Search Results

Search found 14841 results on 594 pages for 'performance monitoring'.

Page 1/594 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • JMX Based Monitoring - Part Two - JVM Monitoring

    - by Anthony Shorten
    This the second article in the series focussing on the JMX based monitoring capabilities possible with the Oracle Utilities Application Framework. In all versions of the Oracle utilities Application Framework, it is possible to use the basic JMX based monitoring available with the Java Virtual Machine to provide basic statistics ablut the JVM. In Java 5 and above, the JVM automatically allowed local monitoring of the JVM statistics from an approporiate console. When I say local I mean the monitoring tool must be executed from the same machine (and in some cases the same user that is running the JVM) to connect to the JVM directly. If you are using jconsole, for example, then you must have access to a GUI (X-Windows or Windows) to display the jconsole output. This is the easist way of monitoring without doing too much configration but is not always practical. Java offers a remote monitorig capability to allow yo to connect to a remotely executing JVM from a console (like jconsole). To use this facility additional JVM options must be added to the command line that started the JVM. Details of the additional options for the version of the Java you are running is located at the JMX information site. Typically to remotely connect to a running JVM that JVM must be configured with the following categories of options: JMX Port - The JVM must allow connections on a listening port specified on the command line Connection security - The connection to the JVM can be secured. This is recommended as JMX is not just a monitoring protocol it is a managemet protocol. It is possible to change values in a running JVM using JMX and there are NO "Are you sure?" safeguards. For a Oracle Utilities Application Framework based application there are a few guidelines when configuring and using this JMX based remote monitoring of the JVM's: Online JVM - The JVM used to run the online system is embedded within the J2EE Web Application Server. To enable JMX monitoring on this JVM you can either change the startup script that starts the Web Application Server or check whether your J2EE Web Application natively supports JVM statistics collection. Child JVM's (COBOL only) - The Child JVM's should not be monitored using this method as they are recycled regularly by the configuration and therefore statistics collected are of little value. Batch Threadpoools - Batch already has a JMX interface (which will be covered in another article). Additional monitoring can be enabled but the base supported monitoring is sufficient for most needs. If you are an Oracle Utilities Application Framework site, then you can specify the additional options for JMX Java monitoring on the OPTS paramaters supported for each component of the architecture. Just ensure the port numbers used are unique for each JVM running on any machine.

    Read the article

  • Issues with signal handling [closed]

    - by user34790
    I am trying to actually study the signal handling behavior in multiprocess system. I have a system where there are three signal generating processes generating signals of type SIGUSR1 and SIGUSR1. I have two handler processes that handle a particular type of signal. I have another monitoring process that also receives the signals and then does its work. I have a certain issue. Whenever my signal handling processes generate a signal of a particular type, it is sent to the process group so it is received by the signal handling processes as well as the monitoring processes. Whenever the signal handlers of monitoring and signal handling processes are called, I have printed to indicate the signal handling. I was expecting a uniform series of calls for the signal handlers of the monitoring and handling processes. However, looking at the output I could see like at the beginning the monitoring and signal handling processes's signal handlers are called uniformly. However, after I could see like signal handler processes handlers being called in a burst followed by the signal handler of monitoring process being called in a burst. Here is my code and output #include <iostream> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <cstdio> #include <stdlib.h> #include <sys/ipc.h> #include <sys/shm.h> #define NUM_SENDER_PROCESSES 3 #define NUM_HANDLER_PROCESSES 4 #define NUM_SIGNAL_REPORT 10 #define MAX_SIGNAL_COUNT 100000 using namespace std; volatile int *usrsig1_handler_count; volatile int *usrsig2_handler_count; volatile int *usrsig1_sender_count; volatile int *usrsig2_sender_count; volatile int *lock_1; volatile int *lock_2; volatile int *lock_3; volatile int *lock_4; volatile int *lock_5; volatile int *lock_6; //Used only by the monitoring process volatile int monitor_count; volatile int usrsig1_monitor_count; volatile int usrsig2_monitor_count; double time_1[NUM_SIGNAL_REPORT]; double time_2[NUM_SIGNAL_REPORT]; //Used only by the main process int total_signal_count; //For shared memory int shmid; const int shareSize = sizeof(int) * (10); double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } pid_t senders[NUM_SENDER_PROCESSES]; pid_t handlers[NUM_HANDLER_PROCESSES]; pid_t reporter; void signal_catcher_1(int); void signal_catcher_2(int); void signal_catcher_int(int); void signal_catcher_monitor(int); void signal_catcher_main(int); void terminate_processes() { //Kill the child processes int status; cout << "Time up terminating the child processes" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); //Wait for the child processes to finish for(int i=0; i<NUM_SENDER_PROCESSES; i++) { waitpid(senders[i], &status, 0); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { waitpid(handlers[i], &status, 0); } waitpid(reporter, &status, 0); } int main(int argc, char *argv[]) { if(argc != 2) { cout << "Required parameters missing. " << endl; cout << "Option 1 = 1 which means run for 30 seconds" << endl; cout << "Option 2 = 2 which means run until 100000 signals" << endl; exit(0); } int option = atoi(argv[1]); pid_t pid; if(option == 2) { if(signal(SIGUSR1, signal_catcher_main) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, signal_catcher_main) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } if(signal(SIGINT, signal_catcher_int) == SIG_ERR) { perror("3"); exit(1); } /////////////////////////////////////////////////////////////////////////////////////// ////////////////////// Initializing the shared memory ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// cout << "Initializing the shared memory" << endl; if ((shmid=shmget(IPC_PRIVATE,shareSize,IPC_CREAT|0660))< 0) { perror("shmget fail"); exit(1); } usrsig1_handler_count = (int *) shmat(shmid, NULL, 0); usrsig2_handler_count = usrsig1_handler_count + 1; usrsig1_sender_count = usrsig2_handler_count + 1; usrsig2_sender_count = usrsig1_sender_count + 1; lock_1 = usrsig2_sender_count + 1; lock_2 = lock_1 + 1; lock_3 = lock_2 + 1; lock_4 = lock_3 + 1; lock_5 = lock_4 + 1; lock_6 = lock_5 + 1; //Initialize them to be zero *usrsig1_handler_count = 0; *usrsig2_handler_count = 0; *usrsig1_sender_count = 0; *usrsig2_sender_count = 0; *lock_1 = 0; *lock_2 = 0; *lock_3 = 0; *lock_4 = 0; *lock_5 = 0; *lock_6 = 0; cout << "End of initializing the shared memory" << endl; ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////// End of initializing the shared memory /////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////Registering the signal handlers/////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal handlers" << endl; for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { if((pid = fork()) == 0) { if(i%2 == 0) { struct sigaction action; action.sa_handler = signal_catcher_1; sigset_t block_mask; action.sa_flags = 0; sigaction(SIGUSR1,&action,NULL); if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1 ,SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } struct sigaction action; action.sa_handler = signal_catcher_2; action.sa_flags = 0; sigaction(SIGUSR2,&action,NULL); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { //cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } cout << "End of registering the signal handlers" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////End of registering the signal handlers ////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////Registering the monitoring process ////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the monitoring process" << endl; if((pid = fork()) == 0) { struct sigaction action; action.sa_handler = signal_catcher_monitor; sigemptyset(&action.sa_mask); sigset_t block_mask; sigemptyset(&block_mask); sigaddset(&block_mask,SIGUSR1); sigaddset(&block_mask,SIGUSR2); action.sa_flags = 0; action.sa_mask = block_mask; sigaction(SIGUSR1,&action,NULL); sigaction(SIGUSR2,&action,NULL); if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { cout << "Monitor's pid is " << pid << endl; reporter = pid; } cout << "End of registering the monitoring process" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////End of registering the monitoring process//////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Sleep to make sure that the monitor and handler processes are well initialized and ready to handle signals sleep(5); ////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////Registering the signal generators/////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal generators" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } srand(i); while(true) { int signal_id = rand()%2 + 1; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); while(__sync_lock_test_and_set(lock_4,1) != 0) { } (*usrsig1_sender_count)++; *lock_4 = 0; } else { killpg(getpgid(getpid()), SIGUSR2); while(__sync_lock_test_and_set(lock_5,1) != 0) { } (*usrsig2_sender_count)++; *lock_5=0; } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { //cout << "Registered the sender " << pid << endl; senders[i] = pid; } } //cout << "End of registering the signal generators" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////End of registering the signal generators/////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Either sleep for 30 seconds and terminate the program or if the number of signals generated reaches 10000, terminate the program if(option = 1) { sleep(90); terminate_processes(); } else { while(true) { if(total_signal_count >= MAX_SIGNAL_COUNT) { terminate_processes(); } else { sleep(0.001); } } } } void signal_catcher_1(int the_sig) { while(__sync_lock_test_and_set(lock_1,1) != 0) { } (*usrsig1_handler_count) = (*usrsig1_handler_count) + 1; cout << "Signal Handler 1 " << *usrsig1_handler_count << endl; __sync_lock_release(lock_1); } void signal_catcher_2(int the_sig) { while(__sync_lock_test_and_set(lock_2,1) != 0) { } (*usrsig2_handler_count) = (*usrsig2_handler_count) + 1; __sync_lock_release(lock_2); } void signal_catcher_main(int the_sig) { while(__sync_lock_test_and_set(lock_6,1) != 0) { } total_signal_count++; *lock_6 = 0; } void signal_catcher_int(int the_sig) { for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } void signal_catcher_monitor(int the_sig) { cout << "Monitoring process " << *usrsig1_handler_count << endl; } Here is the initial segment of output Monitoring process 0 Monitoring process 0 Monitoring process 0 Monitoring process 0 Signal Handler 1 1 Monitoring process 2 Signal Handler 1 2 Signal Handler 1 3 Signal Handler 1 4 Monitoring process 4 Monitoring process Signal Handler 1 6 Signal Handler 1 7 Monitoring process 7 Monitoring process 8 Monitoring process 8 Signal Handler 1 9 Monitoring process 9 Monitoring process 9 Monitoring process 10 Signal Handler 1 11 Monitoring process 11 Monitoring process 12 Signal Handler 1 13 Signal Handler 1 14 Signal Handler 1 15 Signal Handler 1 16 Signal Handler 1 17 Signal Handler 1 18 Monitoring process 19 Signal Handler 1 20 Monitoring process 20 Signal Handler 1 21 Monitoring process 21 Monitoring process 21 Monitoring process 22 Monitoring process 22 Monitoring process 23 Signal Handler 1 24 Signal Handler 1 25 Monitoring process 25 Signal Handler 1 27 Signal Handler 1 28 Signal Handler 1 29 Here is the segment when the signal handler processes signal handlers are called in a burst Signal Handler 1 456 Signal Handler 1 457 Signal Handler 1 458 Signal Handler 1 459 Signal Handler 1 460 Signal Handler 1 461 Signal Handler 1 462 Signal Handler 1 463 Signal Handler 1 464 Signal Handler 1 465 Signal Handler 1 466 Signal Handler 1 467 Signal Handler 1 468 Signal Handler 1 469 Signal Handler 1 470 Signal Handler 1 471 Signal Handler 1 472 Signal Handler 1 473 Signal Handler 1 474 Signal Handler 1 475 Signal Handler 1 476 Signal Handler 1 477 Signal Handler 1 478 Signal Handler 1 479 Signal Handler 1 480 Signal Handler 1 481 Signal Handler 1 482 Signal Handler 1 483 Signal Handler 1 484 Signal Handler 1 485 Signal Handler 1 486 Signal Handler 1 487 Signal Handler 1 488 Signal Handler 1 489 Signal Handler 1 490 Signal Handler 1 491 Signal Handler 1 492 Signal Handler 1 493 Signal Handler 1 494 Signal Handler 1 495 Signal Handler 1 496 Signal Handler 1 497 Signal Handler 1 498 Signal Handler 1 499 Signal Handler 1 500 Signal Handler 1 501 Signal Handler 1 502 Signal Handler 1 503 Signal Handler 1 504 Signal Handler 1 505 Signal Handler 1 506 Here is the segment when the monitoring processes signal handlers are called in a burst Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Why isn't it uniform afterwards. Why are they called in a burst?

    Read the article

  • Network traffic monitoring for unexperienced users

    - by Eduardo Casteluci
    I'm a really unexperienced Ubuntu user and I'm having a hard time monitoring my network traffic. I just need to know what websites each one of the devices connected to my network are accessing. I've tried to use ntop, but I couldn't work around it. Is that possible? I mean, is it possible to know that kind of data only by specifing a local IP address? How can I do that? It's a security issue that I'm facing and I need to work that "easy" monitoring out. Thanks

    Read the article

  • SQLAuthority News – A Successful Performance Tuning Seminar at Pune – Dec 4-5, 2010

    - by pinaldave
    This is report to my third of very successful seminar event on SQL Server Performance Tuning. SQL Server Performance Tuning Seminar in Colombo was oversubscribed with total of 35 attendees. You can read the details over here SQLAuthority News – SQL Server Performance Optimizations Seminar – Grand Success – Colombo, Sri Lanka – Oct 4 – 5, 2010. SQL Server Performance Tuning Seminar in Hyderabad was oversubscribed with total of 25 attendees. You can read the details over here SQL SERVER – A Successful Performance Tuning Seminar – Hyderabad – Nov 27-28, 2010. The same Seminar was offered in Pune on December 4,-5, 2010. We had another successful seminar with lots of performance talk. This seminar was attended by 30 attendees. The best part of the seminar was that along with the our agenda, we have talked about following very interesting concepts. Deadlocks Detection and Removal Dynamic SQL and Inline Code SQL Optimizations Multiple OR conditions and performance tuning Dynamic Search Condition Building and Improvement Memory Cache and Improvement Bottleneck Detections – Memory, CPU and IO Beginning Performance Tuning on Production Parametrization Improving already Super Fast Queries Convenience vs. Performance Proper way to create Indexes Hints and Disadvantages I had great time doing the seminar and sharing my performance tricks with all. The highlight of this seminar was I have explained the attendees, how I begin doing performance tuning when I go for Performance Tuning Consultations.   Pinal Dave at SQL Performance Tuning Seminar SQL Server Performance Tuning Seminar Pinal Dave at SQL Performance Tuning Seminar Pinal Dave at SQL Performance Tuning Seminar SQL Server Performance Tuning Seminar SQL Server Performance Tuning Seminar This seminar series are 100% demo oriented and no usual PowerPoint talk. They are created from my experiences of various organizations for performance tuning. I am not planning any more seminar this year as it was great but I am booked currently for next 60 days at various performance tuning engagements. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Training, SQLAuthority News, T SQL, Technology

    Read the article

  • Oracle Application Server Performance Monitoring and Tuning (CPU load high)

    - by Berkay
    Oracle Application Server Performance Monitoring and Tuning (CPU load high) i have just hired by a company and my boss give me a performance issue to solve as soon as possible. I don't have any experience with the Java EE before at the server side. Let me begin what i learned about the system and still couldn't find the solution: We have an Oracle Application Server (10.1.) and Oracle Database server (9.2.), the software guys wrote a kind of big J2EE project (X project) using specifically JSF 1.2 with Ajax which is only used in this project. They actively use PL/SQL in their code. So, we started the application server (Solaris machine), everything seems OK. users start using the app starting Monday from different locations (app 200 have user accounts,i just checked and see that the connection pool is set right, the session are active only 15 minutes). After sometime (2 days) CPU utilization gets high,%60, at night it is still same nothing changed (the online user amount is nearly 1 or 2 at this time), even it starts using the CPU allocated for other applications on the same server because they freed If we don't restart the server, the utilization becomes %90 following 2 days, application is so slow that end users starts calling. The main problem is software engineers say that code is clear, and the System and DBA managers say that we have the correct configuration,the other applications seems OK why this problem happens only for X application. I start copying the DB to a test platform and upgrade it to the latest version, also did in same with the application server (Weblogic) if there is a bug or not. i only tested by myself only one user and weblogic admin panel i can track the threads and dump them. i noticed that there are some threads showing as a hogging. when i checked the manuals and control the trace i see that it directs me the line number where PL/SQL code is called from a .java file. The software eng. says that yes we have really complex PL/SQL codes but what's the relation with Application server? this is the problem of DB server, i guess they're right... I know the question has many holes, i'd like to give more in detail but i appreciate the way you guide me. Thanks in advance ... Edit: The server both in CPU and Memory enough to run more complex applications

    Read the article

  • DB2 insert performance - How to measure

    - by svrist
    [From stackoverflow] Im trying to find a way to speedup my inserts to a DB2 9.7.1 (ubuntu linux) Im watching vmstat and trying to gather some statistics via the db2 get snapshot commands but im not able to figure out which numbers im looking for to be able to see where the trouble is. I've read lits of stuff like http://www.eggheadcafe.com/software/aspnet/35692526/question-multiple-row-in.aspx, and http://www.ibm.com/developerworks/data/library/tips/dm-0403wilkins/ and tricks like ALTER TABLE lalala APPEND ON works somewhat (the difference between a dd if=/dev/zero and insert is still a factor 10) but I would like to be able to find the counters or other performance indicators that actually show why it makes sense to use those tricks. For example: What is the metric called that shows me that it is buffer pages allocation (FSCR stuff) that is the problem Where do I see that the insert time is hampered by clustered indexes? I find db2top very useful but im still searching for more direct view of "this is your bottleneck" methods

    Read the article

  • Service and/or tool to monitor performance?

    - by chris
    I am seeing wildly different performance from a clients web site, and would like to set up some sort of monitoring. What I'm looking for is a service that will issue requests to a couple of URLs, and report on the time it took to process the page - TTFB and time to download the entire page - that means I need something that will process javascript & css. Are there services like this? I've seen a few that monitor uptime, but they don't seem to report on the overall page performance.

    Read the article

  • How I use PowerShell to collect Performance Counter data

    - by AaronBertrand
    In a current project, I need to collect performance counters from a set of virtual machines that are performing different tasks and running a variety of workloads. In a similar project last year, I used LogMan to collect performance data. This time I decided to try PowerShell because, well, all the kids are doing it, I felt a little passé, and a lot of the other tasks in this project (such as building out VMs and running workloads) were already being accomplished via PowerShell. And after all, I...(read more)

    Read the article

  • How I use PowerShell to collect Performance Counter data

    - by AaronBertrand
    In a current project, I need to collect performance counters from a set of virtual machines that are performing different tasks and running a variety of workloads. In a similar project last year, I used LogMan to collect performance data. This time I decided to try PowerShell because, well, all the kids are doing it, I felt a little passé, and a lot of the other tasks in this project (such as building out VMs and running workloads) were already being accomplished via PowerShell. And after all, I...(read more)

    Read the article

  • JMX Based Monitoring - Part Three - Web App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I showed a technique for integrating a JMX console with Oracle WebLogic which is a standard feature of Oracle WebLogic 11g. Customers on other Web Application servers and other versions of Oracle WebLogic can refer to the documentation provided with the server to do a similar thing. In this blog entry I am going to discuss a new feature that is only present in Oracle Utilities Application Framework 4 and above that allows JMX to be used for management and monitoring the Oracle Utilities Web Applications. In this case JMX can be used to perform monitoring as well as provide the management of the cache. In Oracle Utilities Application Framework you can enable Web Application Server JMX monitoring that is unique to the framework by specifying a JMX port number in RMI Port number for JMX Web setting and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6740 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6740/oracle/ouaf/webAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.base.support.management.mbean.JVMInfo=enabled ouaf.jmx.com.splwg.base.web.mbeans.FlushBean=enabled ouaf.jmx.* files - contain the userid and password. The default setup uses the JMX default security configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see the JMX Site. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes, I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.management.connnector.url.default entry and the credentials you specified in the jmx.remote.x.* files. Remember these are encrypted by default so if you try and view the file you may be able to decipher it visually. For example: There are three Mbeans available to you: flushBean - This is a JMX replacement for the jsp versions of the flush utilities provided in previous releases of the Oracle Utilities Application Framework. You can manage the cache using the provided operations from JMX. The jsp versions of the flush utilities are still provided, for backward compatibility, but now are authorization controlled. JVMInfo - This is a JMX replacement for the jsp version of the JVMInfo screen used by support to get a handle on JVM information. This information is environmental not operational and is used for support purposes. The jsp versions of the JVMInfo utilities are still provided, for backward compatibility, but now is also authorization controlled. JVMSystem - This is an implementation of the Java system MXBeans for use in monitoring. We provide our own implementation of the base Mbeans to save on creating another JMX configuration for internal monitoring and to provide a consistent interface across platforms for the MXBeans. This Mbean is disabled by default and can be enabled using the enableJVMSystemBeans operation. This Mbean allows for the monitoring of the ClassLoading, Memory, OperatingSystem, Runtime and the Thread MX beans. Refer to the Server Administration Guides provided with your product and the Technical Best Practices Whitepaper for information about individual statistics. The Web Application Server JMX monitoring allows greater visibility for monitoring and management of the Oracle Utilities Application Framework application from jconsole or any JSR160 compliant JMX browser or JMX console.

    Read the article

  • System Monitoring service - Hosted

    - by sevitzdotcom
    I'm looking for a system monitoring service, a bit like New Relic, but for more the system itself than the ruby side of things. i.e. something like Zabbix, but hosted like New Relic. I wont something I can just drop an 'agent' on the servers, and then do all the config and monitoring and notifications on a nice slick 3rd party system. So essential Zabbix Meats New Relic meets Pingdom. Any ideas?

    Read the article

  • JMX Based Monitoring - Part Four - Business App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I talked about the Oracle Utilities Application Framework V4 feature for monitoring and managing aspects of the Web Application Server using JMX. In this blog entry I am going to discuss a similar new feature that allows JMX to be used for management and monitoring the Oracle Utilities business application server component. This feature is primarily focussed on performance tracking of the product. In first release of Oracle Utilities Customer Care And Billing (V1.x I am talking about), we used to use Oracle Tuxedo as part of the architecture. In Oracle Utilities Application Framework V2.0 and above, we removed Tuxedo from the architecture. One of the features that some customers used within Tuxedo was the performance tracking ability. The idea was that you enabled performance logging on the individual Tuxedo servers and then used a utility named txrpt to produce a performance report. This report would list every service called, the number of times it was called and the average response time. When I worked a performance consultant, I used this report to identify badly performing services and also gauge the overall performance characteristics of a site. When Tuxedo was removed from the architecture this information was also lost. While you can get some information from access.log and some Mbeans supplied by the Web Application Server it was not at the same granularity as txrpt or as useful. I am happy to say we have not only reintroduced this facility in Oracle Utilities Application Framework but it is now accessible via JMX and also we have added more detail into the performance tracking. Most of this new design was working with customers around the world to make sure we introduced a new feature that not only satisfied their performance tracking needs but allowed for finer grained performance analysis. As with the Web Application Server, the Business Application Server JMX monitoring is enabled by specifying a JMX port number in RMI Port number for JMX Business and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. These credentials are shared across the Web Application Server and Business Application Server for authorization purposes. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6750 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6750/oracle/ouaf/ejbAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.ejb.service.management.PerformanceStatistics=enabled ouaf.jmx.* files - contain the userid and password. The default configuration uses the JMX default configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see JMX Security for more details. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.runtime.management.connnector.url.default entry. For example: You are then able to track performance of the product using the PerformanceStatistics Mbean. The attributes of the PerformanceStatistics Mbean are counts of each object type. This is where this facility differs from txrpt. The information that is collected includes the following: The Service Type is captured so you can filter the results in terms of the type of service. For maintenance type services you can even see the transaction type (ADD, CHANGE etc) so you can see the performance of updates against read transactions. The Minimum and Maximum are also collected to give you an idea of the spread of performance. The last call is recorded. The date, time and user of the last call are recorded to give you an idea of the timeliness of the data. The Mbean maintains a set of counters per Service Type to give you a summary of the types of transactions being executed. This gives you an overall picture of the types of transactions and volumes at your site. There are a number of interesting operations that can also be performed: reset - This resets the statistics back to zero. This is an important operation. For example, txrpt is restricted to collecting statistics per hour, which is ok for most people. But what if you wanted to be more granular? This operation allows to set the collection period to anything you wish. The statistics collected will represent values since the last restart or last reset. completeExecutionDump - This is the operation that produces a CSV in memory to allow extraction of the data. All the statistics are extracted (see the Server Administration Guide for a full list). This can be then loaded into a database, a tool or simply into your favourite spreadsheet for analysis. Here is an extract of an execution dump from my demonstration environment to give you an idea of the format: ServiceName, ServiceType, MinTime, MaxTime, Avg Time, # of Calls, Latest Time, Latest Date, Latest User ... CFLZLOUL, EXECUTE_LIST, 15.0, 64.0, 22.2, 10, 16.0, 2009-12-16::11-25-36-932, ASHORTEN CILBBLLP, READ, 106.0, 1184.0, 466.3333333333333, 6, 106.0, 2009-12-16::11-39-01-645, BOBAMA CILBBLLP, DELETE, 70.0, 146.0, 108.0, 2, 70.0, 2009-12-15::12-53-58-280, BPAYS CILBBLLP, ADD, 860.0, 4903.0, 2243.5, 8, 860.0, 2009-12-16::17-54-23-862, LELLISON CILBBLLP, CHANGE, 112.0, 3410.0, 815.1666666666666, 12, 112.0, 2009-12-16::11-40-01-103, ASHORTEN CILBCBAL, EXECUTE_LIST, 8.0, 84.0, 26.0, 22, 23.0, 2009-12-16::17-54-01-643, LJACKMAN InitializeUserInfoService, READ_SYSTEM, 49.0, 962.0, 70.83777777777777, 450, 63.0, 2010-02-25::11-21-21-667, ASHORTEN InitializeUserService, READ_SYSTEM, 130.0, 2835.0, 234.85777777777778, 450, 216.0, 2010-02-25::11-21-21-446, ASHORTEN MenuLoginService, READ_SYSTEM, 530.0, 1186.0, 703.3333333333334, 9, 530.0, 2009-12-16::16-39-31-172, ASHORTEN NavigationOptionDescriptionService, READ_SYSTEM, 2.0, 7.0, 4.0, 8, 2.0, 2009-12-21::09-46-46-892, ASHORTEN ... There are other operations and attributes available. Refer to the Server Administration Guide provided with your product to understand the full et of operations and attributes. This is one of the many features I am proud that we implemented as it allows flexible monitoring of the performance of the product.

    Read the article

  • Network monitoring tools with API features

    - by Kev
    We use ks-soft's Advanced Hostmonitor package to monitor around 2000 items on our network. We think it's great, the chap that supports it is fantastic, the product is fast, stable and mature but I feel as as we grow as a company it's beginning to show some friction points in the area of integration with our back office admin systems. One of the things we'd like to do is be able to add new tests to whatever monitoring tool we use via an API. For example, when orders for servers come from our retail interface, the server gets built automatically, and as part of the automated build process we'd like to automatically add new tests to the network monitoring systems. Hostmonitor has some support for this via a feature called HM Script but we're starting to encounter some speedbumps - we can't add new operators/users we can't define new "Action Profiles" - these are the actions to be taken when a test goes good or bad. What we love about hostmonitor though are the Action Profiles. For example if a Windows IIS box goes bad our action profile for a bad test does something like: Check host again (one time) Wait another 30 seconds then test again Try restart app pool on remote machine (up to two times) Send an email to ops about the restart failure Try restarting IIS on remote machine (up to four times) Page duty admin (up to 5 times - stops after duty admin ACKS alert) Page backup duty admin (5 times - stops after duty admin ACKS alert) I'm starting to look around at other network monitoring tools and I'm looking for: a comprehensive API to be able to add/remove/control tests/test "action profiles"/operators (not just plugins, we need control and admin interfaces) the ability to have quite detailed action/escalation profiles (and define these via an API) I've looked at Nagios and Icinga but Ican't seem to glean from their documentation whether we could have these features or not, or if we could, how much work would be involved to implement/customise. Can anyone provide any advice, guidance or experiences?

    Read the article

  • Service monitoring service, which I can ping instead of getting pinged

    - by Jack Juiceson
    I'm looking for a service, which can send me an alert if my program didn't ping(some http request) in X minutes. Pretty much like any service monitoring, but instead of service pinging my server I want, my program to ping the monitor service. This is because our program, can't get incoming connections, yet we need to monitor it's alive. And easiest for us will be to have a service we can ping. Thank you, - Jack

    Read the article

  • which performance counters mainly matter for windows server performance?

    - by Karl Cassar
    We have a website which is sometimes performing slowly, and / or completely hangs. I have setted up temporarily the default system performance data collector in Performance Monitor, to see if this can shed some light. However, the default Data Collector set collects a huge amount of counters, as well as generates huge logs files. Just 8 hours of data resulted in 4GB of data. Which performance counters matter the most, when judging server load? Also, is it a performance concern if one leaves such data-collectors running indefinitely? Obviously, I will not know when the server will experience slow performance, so I need the logs there so that I can check them out. Any other specific guidelines on monitoring server performance would be greatly appreciated. OS is a Windows Server 2008 R2 (Web Edition).

    Read the article

  • Looking for application performance tracking software

    - by JavaRocky
    I have multiple java-based applications which produce statistics on how long method calls take. Right now the information is being written into a log file and I analyse performance that way. However with multiple apps and more monitoring requirements this is being becoming a bit overwhelming. I am looking for an application which will collect stats and graph them so I can analyse performance and be aware of performance degradation. I have looked at Solarwinds Application Performance Monitoring, however this polls periodically to gather information. My applications are totally event based and we would like to graph and track this accordingly. I almost started hacking together some scripts to produce Google Charts but surely there are applications which do this already. Suggestions?

    Read the article

  • Linux Server Performance Monitoring

    - by Jon
    I'm looking to monitor performance on my Linux servers (which happen to be Centos). What are the best tools for monitoring things in realtime such as: Disk Performance I/O, swapping etc.. CPU Performance Looking for low level tools, rather than web based tools such as Nagios, Ganglia etc... n.b. I'd like to know exactly what each tool does rather than just having a list of random toolnames if possible please. Why the tool is a better option than others would be good also.

    Read the article

  • Linux Server Performance Monitoring

    - by Jon
    I'm looking to monitor performance on my Linux servers (which happen to be Centos). What are the best tools for monitoring things in realtime such as: Disk Performance I/O, swapping etc.. CPU Performance Looking for low level tools, rather than web based tools such as Nagios, Ganglia etc... n.b. I'd like to know exactly what each tool does rather than just having a list of random toolnames if possible please. Why the tool is a better option than others would be good also.

    Read the article

  • Enable: Asp.net connection pool monitoring with performance monitor

    - by BlackHawkDesign
    If this question is at the wrong forum, be free to tell me. I'm a c# developer, but I'm running in a system management issue here. Intro: Im suspecting that an asp.net application is having some issues with the connection pool and that the pool is flooding from time to time. So to make sure, I want to monitor the connection pool. After some searching I found this article : http://blog.idera.com/sql-server/performance-and-monitoring/ensure-proper-sql-server-connection-pooling-2/ Basicly it explains stuff about connection pools and how you can monitor the application pool with performance monitor. The problem: So I logged in to the asp.net server(The sql database is hosted on a different server) which hosts the website. Started performance monitor. But when I want to select 'Current # pooled and nonpooled connections', I have no instance to select. There fore I can't add it. Question How can I create/supply an instance so I can monitor the connection pool? Thanks in advance BHD

    Read the article

  • Recommended website performance monitoring services? [closed]

    - by Dennis G.
    I'm looking for a good performance monitoring service for websites. I know about some of the available general monitoring services that check for uptime and notify you about unavailable services. But I'm specifically looking for a service with an emphasis on performance. I.e., I would like to see reports with detailed performance statistics from multiple locations world-wide, with a break-down on how long it took to fetch the different website resources, including third-party scripts such as Google Analytics and so on (the report should contain similar details such as the FireBug Net tab). Are there any such services and if so, which one is the best?

    Read the article

  • Monitoring bespoke software with Zenoss

    - by Andy S
    We've got a lot of back-end applications that we need to monitor the performance of (metrics such as orders waiting to be processed, time since last run, etc). Currently, this is done by an in-house watchdog application that fires out emails whenever a threshold is exceeded, but there's no way to acknowledge an issue and squelch these alerts. Rather than build our own complete alerting system, we'd like to tie in to the Zenoss installation we use to monitor our servers. I've found a few articles on creating events programmatically, but I'd rather Zenoss itself monitors the values that the current watchdog app is looking at (so we get the benefits of graphing and history as well). Is it possible, then, to programmatically provide a data feed (rather than an event) to Zenoss? Or is there another way to go about this?

    Read the article

  • How do i return integers from a string ?

    - by kannan.ambadi
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Suppose you are passing a string(for e.g.: “My name has 1 K, 2 A and 3 N”)  which may contain integers, letters or special characters. I want to retrieve only numbers from the input string. We can implement it in many ways such as splitting the string into an array or by using TryParse method. I would like to share another idea, that’s by using Regular expressions. All you have to do is, create an instance of Regular Expression with a specified pattern for integer. Regular expression class defines a method called Split, which splits the specified input string based on the pattern provided during object initialization.     We can write the code as given below:   public static int[] SplitIdSeqenceValues(object combinedArgs)         {             var _argsSeperator = new Regex(@"\D+", RegexOptions.Compiled);               string[] splitedIntegers = _argsSeperator.Split(combinedArgs.ToString());               var args = new int[splitedIntegers.Length];               for (int i = 0; i < splitedIntegers.Length; i++)                 args[i] = MakeSafe.ToSafeInt32(splitedIntegers[i]);                           return args;         }    It would be better, if we set to RegexOptions.Compiled so that the regular expression will have performance boost by faster compilation.   Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Happy Programming  :))   

    Read the article

  • PHP Network Monitoring

    - by Vlad Patrascu
    Is there a way that I can monitor the traffic, Upload/Download (separately) using PHP? I`d like to echo out something like that: Upload: 523 GB | Download: 25 GB This should be based on the System Uptime, so if I restart the computer, the count should restart. Thanks in Advance.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >