Search Results

Search found 12 results on 1 pages for 'perp'.

Page 1/1 | 1 

  • Registry remotley hacked win 7 need help tracking the perp

    - by user577229
    I was writing some .VBS code at thhe office that would allow certain file extensions to be downloaded without a warning dialog on a w7x32 system. The system I was writing this on is in a lab on a segmented subnet. All web access is via a proxy server. The only means of accessing my machine is via the internet or from within the labs MSFT AD domain. While writing and testing my code I found a message of sorts. Upon refresing the registry to verify my code changed a dword, instead the message HELLO was written and visible in regedit where the dword value wass called for. I took a screen shot and proceeded to edit my code. This same weird behavior occurred last time I was writing registry code except on another internal server. I understand that remote registry access exists for windows systems. I will block this immediately once I return to the office. What I want to know is, can I trace who made this connection? How would I do this? I suspect the cause of this is the cause of other "odd" behaviors I'm experiencing at work such as losing control of my input director master control for over an hour and unchanged code that all of a sudden fails for no logical region. These failures occur at funny times, whenver I'm about to give a demonstration of my test code. I know this sounds crazy however knowledge of the registry component makes this believable. Once the registry can be accessed, the entire system is compromised. Any help or sanity checking is appreciated.

    Read the article

  • Registry remotley hacked win 7 need help tracking the perp

    - by user577229
    I was writing some .VBS code at thhe office that would allow certain file extensions to be downloaded without a warning dialog on a w7x32 system. The system I was writing this on is in a lab on a segmented subnet. All web access is via a proxy server. The only means of accessing my machine is via the internet or from within the labs MSFT AD domain. While writing and testing my code I found a message of sorts. Upon refresing the registry to verify my code changed a dword, instead the message HELLO was written and visible in regedit where the dword value wass called for. I took a screen shot and proceeded to edit my code. This same weird behavior occurred last time I was writing registry code except on another internal server. I understand that remote registry access exists for windows systems. I will block this immediately once I return to the office. What I want to know is, can I trace who made this connection? How would I do this? I suspect the cause of this is the cause of other "odd" behaviors I'm experiencing at work such as losing control of my input director master control for over an hour and unchanged code that all of a sudden fails for no logical region. These failures occur at funny times, whenver I'm about to give a demonstration of my test code. I know this sounds crazy however knowledge of the registry component makes this believable. Once the registry can be accessed, the entire system is compromised. Any help or sanity checking is appreciated.

    Read the article

  • Did I implement this correctly?

    - by user146780
    I'm trying to implement line thickness as denoted here: start = line start = vector(x1, y1) end = line end = vector(x2, y2) dir = line direction = end - start = vector(x2-x1, y2-y1) ndir = normalized direction = dir*1.0/length(dir) perp = perpendicular to direction = vector(dir.x, -dir.y) nperp = normalized perpendicular = perp*1.0/length(perp) perpoffset = nperp*w*0.5 diroffset = ndir*w*0.5 p0, p1, p2, p3 = polygon points: p0 = start + perpoffset - diroffset p1 = start - perpoffset - diroffset p2 = end + perpoffset + diroffset p3 = end - perpoffset + diroffset I'v implemented this like so: void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input, std::vector<GLfloat> &output, int width) { output.clear(); float temp; float dirlen; float perplen; POINTFLOAT start; POINTFLOAT end; POINTFLOAT dir; POINTFLOAT ndir; POINTFLOAT perp; POINTFLOAT nperp; POINTFLOAT perpoffset; POINTFLOAT diroffset; POINTFLOAT p0, p1, p2, p3; for(int i = 0; i < input.size() - 1; ++i) { start.x = input[i][0]; start.y = input[i][1]; end.x = input[i + 1][0]; end.y = input[i + 1][1]; dir.x = end.x - start.x; dir.y = end.y - start.y; dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y)); ndir.x = dir.x * (1.0 / dirlen); ndir.y = dir.y * (1.0 / dirlen); perp.x = dir.x; perp.y = -dir.y; perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y)); nperp.x = perp.x * (1.0 / perplen); nperp.y = perp.y * (1.0 / perplen); perpoffset.x = nperp.x * width * 0.5; perpoffset.y = nperp.y * width * 0.5; diroffset.x = ndir.x * width * 0.5; diroffset.y = ndir.x * width * 0.5; // p0 = start + perpoffset - diroffset //p1 = start - perpoffset - diroffset //p2 = end + perpoffset + diroffset // p3 = end - perpoffset + diroffset p0.x = start.x + perpoffset.x - diroffset.x; p0.y = start.y + perpoffset.y - diroffset.y; p1.x = start.x - perpoffset.x - diroffset.x; p1.y = start.y - perpoffset.y - diroffset.y; p2.x = end.x + perpoffset.x + diroffset.x; p2.y = end.y + perpoffset.y + diroffset.y; p3.x = end.x - perpoffset.x + diroffset.x; p3.y = end.y - perpoffset.y + diroffset.y; output.push_back(p0.x); output.push_back(p0.y); output.push_back(p1.x); output.push_back(p1.y); output.push_back(p2.x); output.push_back(p2.y); output.push_back(p3.x); output.push_back(p3.y); } } But right now the lines look perpendicular and wrong, it should be giving me quads to render which is what i'm rendering, but the points it is outputing are strange. Have I done this wrong? Thanks

    Read the article

  • Filling in gaps for outlines

    - by user146780
    I'm using an algorithm to generate quads. These become outlines. The algorithm is: void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input, std::vector<GLfloat> &output, int width) { output.clear(); if(input.size() < 2) { return; } int temp; float dirlen; float perplen; POINTFLOAT start; POINTFLOAT end; POINTFLOAT dir; POINTFLOAT ndir; POINTFLOAT perp; POINTFLOAT nperp; POINTFLOAT perpoffset; POINTFLOAT diroffset; POINTFLOAT p0, p1, p2, p3; for(unsigned int i = 0; i < input.size() - 1; ++i) { start.x = static_cast<float>(input[i][0]); start.y = static_cast<float>(input[i][1]); end.x = static_cast<float>(input[i + 1][0]); end.y = static_cast<float>(input[i + 1][1]); dir.x = end.x - start.x; dir.y = end.y - start.y; dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y)); ndir.x = static_cast<float>(dir.x * 1.0 / dirlen); ndir.y = static_cast<float>(dir.y * 1.0 / dirlen); perp.x = dir.y; perp.y = -dir.x; perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y)); nperp.x = static_cast<float>(perp.x * 1.0 / perplen); nperp.y = static_cast<float>(perp.y * 1.0 / perplen); perpoffset.x = static_cast<float>(nperp.x * width * 0.5); perpoffset.y = static_cast<float>(nperp.y * width * 0.5); diroffset.x = static_cast<float>(ndir.x * 0 * 0.5); diroffset.y = static_cast<float>(ndir.y * 0 * 0.5); // p0 = start + perpoffset - diroffset //p1 = start - perpoffset - diroffset //p2 = end + perpoffset + diroffset // p3 = end - perpoffset + diroffset p0.x = start.x + perpoffset.x - diroffset.x; p0.y = start.y + perpoffset.y - diroffset.y; p1.x = start.x - perpoffset.x - diroffset.x; p1.y = start.y - perpoffset.y - diroffset.y; p2.x = end.x + perpoffset.x + diroffset.x; p2.y = end.y + perpoffset.y + diroffset.y; p3.x = end.x - perpoffset.x + diroffset.x; p3.y = end.y - perpoffset.y + diroffset.y; output.push_back(p2.x); output.push_back(p2.y); output.push_back(p0.x); output.push_back(p0.y); output.push_back(p1.x); output.push_back(p1.y); output.push_back(p3.x); output.push_back(p3.y); } } The problem is that there are then gaps as seen here: http://img816.imageshack.us/img816/2882/eeekkk.png There must be a way to fix this. I see a pattern but I just cant figure it out. There must be a way to fill the missing inbetweens. Thanks

    Read the article

  • Edges on polygon outlines not always correct

    - by user146780
    I'm using the algorithm below to generate quads which are then rendered to make an outline like this http://img810.imageshack.us/img810/8530/uhohz.png The problem as seen on the image, is that sometimes the lines are too thin when they should always be the same width. My algorithm finds the 4 verticies for the first one then the top 2 verticies of the next ones are the bottom 2 of the previous. This creates connected lines, but it seems to not always work. How could I fix this? This is my algorithm: void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input, std::vector<GLfloat> &output, int width) { output.clear(); if(input.size() < 2) { return; } int temp; float dirlen; float perplen; POINTFLOAT start; POINTFLOAT end; POINTFLOAT dir; POINTFLOAT ndir; POINTFLOAT perp; POINTFLOAT nperp; POINTFLOAT perpoffset; POINTFLOAT diroffset; POINTFLOAT p0, p1, p2, p3; for(unsigned int i = 0; i < input.size() - 1; ++i) { start.x = static_cast<float>(input[i][0]); start.y = static_cast<float>(input[i][1]); end.x = static_cast<float>(input[i + 1][0]); end.y = static_cast<float>(input[i + 1][1]); dir.x = end.x - start.x; dir.y = end.y - start.y; dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y)); ndir.x = static_cast<float>(dir.x * 1.0 / dirlen); ndir.y = static_cast<float>(dir.y * 1.0 / dirlen); perp.x = dir.y; perp.y = -dir.x; perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y)); nperp.x = static_cast<float>(perp.x * 1.0 / perplen); nperp.y = static_cast<float>(perp.y * 1.0 / perplen); perpoffset.x = static_cast<float>(nperp.x * width * 0.5); perpoffset.y = static_cast<float>(nperp.y * width * 0.5); diroffset.x = static_cast<float>(ndir.x * 0 * 0.5); diroffset.y = static_cast<float>(ndir.y * 0 * 0.5); // p0 = start + perpoffset - diroffset //p1 = start - perpoffset - diroffset //p2 = end + perpoffset + diroffset // p3 = end - perpoffset + diroffset p0.x = start.x + perpoffset.x - diroffset.x; p0.y = start.y + perpoffset.y - diroffset.y; p1.x = start.x - perpoffset.x - diroffset.x; p1.y = start.y - perpoffset.y - diroffset.y; if(i > 0) { temp = (8 * (i - 1)); p2.x = output[temp + 2]; p2.y = output[temp + 3]; p3.x = output[temp + 4]; p3.y = output[temp + 5]; } else { p2.x = end.x + perpoffset.x + diroffset.x; p2.y = end.y + perpoffset.y + diroffset.y; p3.x = end.x - perpoffset.x + diroffset.x; p3.y = end.y - perpoffset.y + diroffset.y; } output.push_back(p2.x); output.push_back(p2.y); output.push_back(p0.x); output.push_back(p0.y); output.push_back(p1.x); output.push_back(p1.y); output.push_back(p3.x); output.push_back(p3.y); } } Thanks

    Read the article

  • Arcball Problems with UDK

    - by opdude
    I'm trying to re-create an arcball example from a Nehe, where an object can be rotated in a more realistic way while floating in the air (in my game the object is attached to the player at a distance like for example the Physics Gun) however I'm having trouble getting this to work with UDK. I have created an LGArcBall which follows the example from Nehe and I've compared outputs from this with the example code. I think where my problem lies is what I do to the Quaternion that is returned from the LGArcBall. Currently I am taking the returned Quaternion converting it to a rotation matrix. Getting the product of the last rotation (set when the object is first clicked) and then returning that into a Rotator and setting that to the objects rotation. If you could point me in the right direction that would be great, my code can be found below. class LGArcBall extends Object; var Quat StartRotation; var Vector StartVector; var float AdjustWidth, AdjustHeight, Epsilon; function SetBounds(float NewWidth, float NewHeight) { AdjustWidth = 1.0f / ((NewWidth - 1.0f) * 0.5f); AdjustHeight = 1.0f / ((NewHeight - 1.0f) * 0.5f); } function StartDrag(Vector2D startPoint, Quat rotation) { StartVector = MapToSphere(startPoint); } function Quat Update(Vector2D currentPoint) { local Vector currentVector, perp; local Quat newRot; //Map the new point to the sphere currentVector = MapToSphere(currentPoint); //Compute the vector perpendicular to the start and current perp = startVector cross currentVector; //Make sure our length is larger than Epsilon if (VSize(perp) > Epsilon) { //Return the perpendicular vector as the transform newRot.X = perp.X; newRot.Y = perp.Y; newRot.Z = perp.Z; //In the quaternion values, w is cosine (theta / 2), where //theta is the rotation angle newRot.W = startVector dot currentVector; } else { //The two vectors coincide, so return an identity transform newRot.X = 0.0f; newRot.Y = 0.0f; newRot.Z = 0.0f; newRot.W = 0.0f; } return newRot; } function Vector MapToSphere(Vector2D point) { local float x, y, length, norm; local Vector result; //Transform the mouse coords to [-1..1] //and inverse the Y coord x = (point.X * AdjustWidth) - 1.0f; y = 1.0f - (point.Y * AdjustHeight); length = (x * x) + (y * y); //If the point is mapped outside of the sphere //( length > radius squared) if (length > 1.0f) { norm = 1.0f / Sqrt(length); //Return the "normalized" vector, a point on the sphere result.X = x * norm; result.Y = y * norm; result.Z = 0.0f; } else //It's inside of the sphere { //Return a vector to the point mapped inside the sphere //sqrt(radius squared - length) result.X = x; result.Y = y; result.Z = Sqrt(1.0f - length); } return result; } DefaultProperties { Epsilon = 0.000001f } I'm then attempting to rotate that object when the mouse is dragged, with the following update code in my PlayerController. //Get Mouse Position MousePosition.X = LGMouseInterfacePlayerInput(PlayerInput).MousePosition.X; MousePosition.Y = LGMouseInterfacePlayerInput(PlayerInput).MousePosition.Y; newQuat = ArcBall.Update(MousePosition); rotMatrix = MakeRotationMatrix(QuatToRotator(newQuat)); rotMatrix = rotMatrix * LastRot; LGMoveableActor(movingPawn.CurrentUseableObject).SetPhysics(EPhysics.PHYS_Rotating); LGMoveableActor(movingPawn.CurrentUseableObject).SetRotation(MatrixGetRotator(rotMatrix));

    Read the article

  • Gradient algororithm produces little white dots

    - by user146780
    I'm working on an algorithm to generate point to point linear gradients. I have a rough, proof of concept implementation done: GLuint OGLENGINEFUNCTIONS::CreateGradient( std::vector<ARGBCOLORF> &input,POINTFLOAT start, POINTFLOAT end, int width, int height,bool radial ) { std::vector<POINT> pol; std::vector<GLubyte> pdata(width * height * 4); std::vector<POINTFLOAT> linearpts; std::vector<float> lookup; float distance = GetDistance(start,end); RoundNumber(distance); POINTFLOAT temp; float incr = 1 / (distance + 1); for(int l = 0; l < 100; l ++) { POINTFLOAT outA; POINTFLOAT OutB; float dirlen; float perplen; POINTFLOAT dir; POINTFLOAT ndir; POINTFLOAT perp; POINTFLOAT nperp; POINTFLOAT perpoffset; POINTFLOAT diroffset; dir.x = end.x - start.x; dir.y = end.y - start.y; dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y)); ndir.x = static_cast<float>(dir.x * 1.0 / dirlen); ndir.y = static_cast<float>(dir.y * 1.0 / dirlen); perp.x = dir.y; perp.y = -dir.x; perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y)); nperp.x = static_cast<float>(perp.x * 1.0 / perplen); nperp.y = static_cast<float>(perp.y * 1.0 / perplen); perpoffset.x = static_cast<float>(nperp.x * l * 0.5); perpoffset.y = static_cast<float>(nperp.y * l * 0.5); diroffset.x = static_cast<float>(ndir.x * 0 * 0.5); diroffset.y = static_cast<float>(ndir.y * 0 * 0.5); outA.x = end.x + perpoffset.x + diroffset.x; outA.y = end.y + perpoffset.y + diroffset.y; OutB.x = start.x + perpoffset.x - diroffset.x; OutB.y = start.y + perpoffset.y - diroffset.y; for (float i = 0; i < 1; i += incr) { temp = GetLinearBezier(i,outA,OutB); RoundNumber(temp.x); RoundNumber(temp.y); linearpts.push_back(temp); lookup.push_back(i); } for (unsigned int j = 0; j < linearpts.size(); j++) { if(linearpts[j].x < width && linearpts[j].x >= 0 && linearpts[j].y < height && linearpts[j].y >=0) { pdata[linearpts[j].x * 4 * width + linearpts[j].y * 4 + 0] = (GLubyte) j; pdata[linearpts[j].x * 4 * width + linearpts[j].y * 4 + 1] = (GLubyte) j; pdata[linearpts[j].x * 4 * width + linearpts[j].y * 4 + 2] = (GLubyte) j; pdata[linearpts[j].x * 4 * width + linearpts[j].y * 4 + 3] = (GLubyte) 255; } } lookup.clear(); linearpts.clear(); } return CreateTexture(pdata,width,height); } It works as I would expect most of the time, but at certain angles it produces little white dots. I can't figure out what does this. This is what it looks like at most angles (good) http://img9.imageshack.us/img9/5922/goodgradient.png But once in a while it looks like this (bad): http://img155.imageshack.us/img155/760/badgradient.png What could be causing the white dots? Is there maybe also a better way to generate my gradients if no solution is possible for this? Thanks

    Read the article

  • Embed a JRE in a Windows executable?

    - by perp
    Suppose I want to distribute a Java application. Suppose I want to distribute it as a single executable. I could easily build a .jar with both the application and all its external dependencies in a single file (with some Ant hacking). Now suppose I want to distribute it as an .exe file on Windows. That's easy enough, given the nice tools out there (such as Launch4j and the likes). But suppose now that I also don't want to depend on the end user having the right JRE (or any JRE at all for that matter) installed. I want to distribute a JRE with my app, and my app should run on this JRE. It's easy enough to create a Windows installer executable, and embed a folder with all necessary JRE files in it. But then I'm distributing an installer and not a single-file app. Is there a way to embed both the application, and a JRE, into an .exe file acting as the application launcher (and not as an installer)?

    Read the article

  • Trying to detect collision between two polygons using Separating Axis Theorem

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(vertices[0]); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(vertices[i]); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if( other.x <= y || other.y >= x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • Error in my Separating Axis Theorem collision code

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; int x; int y; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } public void update(int xPos, int yPos){ x = xPos; y = yPos; } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(new Vect(vertices[0].x+x, vertices[0].y+y)); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(new Vect(vertices[i].x+x, vertices[i].y+y)); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if(y > other.x && other.y > x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • What most efficient method to find a that triangle which contains the given point?

    - by Christo
    Given the triangle with vertices (a,b,c): c / \ / \ / \ a - - - b Which is then subdivided into four triangles by halving each of the edges: c / \ / \ ca / \ bc /\ - - - /\ / \ / \ / \ / \ a- - - - ab - - - -b Wich results in four triangles (a, ab, ca), (b, bc, ab), (c, ca, bc), (ab, bc, ca). Now given a point p. How do I determine in which triangle p lies, given that p is within the outer triangle (a, b, c)? Currently I intend to use ab as the origin. Check whether it is to the left of right of the line "ca - ab" using the perp of "ca - ab" and checking the sign against the dot product of "ab - a" and the perp vector and the vector "p - ab". If it is the same or the dot product is zero then it must be in (a, ab, ca)... Continue with this procedure with the other outer triangles (b, ba, ab) & (c, ca, ba). In the end if it didn't match with these it must be contained within the inner triangle (ab, bc, ca). Is there a better way to do it?

    Read the article

  • Unable to drag and drop / select multiple with mouse

    - by J. Scott Elblein
    I'm running into a perplexing issue with Windows 8 Pro x64, where randomly I'm unable to drag to select multiple files (i.e. in Explorer or Directory Opus). I've also noticed that a similar issue happens when I'm running for example Photoshop or Illustrator and can't drag to select multiple layers, or drag to do some other things in them. it happens randomly and have found no way to reliably reproduce it, but it happens VERY frequently. I have read some tips saying pressing the ESC button usually fixes the issue, but it doesn't in my case. From what I understand, it's probably due to some other process locking the drag feature somehow, but I've not found a way to tell which process is the perp; I've even tried using unlock software on files when I'm suddenly unable to drag and I'm told by it that nothing is locking it. Anyone have any ideas?

    Read the article

1