr -d :) echo "network --device=$IFNAME --bootproto=dhcp" >> /tmp/pre_install_ubuntu_network_config fi # End pre_install_network_config generated code %packages openssh-server

    Read the article

  • How to use a common library of environment variables among different languages?

    - by JDS
    We have three main languages with which we perform system tasks: Bash, Ruby, and PHP, and Perl. Four, four main languages. We use managed environment variables to provide authorization info that automated scripts need. For example, a mysql user account and password. We'd like to use one single managed file to maintain these variables. In some instances, for example, in cron, these environment variables are not available. They are made available in CLI scripts because we source the env file in everyone's profile. But something like cron doesn't do that. On the CLI, when the env file is sourced, any given script can access those variables. Bash has them directly, PHP in $_ENV, ruby in ENV, etc. We can't source the file into non-Bash scripts, because most languages implement shell commands by running them in a subshell. We considered parsing the Bash, converting to the script's lang, and running the equivalent of "exec(parsed_output)" on the resulting strings. What is a good solution to providing managed environment vars to scripts running in cron, or similar?

    Read the article

  • Issue with SSH on Ubuntu - Local connection ok, remote connection - Is it me or my ISP?

    - by Benjamin
    I have an issue with a server running Ubuntu 12.04, I am trying to set up a remote connection so I can access the server at my work from out of town. I have installed the SSH server and all that stuff, and I have reassigned the default port from 22 to 3399. A local connection from any OS can connect on the 192.168... address, but in no way can I get a connection on the actual IP address. I believe my configuration is correct, and I will attach it. If I have done something wrong in the config, please tell me and I will make a change to it. I honestly think that the Router that my ISP provided is horrible, and although the port for ssh is forwarded, it might be stopping any traffic coming inbound. Is there anything I can try to verify this? /var/log/auth does not show any error when I connect VIA our static IP. I have included all values not commented out below: (sshd_config) Port 3399 ListenAddress 0.0.0.0 Protocol 2 HostKey /etc/ssh/ssh_host_rsa_key HostKey /etc/ssh/ssh_host_dsa_key HostKey /etc/ssh/ssh_host_ecdsa_key UsePrivilegeSeparation yes KeyRegenerationInterval 3600 ServerKeyBits 768 SyslogFacility AUTH LogLevel INFO LoginGraceTime 120 PermitRootLogin yes StrictModes yes UseDNS no RSAAuthentication yes IgnoreRhosts yes RhostsRSAAuthentication no HostbasedAuthentication no PermitEmptyPasswords no ChallengeResponseAuthentication no PasswordAuthentication yes GSSAPIAuthentication no X11Forwarding yes X11DisplayOffset 10 PrintMotd no PrintLastLog yes TCPKeepAlive yes AcceptEnv LANG LC_* Subsystem sftp /usr/lib/openssh/sftp-server UsePAM yes Am I doing this wrong? port forwarding image

    Read the article

  • How do I tell Websphere 7 about a front end load balancer so that re-directs are handled correctly?

    - by TiGz
    On WebLogic 11G I can use the console to set the FrontendHost and FrondendPort on a server or on a cluster so that re-directs are handled correctly and end up resolving to the front end load balancer instead of the local host. The MBeans associated with this on WebLogic are, for example: MBean Name com.bea:Name=AdminServer,Type=WebServer,Server=AdminServer Attribute Name FrontendHost Description The name of the host to which all redirected URLs will be sent. If specified, WebLogic Server will use this value rather than the one in the HOST header. Sets the HTTP frontendHost Provides a method to ensure that the webapp will always have the correct HOST information, even when the request is coming through a firewall or a proxy. If this parameter is configured, the HOST header will be ignored and the information in this parameter will be used in its place. Type java.lang.String Readable / Writable RW How is the same thing achieved under Websphere 7? Follow up info: So I have 2 use cases actually. One is that I have a web app running under WebSphere on host A on port 9002 and a LB running on host B at port 80, when I visit the home page of the app via the LB on http://hostb/app the app redirects my browser to http://hostb:9002/app and it 404's I think this is WebSphere's fault but I guess it could be the app's fault? The second is that the web app in question needs to send emails containing URls that the customer can click on to get back into the web app - obviously this needs to be via the LB. On WebLogic the app uses MBeans to derive the LB url and I was hoping to use a similar mechanism on WebSphere.

    Read the article

  • Strange ssh login

    - by Hikaru
    I am running debian server and i have received a strange email warning about ssh login It says, that user mail logged in using ssh from remote address: Environment info: USER=mail SSH_CLIENT=92.46.127.173 40814 22 MAIL=/var/mail/mail HOME=/var/mail SSH_TTY=/dev/pts/7 LOGNAME=mail TERM=xterm PATH=/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games LANG=en_US.UTF-8 SHELL=/bin/sh KRB5CCNAME=FILE:/tmp/krb5cc_8 PWD=/var/mail SSH_CONNECTION=92.46.127.173 40814 my-ip-here 22 I looked in /etc/shadow and find out, that password for is not set mail:*:15316:0:99999:7::: I found this lines for login in auth.log n 3 02:57:09 gw sshd[2090]: pam_winbind(sshd:auth): getting password (0x00000388) Jun 3 02:57:09 gw sshd[2090]: pam_winbind(sshd:auth): pam_get_item returned a password Jun 3 02:57:09 gw sshd[2091]: pam_winbind(sshd:auth): user 'mail' granted access Jun 3 02:57:09 gw sshd[2091]: Accepted password for mail from 92.46.127.173 port 45194 ssh2 Jun 3 02:57:09 gw sshd[2091]: pam_unix(sshd:session): session opened for user mail by (uid=0) Jun 3 02:57:10 gw CRON[2051]: pam_unix(cron:session): session closed for user root and lots of auth failures for this user. There is no lines with COMMAND string for this user. Nothing was found with "rkhunter" and with "ps aux" process inspection, also there is no suspicious connections was found with "netstat" (as I can see) Can anyone tell me how it is possible and what else should be done? Thanks in advance.

    Read the article

  • Why is my rsync so slow?

    - by iblue
    My Laptop and my workstation are both connected to a Gigabit Switch. Both are running Linux. But when I copy files with rsync, it performs badly. I get about 22 MB/s. Shouldn't I theoretically get about 125 MB/s? What is the limiting factor here? EDIT: I conducted some experiments. Write performance on the laptop The laptop has a xfs filesystem with full disk encryption. It uses aes-cbc-essiv:sha256 cipher mode with 256 bits key length. Disk write performance is 58.8 MB/s. iblue@nerdpol:~$ LANG=C dd if=/dev/zero of=test.img bs=1M count=1024 1073741824 Bytes (1.1 GB) copied, 18.2735 s, 58.8 MB/s Read performance on the workstation The files I copied are on a software RAID-5 over 5 HDDs. On top of the raid is a lvm. The volume itself is encrypted with the same cipher. The workstation has a FX-8150 cpu that has a native AES-NI instruction set which speeds up encryption. Disk read performance is 256 MB/s (cache was cold). iblue@raven:/mnt/bytemachine/imgs$ dd if=backup-1333796266.tar.bz2 of=/dev/null bs=1M 10213172008 bytes (10 GB) copied, 39.8882 s, 256 MB/s Network performance I ran iperf between the two clients. Network performance is 939 Mbit/s iblue@raven $ iperf -c 94.135.XXX ------------------------------------------------------------ Client connecting to 94.135.XXX, TCP port 5001 TCP window size: 23.2 KByte (default) ------------------------------------------------------------ [ 3] local 94.135.XXX port 59385 connected with 94.135.YYY port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0-10.0 sec 1.09 GBytes 939 Mbits/sec

    Read the article

  • Migrate active directory to Google apps for business

    - by dewnix
    I've got a problem migrating active directory to Gapps. I'm stuck on google apps directory sync (GADS) where it just gives the error "java.lang.NullPointerException" after testing the connection during the LDAP configuration step. I checked the logs and I've pretty much determined that port 389 (standard LDAP port) isn't listening on the exchange server. I've tried telneting to it (from another machine in the same network) with no luck but I can telnet to other ports, that i know are open, successfully. I know they're open because I used portqry and netstat to see them. I'm suspecting that the active directory isn't even installed/running on this machine because there's no active directory services at all running on it. There's no active directory services that say they're NOT running either though. Is it possible AD is installed somewhere else? does it have to be on a machine inside the same network? I found the domain controller and it's host name and when I telnet with port 389, it works however GADS still gives me the same exact error when I substitute that server in. Actually, no matter what ridiculous settings i put into GADS, i still get that same NullPointer error. If i could get some different error than that NullPointer, i'd call that a successful day.

    Read the article

  • One single page showing 3 requests (also printing the headers)

    - by Korcholis
    Someone in my studio designed a webpage some years ago, and now the client decided to change the server (he moved to a Linux Apache server running Gen2 SMP, 64 bits, PHP version 5.3.8, Standard MYSQL version 5). It suddenly started to do weird things. When clicking on a link that requires login, the page redirects you to the login page using header() function in PHP. Curiously, the page shows this: OK The server encountered an internal error or misconfiguration and was unable to complete your request. Please contact the server administrator, [no address given] and inform them of the time the error occurred, and anything you might have done that may have caused the error. More information about this error may be available in the server error log. HTTP/1.1 200 OK Date: Mon, 15 Oct 2012 17:27:32 GMT Server: Apache/2.2.22 (Unix) FrontPage/5.0.2.2635 X-Powered-By: PHP/5.3.8 Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Keep-Alive: timeout=5, max=399 Connection: Keep-Alive Transfer-Encoding: chunked Content-Type: text/html 232c Then the page itself, and then, another header: 0 1f4 OK The server encountered an internal error or misconfiguration and was unable to complete your request. Please contact the server administrator, [no address given] and inform them of the time the error occurred, and anything you might have done that may have caused the error. More information about this error may be available in the server error log. 0 What's most intriguing is that if you refresh the page or hit enter on the url, it loads correctly. I've been checking the logs, and it only blames of an inexisting favicon. I also checked the .htaccess, everything was correct (RewriteBase was / as intended, and the only stuff there is another rule that moves ^en/ requests to request?lang=en. Has anyone faced something like this? Edit: IE doesn't trigger these two headers. This is getting wierder.

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

< Previous Page | 95 96 97 98 99 100 101 102 103 104 105 106  | Next Page >