Search Results

Search found 13 results on 1 pages for 'paving'.

Page 1/1 | 1 

  • Great Solaris 10 features paving the way to Solaris 11

    - by Larry Wake
    Karoly Vegh writes on the Oracle Systems Blog Austria about what you can do with Solaris 10 today that will get you ready for Solaris 11. Even today, many people still use Solaris 10 as if it were a patch update to Solaris 8 or 9, missing out on the power behind Live Upgrade, Zones, resource management, and ZFS. Learning more about these will help set your feet on the road to the even more sophisticated capabilities of Oracle Solaris 11. [Read More]

    Read the article

  • Reminder - Mobile World Congress - 4 Industry Workshops

    - by michael.seback
    Got 4G? Paving the Road to Profitable and Efficient LTE Network Planning and Monetization, Register by emailing your details here. Achieving Management Excellence through Enterprise Performance Management, Register by emailing your details here. Offer Deliver and Monetize: Mobile Operator Strategies Consumer and Enterprise Services featuring Telenor and Vodafone Groups, Register by emailing your details here. Is Your Head in the Cloud? How to Get it Right the First Time, Register by emailing your details here. With more than 49,000 communications industry attendees, Mobile World Congress is where the industry comes together and you won't want to miss Oracle at this year's show. The 2011 conference agenda will feature speakers representing the leaders of the world's most innovative companies, both from within the Communications industry and from the growing number of adjacent market sectors joining our expanding mobile ecosystem. Join us to learn how Oracle enables innovative services while reducing the cost and complexity of infrastructure software and hardware.

    Read the article

  • Making a Web Gui to design a Garden Layout

    - by paddydub
    I would like to design a web page Gui where users can design a simple interactive garden. The user would pick a template design and receive price estimates based on the design template and the dimensions entered. I'd like the user to be able to move items such as plants, stones and be able to adjust the dimensions of the grass, paving. I'm thinking i could make it using flash but I would like to know there are any other ways I could use to implement this?

    Read the article

  • Android PDF reader from scratch

    - by Javadid
    Hi friends, i know it would sound too ambitious but our client requires a PDF Reader of his own with some selected functionalities. Can any1 here guide me to some good tutorials for paving the way to start its development? i guess i need to clear some pdf basics and start from scratch OR i would be happy if there is any api which i can use directly modify the controls at my will... any help would be highly appreciated... Thanx a lot...

    Read the article

  • ArchBeat Top 20 for March 11-17, 2012

    - by Bob Rhubart
    The 20 most-clicked links as shared via my social networks for the week of March 11-17, 2012. Start Small, Grow Fast: SOA Best Practices article by @biemond, @rluttikhuizen, @demed Packt Publishing offers discounts of up to 30% on 60+ Oracle titles IT Strategies from Oracle; Three Recipes for Oracle Service Bus 11g ; Stir Up Some SOA Oracle Cloud Conference: dates and locations worldwide Applications Architecture | Roy Hunter and Brian Rasmussen How Strategic is IT? - Assessing Strategic Value | Al Kiessel White Paper: An Architect’s Guide to Big Data | Dr. Helen Sun, Peter Heller Getting Started with Oracle Unbreakable Enterprise Kernel Release 2 | Lenz Grimmer Great Solaris 10 features paving the way to Solaris 11 | Karoly Vegh Who the Linux Developer Met on His Way to St. Ives | Rick Ramsey Peripheral Responsibilities Required for Large IDM Build Outs (Including Fusion Apps) | Brian Eidelman IOUG Real World Performance Tour, w/Tom Kyte, Andrew Holdsworth, Graham Wood Configure IPoIB on Solaris 10 branded zone | Leo Yuen Oracle OpenWorld 2012 Call for Papers Use Case Assumptions versus Pre-Conditions | Dave Burke Handling Custom XML documents in Oracle B2B | @Biemond Building a Coherence Cluster with Multiple Application Servers | Rene van Wijk XMLA vs BAPI | Sunil S. Ranka The Java EE 6 Example - Running Galleria on WebLogic 12 - Part 3 | @MyFear Public Sector Architecture | @jeremy_forman, @hamzajahangir Thought for the Day "The goal of Computer Science is to build something that will last at least until we've finished building it." —Anonymous

    Read the article

  • SQL Rally Pre-Con: Data Warehouse Modeling – Making the Right Choices

    - by Davide Mauri
    As you may have already learned from my old post or Adam’s or Kalen’s posts, there will be two SQL Rally in North Europe. In the Stockholm SQL Rally, with my friend Thomas Kejser, I’ll be delivering a pre-con on Data Warehouse Modeling: Data warehouses play a central role in any BI solution. It's the back end upon which everything in years to come will be created. For this reason, it must be rock solid and yet flexible at the same time. To develop such a data warehouse, you must have a clear idea of its architecture, a thorough understanding of the concepts of Measures and Dimensions, and a proven engineered way to build it so that quality and stability can go hand-in-hand with cost reduction and scalability. In this workshop, Thomas Kejser and Davide Mauri will share all the information they learned since they started working with data warehouses, giving you the guidance and tips you need to start your BI project in the best way possible?avoiding errors, making implementation effective and efficient, paving the way for a winning Agile approach, and helping you define how your team should work so that your BI solution will stand the test of time. You'll learn: Data warehouse architecture and justification Agile methodology Dimensional modeling, including Kimball vs. Inmon, SCD1/SCD2/SCD3, Junk and Degenerate Dimensions, and Huge Dimensions Best practices, naming conventions, and lessons learned Loading the data warehouse, including loading Dimensions, loading Facts (Full Load, Incremental Load, Partitioned Load) Data warehouses and Big Data (Hadoop) Unit testing Tracking historical changes and managing large sizes With all the Self-Service BI hype, Data Warehouse is become more and more central every day, since if everyone will be able to analyze data using self-service tools, it’s better for him/her to rely on correct, uniform and coherent data. Already 50 people registered from the workshop and seats are limited so don’t miss this unique opportunity to attend to this workshop that is really a unique combination of years and years of experience! http://www.sqlpass.org/sqlrally/2013/nordic/Agenda/PreconferenceSeminars.aspx See you there!

    Read the article

  • memristor is a new paradigm (fourth element in integrated circuits)? [closed]

    - by lsalamon
    The memristor will bring a new paradigm of programming, opened enormous opportunities to enable the machines to gain knowledge, creating a new paradigm toward the intelligence altificial. Do you believe that we are paving the way for the era of intelligent machines? More info about : Brain-like systems? "As for the human brain-like characteristics, memristor technology could one day lead to computer systems that can remember and associate patterns in a way similar to how people do. This could be used to substantially improve facial recognition technology or to provide more complex biometric recognition systems that could more effectively restrict access to personal information. These same pattern-matching capabilities could enable appliances that learn from experience and computers that can make decisions." [EDITED] The way is open. News on the subject Brain-Like Computer Closer to Realization

    Read the article

  • Loose Coupling and UX Patterns for Applications Integrations

    - by ultan o'broin
    I love that software architecture phrase loose coupling. There’s even a whole book about it. And, if you’re involved in enterprise methodology you’ll know just know important loose coupling is to the smart development of applications integrations too. Whether you are integrating offerings from the Oracle partner ecosystem with Fusion apps or applications coexistence scenarios, loose coupling enables the development of scalable, reliable, flexible solutions, with no second-guessing of technology. Another great book Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions tells us about loose coupling benefits of reducing the assumptions that integration parties (components, applications, services, programs, users) make about each other when they exchange information. Eliminating assumptions applies to UI development too. The days of assuming it’s enough to hard code a UI with linking libraries called code on a desktop PC for an office worker are over. The book predates PaaS development and SaaS deployments, and was written when web services and APIs were emerging. Yet it calls out how using middleware as an assumptions-dissolving technology “glue" is central to applications integration. Realizing integration design through a set of middleware messaging patterns (messaging in the sense of asynchronously communicating data) that enable developers to meet the typical business requirements of enterprises requiring integrated functionality is very Fusion-like. User experience developers can benefit from the loose coupling approach too. User expectations and work styles change all the time, and development is now about integrating SaaS through PaaS. Cloud computing offers a virtual pivot where a single source of truth (customer or employee data, for example) can be experienced through different UIs (desktop, simplified, or mobile), each optimized for the context of the user’s world of work and task completion. Smart enterprise applications developers, partners, and customers use design patterns for user experience integration benefits too. The Oracle Applications UX design patterns (and supporting guidelines) enable loose coupling of the optimized UI requirements from code. Developers can get on with the job of creating integrations through web services, APIs and SOA without having to figure out design problems about how UIs should work. Adding the already user proven UX design patterns (and supporting guidelines to your toolkit means ADF and other developers can easily offer much more than just functionality and be super productive too. Great looking application integration touchpoints can be built with our design patterns and guidelines too for a seamless applications UX. One of Oracle’s partners, Innowave Technologies used loose coupling architecture and our UX design patterns to create an integration for a customer that was scalable, cost effective, fast to develop and kept users productive while paving a roadmap for customers to keep pace with the latest UX designs over time. Innowave CEO Basheer Khan, a Fusion User Experience Advocate explains how to do it on the Usable Apps blog.

    Read the article

  • Creating a network link between 2 very close buildings

    - by Daniel Johnson
    I have a charity who have two adjacent medium sized modern detached houses (in the UK): the buildings stand next to each other and are less than 5 metres apart. They have DSL connected to a single computer in one of the buildings. They want to add a network with wireless, and want it to work across both buildings. Being a charity they need to keep costs down. The network would be used for sharing Word documents, e-mail, browsing and skyping. My initial thoughts were to connect the buildings with fibre. So: Option 1 Use fibre between the buildings. Sufficient cable and two TP-LINK MC100CM Fast Ethernet Media Converters. Cost ~£80.00. But there is the extra cost and hassle of running the cable down and up the external walls, lifting and relaying paving, and burying underground. Never having fitted fibre I'm also a little worried about going up the wall and then bending the cable at 90 degrees to go through the wall and into the building. Option 2 Use two TP-Link TL-WA7510N High Powered Outdoor 5Ghz 15dBi Wireless antennas to connect the buildings. There is a clear line of sight at first floor level. Cost ~£100. And much easier to fit than fibre! Is using the TL-WA7510Ns overkill? Is there something more suitable? I had hoped to use some Netgear stuff, e.g. two DGN2200, one in each house and also use them to provide the wireless link between the buildings. However, in bridge mode wireless client association is not available and repeater mode with client association only supports WEP security which isn't strong enough. Is there something similar that would be up to the job? Option 3 Connect the buildings with UTP cable. My concerns here are risk of electric shock due to a difference of potential between the buildings (or are they so close this shouldn't be an issue) and protection from lightning strikes. Is fitting lighting arrestors expensive? And what can be done to ameliorate against the risk of shock? This all falls outside my area of expertise so I would really appreciate some advice.

    Read the article

  • The Top 5 MDM Sessions You Can’t Miss at OpenWorld

    - by Mala Narasimharajan
    Sessions, Demo pods, Hands On Labs, and much more – but where should you focus?  MDM has some excellent sessions planned for OOW –  here is a top 5 list to identify the sessions you just can’t afford to miss. October 3, 2012  1:15 PM - 2:15 PM    Moscone West - 3002/3004     What's There to Know About Oracle’s Master Data Management Portfolio and Roadmap? Hear about product strategy our vision for the future and how Oracle MDM is positioned to excel in helping organizations make the most of their customer,      partner, supplier or product data. October 3, 2012  5:00 PM - 6:00 PM   Westin San Francisco – Metropolitan I Oracle Customer MDM Applications: Implementation Best Practices, Data Governance, and ROI       Customers successes provide solid examples of technology at work and how organizations derive value from it. Attend this session and hear from our customers on how they built a business case, established governance and are realizing the benefits of Oracle Customer Hub. October 2, 2012  10:15 AM - 11:15 AM   Moscone West – 3001 Mastering Product Data: Strategies for Effective Product Information Management                                                                      Product data is vital for any enterprise in being able to provide a consolidated representation of products to their partners, customers and suppliers.  Hear how our customers leverage product information to be a leader in their respective area and how Oracle is critical to achieving this. October 2, 2012  11:45 AM - 12:45 PM   Moscone West – 2022 Enabling Trusted Enterprise Product Data with Oracle Fusion Product Hub                                                                                       Learn how Oracle Fusion Product Hub is paving the way for providing organizations with trusted product data as well as helping organizations make the most of the information and infrastructure they already possess. October 1, 2012  4:45 PM – 5:45 PM   InterContinental - Ballroom A Oracle Hyperion Data Relationship Management: Enabling Enterprise Transformation                                                                         Hear how Data Relationship Management drives enterprise transformation and why any organization embarking on an master data management initiative needs it, plus hear from our customers best practices as well as lessons learned.  Check out the Master Data Management Focus On document for all our sessions at OpenWorld 2012. 

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

1