Search Results

Search found 7722 results on 309 pages for 'pitfalls to avoid'.

Page 1/309 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Pitfalls of using MySQL as your database choice?

    - by Sergio
    I've read online on multiple occassions that MySQL is a bad database. The places I've read this include some threads on Reddit, but they never seem to delve in on why it's a poor product. Is there any truth to this claim? I've never used it beyond a very simple CRUD scenario, and that was for a university project during my second year. What pitfalls, if any, are there when choosing MySQL as your database?

    Read the article

  • NHibernate Pitfalls: Fetch and Paging

    - by Ricardo Peres
    This is part of a series of posts about NHibernate Pitfalls. See the entire collection here. NHibernate allows you to force loading additional references (many to one, one to one) or collections (one to many, many to many) in a query. You must know, however, that this is incompatible with paging. It’s easy to see why. Let’s say you want to get 5 products starting on the fifth, you can issue the following LINQ query: 1: session.Query<Product>().Take(5).Skip(5).ToList(); Will product this SQL in SQL Server: 1: SELECT 2: TOP (@p0) product1_4_, 3: name4_, 4: price4_ 5: FROM 6: (select 7: product0_.product_id as product1_4_, 8: product0_.name as name4_, 9: product0_.price as price4_, 10: ROW_NUMBER() OVER( 11: ORDER BY 12: CURRENT_TIMESTAMP) as __hibernate_sort_row 13: from 14: product product0_) as query 15: WHERE 16: query.__hibernate_sort_row > @p1 17: ORDER BY If, however, you wanted to bring as well the associated order details, you might be tempted to try this: 1: session.Query<Product>().Fetch(x => x.OrderDetails).Take(5).Skip(5).ToList(); Which, in turn, will produce this SQL: 1: SELECT 2: TOP (@p0) product1_4_0_, 3: order1_3_1_, 4: name4_0_, 5: price4_0_, 6: order2_3_1_, 7: product3_3_1_, 8: quantity3_1_, 9: product3_0__, 10: order1_0__ 11: FROM 12: (select 13: product0_.product_id as product1_4_0_, 14: orderdetai1_.order_detail_id as order1_3_1_, 15: product0_.name as name4_0_, 16: product0_.price as price4_0_, 17: orderdetai1_.order_id as order2_3_1_, 18: orderdetai1_.product_id as product3_3_1_, 19: orderdetai1_.quantity as quantity3_1_, 20: orderdetai1_.product_id as product3_0__, 21: orderdetai1_.order_detail_id as order1_0__, 22: ROW_NUMBER() OVER( 23: ORDER BY 24: CURRENT_TIMESTAMP) as __hibernate_sort_row 25: from 26: product product0_ 27: left outer join 28: order_detail orderdetai1_ 29: on product0_.product_id=orderdetai1_.product_id 30: ) as query 31: WHERE 32: query.__hibernate_sort_row > @p1 33: ORDER BY 34: query.__hibernate_sort_row; However, because of the JOIN, what happens is that, if your products have more than one order details, you will get several records – one per order detail – per product, which means that pagination will be broken. There is an workaround, which forces you to write your LINQ query in another way: 1: session.Query<OrderDetail>().Where(x => session.Query<Product>().Select(y => y.ProductId).Take(5).Skip(5).Contains(x.Product.ProductId)).Select(x => x.Product).ToList() Or, using HQL: 1: session.CreateQuery("select od.Product from OrderDetail od where od.Product.ProductId in (select p.ProductId from Product p skip 5 take 5)").List<Product>(); The generated SQL will then be: 1: select 2: product1_.product_id as product1_4_, 3: product1_.name as name4_, 4: product1_.price as price4_ 5: from 6: order_detail orderdetai0_ 7: left outer join 8: product product1_ 9: on orderdetai0_.product_id=product1_.product_id 10: where 11: orderdetai0_.product_id in ( 12: SELECT 13: TOP (@p0) product_id 14: FROM 15: (select 16: product2_.product_id, 17: ROW_NUMBER() OVER( 18: ORDER BY 19: CURRENT_TIMESTAMP) as __hibernate_sort_row 20: from 21: product product2_) as query 22: WHERE 23: query.__hibernate_sort_row > @p1 24: ORDER BY 25: query.__hibernate_sort_row); Which will get you what you want: for 5 products, all of their order details.

    Read the article

  • What are the top javascript pitfalls?

    - by googletorp
    I'm planing on giving an introduction talk on JavaScript and in the preparation process I wondered what the top pitfalls are that rookies fall into. I know I've had a few gotchas before I fully understood closure, but much of the strange behavior in JavaScript is not something I think about any more... So, which pitfalls should you deffinately point out to the rookies?

    Read the article

  • Pitfalls when switching to .NET for Windows CE?

    - by Presidenten
    Hi! I have been developing in .NET for quite some time now. But now I have customer who wants me to develop an application for them in .NET for Windows CE. I have done some embedded system programming in C before, but never in .NET. Please share any tips or tricks that would make my life easier when taking this assignment, or perhaps knowledge about any pitfalls to watch out for.

    Read the article

  • What C++ pitfalls should I avoid ?

    - by Craig H
    I remember first learning about vectors in the STL and after some time, I wanted to use a vector of bools for one of my projects. After seeing some strange behavior and doing some research, I learned that a vector of bools is not really a vector of bools. Anyone out there have any other common pitfalls to avoid in C++?

    Read the article

  • Common Wpf pitfalls

    - by Patrick Klug
    I want to gather a list of WPF pitfalls. Issues with WPF that are not that well known and either have some serious design consequences or some major inconveniences. One topic per answer. List: Mouse.GetPosition() does not always return a correct value. The Wpf layout recursion limit is hard coded to 255.

    Read the article

  • Common MVC 2 Pitfalls

    - by mcass20
    I surprised this hasn't been asked before...or maybe I just don't see it. Anyway, I'm finally straying from the comfort of ASP.NET Web Forms and exploring the world of MVC2. I've done the nerdinner walk-through and it was fairly straightforward. Now I am getting a little more adventurous and building an MVC2 app on my own and would like to know if there are some common pitfalls that others can attest to. Please consider my background as an ASP.NET Web Forms developer. Thanks!

    Read the article

  • Common Pitfalls in Python

    - by Anurag Uniyal
    Today I was bitten again by "Mutable default arguments" after many years. I usually don't use mutable default arguments unless needed but I think with time I forgot about that, and today in the application I added tocElements=[] in a pdf generation function's argument list and now 'Table of Content' gets longer and longer after each invocation of "generate pdf" :) My question is what other things should I add to my list of things to MUST avoid? Mutable default arguments Import modules always same way e.g. from y import x and import x are different things, they are treated as different modules. Do not use range in place of lists because range() will become an iterator anyway, the following will fail: myIndexList = [0,1,3] isListSorted = myIndexList == range(3) # will fail in 3.0 isListSorted = myIndexList == list(range(3)) # will not same thing can be mistakenly done with xrange: `myIndexList == xrange(3)`. Catching multiple exceptions try: raise KeyError("hmm bug") except KeyError,TypeError: print TypeError It prints "hmm bug", though it is not a bug, it looks like we are catching exceptions of type KeyError,TypeError but instead we are catching KeyError only as variable TypeError, use this instead: try: raise KeyError("hmm bug") except (KeyError,TypeError): print TypeError

    Read the article

  • Real world pitfalls of introducing F# into a large codebase and engineering team

    - by nganju
    I'm CTO of a software firm with a large existing codebase (all C#) and a sizable engineering team. I can see how certain parts of the code would be far easier to write in F#, resulting in faster development time, fewer bugs, easier parallel implementations, etc., basically overall productivity gains for my team. However, I can also see several productivity pitfalls of introducing F#, namely: 1) Everyone has to learn F#, and it's not as trivial as switching from, say, Java to C#. Team members that have not learned F# will be unable to work on F# parts of the codebase. 2) The pool of hireable F# programmers, as of now (Dec 2010) is non-existent. Search various software engineer resume databases for "F#", way less than 1% of resumes contain the keyword. 3) Community support as of now (Dec 2010) is less available. You can google almost any problem in C# and find someone that has already dealt with it, not so with F#. Third party tool support (NUnit, Resharper etc) is also sketchy. I realize that this is a bit Catch-22, i.e. if people like me don't use F# then the community and tools will never materialize, etc. But, I've got a company to run, and I can be cutting edge but not bleeding edge. Any other pitfalls I'm not considering? Or anyone care to rebut the pitfalls I've mentioned? I think this is an important discussion and would love to hear your counter-arguments in this public forum that may do a lot to increase F# adoption by industry. Thanks.

    Read the article

  • C#: Optional Parameters - Pros and Pitfalls

    - by James Michael Hare
    When Microsoft rolled out Visual Studio 2010 with C# 4, I was very excited to learn how I could apply all the new features and enhancements to help make me and my team more productive developers. Default parameters have been around forever in C++, and were intentionally omitted in Java in favor of using overloading to satisfy that need as it was though that having too many default parameters could introduce code safety issues.  To some extent I can understand that move, as I’ve been bitten by default parameter pitfalls before, but at the same time I feel like Java threw out the baby with the bathwater in that move and I’m glad to see C# now has them. This post briefly discusses the pros and pitfalls of using default parameters.  I’m avoiding saying cons, because I really don’t believe using default parameters is a negative thing, I just think there are things you must watch for and guard against to avoid abuses that can cause code safety issues. Pro: Default Parameters Can Simplify Code Let’s start out with positives.  Consider how much cleaner it is to reduce all the overloads in methods or constructors that simply exist to give the semblance of optional parameters.  For example, we could have a Message class defined which allows for all possible initializations of a Message: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message() 5: : this(string.Empty) 6: { 7: } 8:  9: public Message(string text) 10: : this(text, null) 11: { 12: } 13:  14: public Message(string text, IDictionary<string, string> properties) 15: : this(text, properties, -1) 16: { 17: } 18:  19: public Message(string text, IDictionary<string, string> properties, long timeToLive) 20: { 21: // ... 22: } 23: }   Now consider the same code with default parameters: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message(string text = "", IDictionary<string, string> properties = null, long timeToLive = -1) 5: { 6: // ... 7: } 8: }   Much more clean and concise and no repetitive coding!  In addition, in the past if you wanted to be able to cleanly supply timeToLive and accept the default on text and properties above, you would need to either create another overload, or pass in the defaults explicitly.  With named parameters, though, we can do this easily: 1: var msg = new Message(timeToLive: 100);   Pro: Named Parameters can Improve Readability I must say one of my favorite things with the default parameters addition in C# is the named parameters.  It lets code be a lot easier to understand visually with no comments.  Think how many times you’ve run across a TimeSpan declaration with 4 arguments and wondered if they were passing in days/hours/minutes/seconds or hours/minutes/seconds/milliseconds.  A novice running through your code may wonder what it is.  Named arguments can help resolve the visual ambiguity: 1: // is this days/hours/minutes/seconds (no) or hours/minutes/seconds/milliseconds (yes) 2: var ts = new TimeSpan(1, 2, 3, 4); 3:  4: // this however is visually very explicit 5: var ts = new TimeSpan(days: 1, hours: 2, minutes: 3, seconds: 4);   Or think of the times you’ve run across something passing a Boolean literal and wondered what it was: 1: // what is false here? 2: var sub = CreateSubscriber(hostname, port, false); 3:  4: // aha! Much more visibly clear 5: var sub = CreateSubscriber(hostname, port, isBuffered: false);   Pitfall: Don't Insert new Default Parameters In Between Existing Defaults Now let’s consider a two potential pitfalls.  The first is really an abuse.  It’s not really a fault of the default parameters themselves, but a fault in the use of them.  Let’s consider that Message constructor again with defaults.  Let’s say you want to add a messagePriority to the message and you think this is more important than a timeToLive value, so you decide to put messagePriority before it in the default, this gives you: 1: public class Message 2: { 3: public Message(string text = "", IDictionary<string, string> properties = null, int priority = 5, long timeToLive = -1) 4: { 5: // ... 6: } 7: }   Oh boy have we set ourselves up for failure!  Why?  Think of all the code out there that could already be using the library that already specified the timeToLive, such as this possible call: 1: var msg = new Message(“An error occurred”, myProperties, 1000);   Before this specified a message with a TTL of 1000, now it specifies a message with a priority of 1000 and a time to live of -1 (infinite).  All of this with NO compiler errors or warnings. So the rule to take away is if you are adding new default parameters to a method that’s currently in use, make sure you add them to the end of the list or create a brand new method or overload. Pitfall: Beware of Default Parameters in Inheritance and Interface Implementation Now, the second potential pitfalls has to do with inheritance and interface implementation.  I’ll illustrate with a puzzle: 1: public interface ITag 2: { 3: void WriteTag(string tagName = "ITag"); 4: } 5:  6: public class BaseTag : ITag 7: { 8: public virtual void WriteTag(string tagName = "BaseTag") { Console.WriteLine(tagName); } 9: } 10:  11: public class SubTag : BaseTag 12: { 13: public override void WriteTag(string tagName = "SubTag") { Console.WriteLine(tagName); } 14: } 15:  16: public static class Program 17: { 18: public static void Main() 19: { 20: SubTag subTag = new SubTag(); 21: BaseTag subByBaseTag = subTag; 22: ITag subByInterfaceTag = subTag; 23:  24: // what happens here? 25: subTag.WriteTag(); 26: subByBaseTag.WriteTag(); 27: subByInterfaceTag.WriteTag(); 28: } 29: }   What happens?  Well, even though the object in each case is SubTag whose tag is “SubTag”, you will get: 1: SubTag 2: BaseTag 3: ITag   Why?  Because default parameter are resolved at compile time, not runtime!  This means that the default does not belong to the object being called, but by the reference type it’s being called through.  Since the SubTag instance is being called through an ITag reference, it will use the default specified in ITag. So the moral of the story here is to be very careful how you specify defaults in interfaces or inheritance hierarchies.  I would suggest avoiding repeating them, and instead concentrating on the layer of classes or interfaces you must likely expect your caller to be calling from. For example, if you have a messaging factory that returns an IMessage which can be either an MsmqMessage or JmsMessage, it only makes since to put the defaults at the IMessage level since chances are your user will be using the interface only. So let’s sum up.  In general, I really love default and named parameters in C# 4.0.  I think they’re a great tool to help make your code easier to read and maintain when used correctly. On the plus side, default parameters: Reduce redundant overloading for the sake of providing optional calling structures. Improve readability by being able to name an ambiguous argument. But remember to make sure you: Do not insert new default parameters in the middle of an existing set of default parameters, this may cause unpredictable behavior that may not necessarily throw a syntax error – add to end of list or create new method. Be extremely careful how you use default parameters in inheritance hierarchies and interfaces – choose the most appropriate level to add the defaults based on expected usage. Technorati Tags: C#,.NET,Software,Default Parameters

    Read the article

  • C#/.NET Little Pitfalls: The Dangers of Casting Boxed Values

    - by James Michael Hare
    Starting a new series to parallel the Little Wonders series.  In this series, I will examine some of the small pitfalls that can occasionally trip up developers. Introduction: Of Casts and Conversions What happens when we try to assign from an int and a double and vice-versa? 1: double pi = 3.14; 2: int theAnswer = 42; 3:  4: // implicit widening conversion, compiles! 5: double doubleAnswer = theAnswer; 6:  7: // implicit narrowing conversion, compiler error! 8: int intPi = pi; As you can see from the comments above, a conversion from a value type where there is no potential data loss is can be done with an implicit conversion.  However, when converting from one value type to another may result in a loss of data, you must make the conversion explicit so the compiler knows you accept this risk.  That is why the conversion from double to int will not compile with an implicit conversion, we can make the conversion explicit by adding a cast: 1: // explicit narrowing conversion using a cast, compiler 2: // succeeds, but results may have data loss: 3: int intPi = (int)pi; So for value types, the conversions (implicit and explicit) both convert the original value to a new value of the given type.  With widening and narrowing references, however, this is not the case.  Converting reference types is a bit different from converting value types.  First of all when you perform a widening or narrowing you don’t really convert the instance of the object, you just convert the reference itself to the wider or narrower reference type, but both the original and new reference type both refer back to the same object. Secondly, widening and narrowing for reference types refers the going down and up the class hierarchy instead of referring to precision as in value types.  That is, a narrowing conversion for a reference type means you are going down the class hierarchy (for example from Shape to Square) whereas a widening conversion means you are going up the class hierarchy (from Square to Shape).  1: var square = new Square(); 2:  3: // implicitly convers because all squares are shapes 4: // (that is, all subclasses can be referenced by a superclass reference) 5: Shape myShape = square; 6:  7: // implicit conversion not possible, not all shapes are squares! 8: // (that is, not all superclasses can be referenced by a subclass reference) 9: Square mySquare = (Square) myShape; So we had to cast the Shape back to Square because at that point the compiler has no way of knowing until runtime whether the Shape in question is truly a Square.  But, because the compiler knows that it’s possible for a Shape to be a Square, it will compile.  However, if the object referenced by myShape is not truly a Square at runtime, you will get an invalid cast exception. Of course, there are other forms of conversions as well such as user-specified conversions and helper class conversions which are beyond the scope of this post.  The main thing we want to focus on is this seemingly innocuous casting method of widening and narrowing conversions that we come to depend on every day and, in some cases, can bite us if we don’t fully understand what is going on!  The Pitfall: Conversions on Boxed Value Types Can Fail What if you saw the following code and – knowing nothing else – you were asked if it was legal or not, what would you think: 1: // assuming x is defined above this and this 2: // assignment is syntactically legal. 3: x = 3.14; 4:  5: // convert 3.14 to int. 6: int truncated = (int)x; You may think that since x is obviously a double (can’t be a float) because 3.14 is a double literal, but this is inaccurate.  Our x could also be dynamic and this would work as well, or there could be user-defined conversions in play.  But there is another, even simpler option that can often bite us: what if x is object? 1: object x; 2:  3: x = 3.14; 4:  5: int truncated = (int) x; On the surface, this seems fine.  We have a double and we place it into an object which can be done implicitly through boxing (no cast) because all types inherit from object.  Then we cast it to int.  This theoretically should be possible because we know we can explicitly convert a double to an int through a conversion process which involves truncation. But here’s the pitfall: when casting an object to another type, we are casting a reference type, not a value type!  This means that it will attempt to see at runtime if the value boxed and referred to by x is of type int or derived from type int.  Since it obviously isn’t (it’s a double after all) we get an invalid cast exception! Now, you may say this looks awfully contrived, but in truth we can run into this a lot if we’re not careful.  Consider using an IDataReader to read from a database, and then attempting to select a result row of a particular column type: 1: using (var connection = new SqlConnection("some connection string")) 2: using (var command = new SqlCommand("select * from employee", connection)) 3: using (var reader = command.ExecuteReader()) 4: { 5: while (reader.Read()) 6: { 7: // if the salary is not an int32 in the SQL database, this is an error! 8: // doesn't matter if short, long, double, float, reader [] returns object! 9: total += (int) reader["annual_salary"]; 10: } 11: } Notice that since the reader indexer returns object, if we attempt to convert using a cast to a type, we have to make darn sure we use the true, actual type or this will fail!  If the SQL database column is a double, float, short, etc this will fail at runtime with an invalid cast exception because it attempts to convert the object reference! So, how do you get around this?  There are two ways, you could first cast the object to its actual type (double), and then do a narrowing cast to on the value to int.  Or you could use a helper class like Convert which analyzes the actual run-time type and will perform a conversion as long as the type implements IConvertible. 1: object x; 2:  3: x = 3.14; 4:  5: // if you want to cast, must cast out of object to double, then 6: // cast convert. 7: int truncated = (int)(double) x; 8:  9: // or you can call a helper class like Convert which examines runtime 10: // type of the value being converted 11: int anotherTruncated = Convert.ToInt32(x); Summary You should always be careful when performing a conversion cast from values boxed in object that you are actually casting to the true type (or a sub-type). Since casting from object is a widening of the reference, be careful that you either know the exact, explicit type you expect to be held in the object, or instead avoid the cast and use a helper class to perform a safe conversion to the type you desire. Technorati Tags: C#,.NET,Pitfalls,Little Pitfalls,BlackRabbitCoder

    Read the article

  • NHibernate Pitfalls Index

    - by Ricardo Peres
    These are the posts on NHibernate pitfalls I’ve written so far. This post will be updated whenever there are more. The SaveOrUpdate Event Collection Restrictions Specifying Event Listeners in XML Configuration Many to Many and Inverse Bags and Join Lazy Properties in Non-Lazy Entities Adding to a Bag Causes Loading Flushing Changes Private Setter on Id Property

    Read the article

  • Python - Things one MUST avoid

    - by Anurag Uniyal
    Today I was bitten again by "Mutable default arguments" after many years. I usually don't use mutable default arguments unless needed but I think with time I forgot about that, and today in the application I added tocElements=[] in a pdf generation function's argument list and now 'Table of Content' gets longer and longer after each invocation of "generate pdf" :) My question is what other things should I add to my list of things to MUST avoid? 1 Mutable default arguments 2 import modules always same way e.g. 'from y import x' and 'import x' are totally different things actually they are treated as different modules see http://stackoverflow.com/questions/1459236/module-reimported-if-imported-from-different-path 3 Do not use range in place of lists because range() will become an iterator anyway, so things like this will fail, so wrap it by list myIndexList = [0,1,3] isListSorted = myIndexList == range(3) # will fail in 3.0 isListSorted = myIndexList == list(range(3)) # will not same thing can be mistakenly done with xrange e.g myIndexList == xrange(3). 4 Catching multiple exceptions try: raise KeyError("hmm bug") except KeyError,TypeError: print TypeError It prints "hmm bug", though it is not a bug, it looks like we are catching exceptions of type KeyError,TypeError but instead we are catching KeyError only as variable TypeError, instead use try: raise KeyError("hmm bug") except (KeyError,TypeError): print TypeError

    Read the article

  • How to avoid avoid linebreaks and spaces for XmlWellFormedWriter

    - by user302670
    Hi, i am getting an XmlWriter of the AppendChild() method of a xPathNavigator. using (XmlWriter writer = xPathNavigator.AppendChild()) { writer.WriteStartAttribute("name"); writer.WriteEndElement(); } The AppendChild() method returns a instance of XmlWellFormedWriter. I want to avoid linebreaks and spaces in my output xml. But the XmlWriterSettings are readonly and using an wrapper does not help anything. I tried this, but the setting of nether the wrapper nor the writer changes: XmlWriterSettings settings = new XmlWriterSettings(); settings.IndentChars = ""; settings.NewLineChars = ""; using (XmlWriter wrapper = xPathNavigator.AppendChild()) { XmlWriter writer = XmlWriter.Create(writer, settings); writer.WriteStartAttribute("name"); writer.WriteEndElement(); } Does anybody has an idea what todo? Thanks!

    Read the article

  • NHibernate Pitfalls: Lazy Scalar Properties Must Be Auto

    - by Ricardo Peres
    This is part of a series of posts about NHibernate Pitfalls. See the entire collection here. NHibernate supports lazy properties not just for associations (many to one, one to one, one to many, many to many) but also for scalar properties. This allows, for example, only loading a potentially large BLOB or CLOB from the database if and when it is necessary, that is, when the property is actually accessed. In order for this to work, other than having to be declared virtual, the property can’t have an explicitly declared backing field, it must be an auto property: 1: public virtual String MyLongTextProperty 2: { 3: get; 4: set; 5: } 6:  7: public virtual Byte [] MyLongPictureProperty 8: { 9: get; 10: set; 11: } All lazy scalar properties are retrieved at the same time, when one of them is accessed.

    Read the article

  • NHibernate Pitfalls: Loading Foreign Key Properties

    - by Ricardo Peres
    This is part of a series of posts about NHibernate Pitfalls. See the entire collection here. When saving a new entity that has references to other entities (one to one, many to one), one has two options for setting their values: Load each of these references by calling ISession.Get and passing the foreign key; Load a proxy instead, by calling ISession.Load with the foreign key. So, what is the difference? Well, ISession.Get goes to the database and tries to retrieve the record with the given key, returning null if no record is found. ISession.Load, on the other hand, just returns a proxy to that record, without going to the database. This turns out to be a better option, because we really don’t need to retrieve the record – and all of its non-lazy properties and collections -, we just need its key. An example: 1: //going to the database 2: OrderDetail od = new OrderDetail(); 3: od.Product = session.Get<Product>(1); //a product is retrieved from the database 4: od.Order = session.Get<Order>(2); //an order is retrieved from the database 5:  6: session.Save(od); 7:  8: //creating in-memory proxies 9: OrderDetail od = new OrderDetail(); 10: od.Product = session.Load<Product>(1); //a proxy to a product is created 11: od.Order = session.Load<Order>(2); //a proxy to an order is created 12:  13: session.Save(od); So, if you just need to set a foreign key, use ISession.Load instead of ISession.Get.

    Read the article

  • NHibernate Pitfalls: Cascades

    - by Ricardo Peres
    This is part of a series of posts about NHibernate Pitfalls. See the entire collection here. For entities that have associations – one-to-one, one-to-many, many-to-one or many-to-many –, NHibernate needs to know what to do with their related entities, in three particular moments: when saving, updating or deleting. In particular, there are two possible behaviors: either ignore these related entities or cascade changes to them. NHibernate allows setting the cascade behavior for each association, and the default behavior is not to cascade (ignore). The possible cascade options are: None Ignore, this is the default Save-Update If the entity is being saved or updated, also save any related entities that are either not saved or have been modified and associate these related entities to the root entity. Generally safe Delete If the entity is being deleted, also delete the related entities. This is only useful for parent-child relations Delete-Orphan Identical to Delete, with the addition that if once related entity is removed from the association – orphaned –, also delete it. Also only for parent-child All Combination of Save-Update and Delete, usually that’s what we want (for parent-child relations, of course) All-Delete-Orphan Same as All plus delete any related entities who lose their relationship In summary, Save-Update is generally what you want in most cases. As for the Delete variations, they should only be used if the related entities depend on the root entity (parent-child), so that deleting the root entity and not their related entities would result in a constraint violation on the database.

    Read the article

  • NHibernate Pitfalls: Custom Types and Detecting Changes

    - by Ricardo Peres
    This is part of a series of posts about NHibernate Pitfalls. See the entire collection here. NHibernate supports the declaration of properties of user-defined types, that is, not entities, collections or primitive types. These are used for mapping a database columns, of any type, into a different type, which may not even be an entity; think, for example, of a custom user type that converts a BLOB column into an Image. User types must implement interface NHibernate.UserTypes.IUserType. This interface specifies an Equals method that is used for comparing two instances of the user type. If this method returns false, the entity is marked as dirty, and, when the session is flushed, will trigger an UPDATE. So, in your custom user type, you must implement this carefully so that it is not mistakenly considered changed. For example, you can cache the original column value inside of it, and compare it with the one in the other instance. Let’s see an example implementation of a custom user type that converts a Byte[] from a BLOB column into an Image: 1: [Serializable] 2: public sealed class ImageUserType : IUserType 3: { 4: private Byte[] data = null; 5: 6: public ImageUserType() 7: { 8: this.ImageFormat = ImageFormat.Png; 9: } 10: 11: public ImageFormat ImageFormat 12: { 13: get; 14: set; 15: } 16: 17: public Boolean IsMutable 18: { 19: get 20: { 21: return (true); 22: } 23: } 24: 25: public Object Assemble(Object cached, Object owner) 26: { 27: return (cached); 28: } 29: 30: public Object DeepCopy(Object value) 31: { 32: return (value); 33: } 34: 35: public Object Disassemble(Object value) 36: { 37: return (value); 38: } 39: 40: public new Boolean Equals(Object x, Object y) 41: { 42: return (Object.Equals(x, y)); 43: } 44: 45: public Int32 GetHashCode(Object x) 46: { 47: return ((x != null) ? x.GetHashCode() : 0); 48: } 49: 50: public override Int32 GetHashCode() 51: { 52: return ((this.data != null) ? this.data.GetHashCode() : 0); 53: } 54: 55: public override Boolean Equals(Object obj) 56: { 57: ImageUserType other = obj as ImageUserType; 58: 59: if (other == null) 60: { 61: return (false); 62: } 63: 64: if (Object.ReferenceEquals(this, other) == true) 65: { 66: return (true); 67: } 68: 69: return (this.data.SequenceEqual(other.data)); 70: } 71: 72: public Object NullSafeGet(IDataReader rs, String[] names, Object owner) 73: { 74: Int32 index = rs.GetOrdinal(names[0]); 75: Byte[] data = rs.GetValue(index) as Byte[]; 76: 77: this.data = data as Byte[]; 78: 79: if (data == null) 80: { 81: return (null); 82: } 83: 84: using (MemoryStream stream = new MemoryStream(this.data ?? new Byte[0])) 85: { 86: return (Image.FromStream(stream)); 87: } 88: } 89: 90: public void NullSafeSet(IDbCommand cmd, Object value, Int32 index) 91: { 92: if (value != null) 93: { 94: Image data = value as Image; 95: 96: using (MemoryStream stream = new MemoryStream()) 97: { 98: data.Save(stream, this.ImageFormat); 99: value = stream.ToArray(); 100: } 101: } 102: 103: (cmd.Parameters[index] as DbParameter).Value = value ?? DBNull.Value; 104: } 105: 106: public Object Replace(Object original, Object target, Object owner) 107: { 108: return (original); 109: } 110: 111: public Type ReturnedType 112: { 113: get 114: { 115: return (typeof(Image)); 116: } 117: } 118: 119: public SqlType[] SqlTypes 120: { 121: get 122: { 123: return (new SqlType[] { new SqlType(DbType.Binary) }); 124: } 125: } 126: } In this case, we need to cache the original Byte[] data because it’s not easy to compare two Image instances, unless, of course, they are the same.

    Read the article

  • Tips for / pitfalls of working on an outsourced project

    - by Arkaaito
    My company has retained an outside firm to develop an iPhone app for us. As the only internal developer with any knowledge of Objective-C, I've been assigned to develop the relevant APIs on our site, but also to do anything I can to make sure the whole thing comes together on time. Any suggestions for things I should do or things I should watch out for, particularly from those who've been down this road before?

    Read the article

  • SEO Pitfalls to Avoid

    If you want to maximize your site's search engine visibility, keywords are the best things to bank on. When you use just the right ones and put them in the right places within your content, you can definitely see them work their wonders in your rankings. Of course, the more important result would be a significant increase in your traffic and sales.

    Read the article

  • NHibernate Pitfalls: Private Setter on Id Property

    - by Ricardo Peres
    Having a private setter on an entity’s id property may seem tempting: in most cases, unless you are using id generators assigned or foreign, you never have to set its value directly. However, keep this in mind: If your entity is lazy and you want to prevent people from setting its value, make the setter protected instead of private, because it will need to be accessed from subclasses of your entity (generated by NHibernate); If you use stateless sessions, you can perform some operations which, on regular sessions, require you to load an entity, without doing so, for example: 1: using (IStatelessSession session = factory.OpenStatelessSession()) 2: { 3: //delete without first loading 4: session.Delete(new Customer { Id = 1 }); 5:  6: //insert without first loading 7: session.Insert(new Order { Customer = new Customer { Id = 1 }, Product = new Product { Id = 1 } }); 8:  9: //update without first loading 10: session.Update(new Order{ Id = 1, Product = new Product{ Id = 2 }}) 11: }

    Read the article

  • 3 Pitfalls of Link Building

    The search engines have experienced a growth recently and their way of choosing page ranks has been altered. Up until recently, Meta tags placed on your page was all you needed to get ranked for various keywords. Then, Meta tags were no longer used because they produced results that weren't accurate.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >