Search Results

Search found 23021 results on 921 pages for 'process monitoring'.

Page 1/921 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Enterprise Process Maps: A Process Picture worth a Million Words

    - by raul.goycoolea
    p { margin-bottom: 0.08in; }h1 { margin-top: 0.33in; margin-bottom: 0in; color: rgb(54, 95, 145); page-break-inside: avoid; }h1.western { font-family: "Cambria",serif; font-size: 14pt; }h1.cjk { font-family: "DejaVu Sans"; font-size: 14pt; }h1.ctl { font-size: 14pt; } Getting Started with Business Transformations A well-known proverb states that "A picture is worth a thousand words." In relation to Business Process Management (BPM), a credible analyst might have a few questions. What if the picture was taken from some particular angle, like directly overhead? What if it was taken from only an inch away or a mile away? What if the photographer did not focus the camera correctly? Does the value of the picture depend on who is looking at it? Enterprise Process Maps are analogous in this sense of relative value. Every BPM project (holistic BPM kick-off, enterprise system implementation, Service-oriented Architecture, business process transformation, corporate performance management, etc.) should be begin with a clear understanding of the business environment, from the biggest picture representations down to the lowest level required or desired for the particular project type, scope and objectives. The Enterprise Process Map serves as an entry point for the process architecture and is defined: the single highest level of process mapping for an organization. It is constructed and evaluated during the Strategy Phase of the Business Process Management Lifecycle. (see Figure 1) Fig. 1: Business Process Management Lifecycle Many organizations view such maps as visual abstractions, constructed for the single purpose of process categorization. This, in turn, results in a lesser focus on the inherent intricacies of the Enterprise Process view, which are explored in the course of this paper. With the main focus of a large scale process documentation effort usually underlying an ERP or other system implementation, it is common for the work to be driven by the desire to "get to the details," and to the type of modeling that will derive near-term tangible results. For instance, a project in American Pharmaceutical Company X is driven by the Director of IT. With 120+ systems in place, and a lack of standardized processes across the United States, he and the VP of IT have decided to embark on a long-term ERP implementation. At the forethought of both are questions, such as: How does my application architecture map to the business? What are each application's functionalities, and where do the business processes utilize them? Where can we retire legacy systems? Well-developed BPM methodologies prescribe numerous model types to capture such information and allow for thorough analysis in these areas. Process to application maps, Event Driven Process Chains, etc. provide this level of detail and facilitate the completion of such project-specific questions. These models and such analysis are appropriately carried out at a relatively low level of process detail. (see figure 2) Fig. 2: The Level Concept, Generic Process HierarchySome of the questions remaining are ones of documentation longevity, the continuation of BPM practice in the organization, process governance and ownership, process transparency and clarity in business process objectives and strategy. The Level Concept in Brief Figure 2 shows a generic, four-level process hierarchy depicting the breakdown of a "Process Area" into progressively more detailed process classifications. The number of levels and the names of these levels are flexible, and can be fit to the standards of the organization's chosen terminology or any other chosen reference model that makes logical sense for both short and long term process description. It is at Level 1 (in this case the Process Area level), that the Enterprise Process Map is created. This map and its contained objects become the foundation for a top-down approach to subsequent mapping, object relationship development, and analysis of the organization's processes and its supporting infrastructure. Additionally, this picture serves as a communication device, at an executive level, describing the design of the business in its service to a customer. It seems, then, imperative that the process development effort, and this map, start off on the right foot. Figuring out just what that right foot is, however, is critical and trend-setting in an evolving organization. Key Considerations Enterprise Process Maps are usually not as living and breathing as other process maps. Just as it would be an extremely difficult task to change the foundation of the Sears Tower or a city plan for the entire city of Chicago, the Enterprise Process view of an organization usually remains unchanged once developed (unless, of course, an organization is at a stage where it is capable of true, high-level process innovation). Regardless, the Enterprise Process map is a key first step, and one that must be taken in a precise way. What makes this groundwork solid depends on not only the materials used to construct it (process areas), but also the layout plan and knowledge base of what will be built (the entire process architecture). It seems reasonable that care and consideration are required to create this critical high level map... but what are the important factors? Does the process modeler need to worry about how many process areas there are? About who is looking at it? Should he only use the color pink because it's his boss' favorite color? Interestingly, and perhaps surprisingly, these are all valid considerations that may just require a bit of structure. Below are Three Key Factors to consider when building an Enterprise Process Map: Company Strategic Focus Process Categorization: Customer is Core End-to-end versus Functional Processes Company Strategic Focus As mentioned above, the Enterprise Process Map is created during the Strategy Phase of the Business Process Management Lifecycle. From Oracle Business Process Management methodology for business transformation, it is apparent that business processes exist for the purpose of achieving the strategic objectives of an organization. In a prescribed, top-down approach to process development, it must be ensured that each process fulfills its objectives, and in an aggregated manner, drives fulfillment of the strategic objectives of the company, whether for particular business segments or in a broader sense. This is a crucial point, as the strategic messages of the company must therefore resound in its process maps, in particular one that spans the processes of the complete business: the Enterprise Process Map. One simple example from Company X is shown below (see figure 3). Fig. 3: Company X Enterprise Process Map In reviewing Company X's Enterprise Process Map, one can immediately begin to understand the general strategic mindset of the organization. It shows that Company X is focused on its customers, defining 10 of its process areas belonging to customer-focused categories. Additionally, the organization views these end-customer-oriented process areas as part of customer-fulfilling value chains, while support process areas do not provide as much contiguous value. However, by including both support and strategic process categorizations, it becomes apparent that all processes are considered vital to the success of the customer-oriented focus processes. Below is an example from Company Y (see figure 4). Fig. 4: Company Y Enterprise Process Map Company Y, although also a customer-oriented company, sends a differently focused message with its depiction of the Enterprise Process Map. Along the top of the map is the company's product tree, overarching the process areas, which when executed deliver the products themselves. This indicates one strategic objective of excellence in product quality. Additionally, the view represents a less linear value chain, with strong overlaps of the various process areas. Marketing and quality management are seen as a key support processes, as they span the process lifecycle. Often, companies may incorporate graphics, logos and symbols representing customers and suppliers, and other objects to truly send the strategic message to the business. Other times, Enterprise Process Maps may show high level of responsibility to organizational units, or the application types that support the process areas. It is possible that hundreds of formats and focuses can be applied to an Enterprise Process Map. What is of vital importance, however, is which formats and focuses are chosen to truly represent the direction of the company, and serve as a driver for focusing the business on the strategic objectives set forth in that right. Process Categorization: Customer is Core In the previous two examples, processes were grouped using differing categories and techniques. Company X showed one support and three customer process categorizations using encompassing chevron objects; Customer Y achieved a less distinct categorization using a gradual color scheme. Either way, and in general, modeling of the process areas becomes even more valuable and easily understood within the context of business categorization, be it strategic or otherwise. But how one categorizes their processes is typically more complex than simply choosing object shapes and colors. Previously, it was stated that the ideal is a prescribed top-down approach to developing processes, to make certain linkages all the way back up to corporate strategy. But what about external influences? What forces push and pull corporate strategy? Industry maturity, product lifecycle, market profitability, competition, etc. can all drive the critical success factors of a particular business segment, or the company as a whole, in addition to previous corporate strategy. This may seem to be turning into a discussion of theory, but that is far from the case. In fact, in years of recent study and evolution of the way businesses operate, cross-industry and across the globe, one invariable has surfaced with such strength to make it undeniable in the game plan of any strategy fit for survival. That constant is the customer. Many of a company's critical success factors, in any business segment, relate to the customer: customer retention, satisfaction, loyalty, etc. Businesses serve customers, and so do a business's processes, mapped or unmapped. The most effective way to categorize processes is in a manner that visualizes convergence to what is core for a company. It is the value chain, beginning with the customer in mind, and ending with the fulfillment of that customer, that becomes the core or the centerpiece of the Enterprise Process Map. (See figure 5) Fig. 5: Company Z Enterprise Process Map Company Z has what may be viewed as several different perspectives or "cuts" baked into their Enterprise Process Map. It has divided its processes into three main categories (top, middle, and bottom) of Management Processes, the Core Value Chain and Supporting Processes. The Core category begins with Corporate Marketing (which contains the activities of beginning to engage customers) and ends with Customer Service Management. Within the value chain, this company has divided into the focus areas of their two primary business lines, Foods and Beverages. Does this mean that areas, such as Strategy, Information Management or Project Management are not as important as those in the Core category? No! In some cases, though, depending on the organization's understanding of high-level BPM concepts, use of category names, such as "Core," "Management" or "Support," can be a touchy subject. What is important to understand, is that no matter the nomenclature chosen, the Core processes are those that drive directly to customer value, Support processes are those which make the Core processes possible to execute, and Management Processes are those which steer and influence the Core. Some common terms for these three basic categorizations are Core, Customer Fulfillment, Customer Relationship Management, Governing, Controlling, Enabling, Support, etc. End-to-end versus Functional Processes Every high and low level of process: function, task, activity, process/work step (whatever an organization calls it), should add value to the flow of business in an organization. Suppose that within the process "Deliver package," there is a documented task titled "Stop for ice cream." It doesn't take a process expert to deduce the room for improvement. Though stopping for ice cream may create gain for the one person performing it, it likely benefits neither the organization nor, more importantly, the customer. In most cases, "Stop for ice cream" wouldn't make it past the first pass of To-Be process development. What would make the cut, however, would be a flow of tasks that, each having their own value add, build up to greater and greater levels of process objective. In this case, those tasks would combine to achieve a status of "package delivered." Figure 3 shows a simple example: Just as the package can only be delivered (outcome of the process) without first being retrieved, loaded, and the travel destination reached (outcomes of the process steps), some higher level of process "Play Practical Joke" (e.g., main process or process area) cannot be completed until a package is delivered. It seems that isolated or functionally separated processes, such as "Deliver Package" (shown in Figure 6), are necessary, but are always part of a bigger value chain. Each of these individual processes must be analyzed within the context of that value chain in order to ensure successful end-to-end process performance. For example, this company's "Create Joke Package" process could be operating flawlessly and efficiently, but if a joke is never developed, it cannot be created, so the end-to-end process breaks. Fig. 6: End to End Process Construction That being recognized, it is clear that processes must be viewed as end-to-end, customer-to-customer, and in the context of company strategy. But as can also be seen from the previous example, these vital end-to-end processes cannot be built without the functionally oriented building blocks. Without one, the other cannot be had, or at least not in a complete and organized fashion. As it turns out, but not discussed in depth here, the process modeling effort, BPM organizational development, and comprehensive coverage cannot be fully realized without a semi-functional, process-oriented approach. Then, an Enterprise Process Map should be concerned with both views, the building blocks, and access points to the business-critical end-to-end processes, which they construct. Without the functional building blocks, all streams of work needed for any business transformation would be lost mess of process disorganization. End-to-end views are essential for utilization in optimization in context, understanding customer impacts, base-lining all project phases and aligning objectives. Including both views on an Enterprise Process Map allows management to understand the functional orientation of the company's processes, while still providing access to end-to-end processes, which are most valuable to them. (See figures 7 and 8). Fig. 7: Simplified Enterprise Process Map with end-to-end Access Point The above examples show two unique ways to achieve a successful Enterprise Process Map. The first example is a simple map that shows a high level set of process areas and a separate section with the end-to-end processes of concern for the organization. This particular map is filtered to show just one vital end-to-end process for a project-specific focus. Fig. 8: Detailed Enterprise Process Map showing connected Functional Processes The second example shows a more complex arrangement and categorization of functional processes (the names of each process area has been removed). The end-to-end perspective is achieved at this level through the connections (interfaces at lower levels) between these functional process areas. An important point to note is that the organization of these two views of the Enterprise Process Map is dependent, in large part, on the orientation of its audience, and the complexity of the landscape at the highest level. If both are not apparent, the Enterprise Process Map is missing an opportunity to serve as a holistic, high-level view. Conclusion In the world of BPM, and specifically regarding Enterprise Process Maps, a picture can be worth as many words as the thought and effort that is put into it. Enterprise Process Maps alone cannot change an organization, but they serve more purposes than initially meet the eye, and therefore must be designed in a way that enables a BPM mindset, business process understanding and business transformation efforts. Every Enterprise Process Map will and should be different when looking across organizations. Its design will be driven by company strategy, a level of customer focus, and functional versus end-to-end orientations. This high-level description of the considerations of the Enterprise Process Maps is not a prescriptive "how to" guide. However, a company attempting to create one may not have the practical BPM experience to truly explore its options or impacts to the coming work of business process transformation. The biggest takeaway is that process modeling, at all levels, is a science and an art, and art is open to interpretation. It is critical that the modeler of the highest level of process mapping be a cognoscente of the message he is delivering and the factors at hand. Without sufficient focus on the design of the Enterprise Process Map, an entire BPM effort may suffer. For additional information please check: Oracle Business Process Management.

    Read the article

  • JMX Based Monitoring - Part Two - JVM Monitoring

    - by Anthony Shorten
    This the second article in the series focussing on the JMX based monitoring capabilities possible with the Oracle Utilities Application Framework. In all versions of the Oracle utilities Application Framework, it is possible to use the basic JMX based monitoring available with the Java Virtual Machine to provide basic statistics ablut the JVM. In Java 5 and above, the JVM automatically allowed local monitoring of the JVM statistics from an approporiate console. When I say local I mean the monitoring tool must be executed from the same machine (and in some cases the same user that is running the JVM) to connect to the JVM directly. If you are using jconsole, for example, then you must have access to a GUI (X-Windows or Windows) to display the jconsole output. This is the easist way of monitoring without doing too much configration but is not always practical. Java offers a remote monitorig capability to allow yo to connect to a remotely executing JVM from a console (like jconsole). To use this facility additional JVM options must be added to the command line that started the JVM. Details of the additional options for the version of the Java you are running is located at the JMX information site. Typically to remotely connect to a running JVM that JVM must be configured with the following categories of options: JMX Port - The JVM must allow connections on a listening port specified on the command line Connection security - The connection to the JVM can be secured. This is recommended as JMX is not just a monitoring protocol it is a managemet protocol. It is possible to change values in a running JVM using JMX and there are NO "Are you sure?" safeguards. For a Oracle Utilities Application Framework based application there are a few guidelines when configuring and using this JMX based remote monitoring of the JVM's: Online JVM - The JVM used to run the online system is embedded within the J2EE Web Application Server. To enable JMX monitoring on this JVM you can either change the startup script that starts the Web Application Server or check whether your J2EE Web Application natively supports JVM statistics collection. Child JVM's (COBOL only) - The Child JVM's should not be monitored using this method as they are recycled regularly by the configuration and therefore statistics collected are of little value. Batch Threadpoools - Batch already has a JMX interface (which will be covered in another article). Additional monitoring can be enabled but the base supported monitoring is sufficient for most needs. If you are an Oracle Utilities Application Framework site, then you can specify the additional options for JMX Java monitoring on the OPTS paramaters supported for each component of the architecture. Just ensure the port numbers used are unique for each JVM running on any machine.

    Read the article

  • Issues with signal handling [closed]

    - by user34790
    I am trying to actually study the signal handling behavior in multiprocess system. I have a system where there are three signal generating processes generating signals of type SIGUSR1 and SIGUSR1. I have two handler processes that handle a particular type of signal. I have another monitoring process that also receives the signals and then does its work. I have a certain issue. Whenever my signal handling processes generate a signal of a particular type, it is sent to the process group so it is received by the signal handling processes as well as the monitoring processes. Whenever the signal handlers of monitoring and signal handling processes are called, I have printed to indicate the signal handling. I was expecting a uniform series of calls for the signal handlers of the monitoring and handling processes. However, looking at the output I could see like at the beginning the monitoring and signal handling processes's signal handlers are called uniformly. However, after I could see like signal handler processes handlers being called in a burst followed by the signal handler of monitoring process being called in a burst. Here is my code and output #include <iostream> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <cstdio> #include <stdlib.h> #include <sys/ipc.h> #include <sys/shm.h> #define NUM_SENDER_PROCESSES 3 #define NUM_HANDLER_PROCESSES 4 #define NUM_SIGNAL_REPORT 10 #define MAX_SIGNAL_COUNT 100000 using namespace std; volatile int *usrsig1_handler_count; volatile int *usrsig2_handler_count; volatile int *usrsig1_sender_count; volatile int *usrsig2_sender_count; volatile int *lock_1; volatile int *lock_2; volatile int *lock_3; volatile int *lock_4; volatile int *lock_5; volatile int *lock_6; //Used only by the monitoring process volatile int monitor_count; volatile int usrsig1_monitor_count; volatile int usrsig2_monitor_count; double time_1[NUM_SIGNAL_REPORT]; double time_2[NUM_SIGNAL_REPORT]; //Used only by the main process int total_signal_count; //For shared memory int shmid; const int shareSize = sizeof(int) * (10); double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } pid_t senders[NUM_SENDER_PROCESSES]; pid_t handlers[NUM_HANDLER_PROCESSES]; pid_t reporter; void signal_catcher_1(int); void signal_catcher_2(int); void signal_catcher_int(int); void signal_catcher_monitor(int); void signal_catcher_main(int); void terminate_processes() { //Kill the child processes int status; cout << "Time up terminating the child processes" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); //Wait for the child processes to finish for(int i=0; i<NUM_SENDER_PROCESSES; i++) { waitpid(senders[i], &status, 0); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { waitpid(handlers[i], &status, 0); } waitpid(reporter, &status, 0); } int main(int argc, char *argv[]) { if(argc != 2) { cout << "Required parameters missing. " << endl; cout << "Option 1 = 1 which means run for 30 seconds" << endl; cout << "Option 2 = 2 which means run until 100000 signals" << endl; exit(0); } int option = atoi(argv[1]); pid_t pid; if(option == 2) { if(signal(SIGUSR1, signal_catcher_main) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, signal_catcher_main) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } if(signal(SIGINT, signal_catcher_int) == SIG_ERR) { perror("3"); exit(1); } /////////////////////////////////////////////////////////////////////////////////////// ////////////////////// Initializing the shared memory ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// cout << "Initializing the shared memory" << endl; if ((shmid=shmget(IPC_PRIVATE,shareSize,IPC_CREAT|0660))< 0) { perror("shmget fail"); exit(1); } usrsig1_handler_count = (int *) shmat(shmid, NULL, 0); usrsig2_handler_count = usrsig1_handler_count + 1; usrsig1_sender_count = usrsig2_handler_count + 1; usrsig2_sender_count = usrsig1_sender_count + 1; lock_1 = usrsig2_sender_count + 1; lock_2 = lock_1 + 1; lock_3 = lock_2 + 1; lock_4 = lock_3 + 1; lock_5 = lock_4 + 1; lock_6 = lock_5 + 1; //Initialize them to be zero *usrsig1_handler_count = 0; *usrsig2_handler_count = 0; *usrsig1_sender_count = 0; *usrsig2_sender_count = 0; *lock_1 = 0; *lock_2 = 0; *lock_3 = 0; *lock_4 = 0; *lock_5 = 0; *lock_6 = 0; cout << "End of initializing the shared memory" << endl; ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////// End of initializing the shared memory /////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////Registering the signal handlers/////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal handlers" << endl; for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { if((pid = fork()) == 0) { if(i%2 == 0) { struct sigaction action; action.sa_handler = signal_catcher_1; sigset_t block_mask; action.sa_flags = 0; sigaction(SIGUSR1,&action,NULL); if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1 ,SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } struct sigaction action; action.sa_handler = signal_catcher_2; action.sa_flags = 0; sigaction(SIGUSR2,&action,NULL); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { //cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } cout << "End of registering the signal handlers" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////End of registering the signal handlers ////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////Registering the monitoring process ////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the monitoring process" << endl; if((pid = fork()) == 0) { struct sigaction action; action.sa_handler = signal_catcher_monitor; sigemptyset(&action.sa_mask); sigset_t block_mask; sigemptyset(&block_mask); sigaddset(&block_mask,SIGUSR1); sigaddset(&block_mask,SIGUSR2); action.sa_flags = 0; action.sa_mask = block_mask; sigaction(SIGUSR1,&action,NULL); sigaction(SIGUSR2,&action,NULL); if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { cout << "Monitor's pid is " << pid << endl; reporter = pid; } cout << "End of registering the monitoring process" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////End of registering the monitoring process//////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Sleep to make sure that the monitor and handler processes are well initialized and ready to handle signals sleep(5); ////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////Registering the signal generators/////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal generators" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } srand(i); while(true) { int signal_id = rand()%2 + 1; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); while(__sync_lock_test_and_set(lock_4,1) != 0) { } (*usrsig1_sender_count)++; *lock_4 = 0; } else { killpg(getpgid(getpid()), SIGUSR2); while(__sync_lock_test_and_set(lock_5,1) != 0) { } (*usrsig2_sender_count)++; *lock_5=0; } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { //cout << "Registered the sender " << pid << endl; senders[i] = pid; } } //cout << "End of registering the signal generators" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////End of registering the signal generators/////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Either sleep for 30 seconds and terminate the program or if the number of signals generated reaches 10000, terminate the program if(option = 1) { sleep(90); terminate_processes(); } else { while(true) { if(total_signal_count >= MAX_SIGNAL_COUNT) { terminate_processes(); } else { sleep(0.001); } } } } void signal_catcher_1(int the_sig) { while(__sync_lock_test_and_set(lock_1,1) != 0) { } (*usrsig1_handler_count) = (*usrsig1_handler_count) + 1; cout << "Signal Handler 1 " << *usrsig1_handler_count << endl; __sync_lock_release(lock_1); } void signal_catcher_2(int the_sig) { while(__sync_lock_test_and_set(lock_2,1) != 0) { } (*usrsig2_handler_count) = (*usrsig2_handler_count) + 1; __sync_lock_release(lock_2); } void signal_catcher_main(int the_sig) { while(__sync_lock_test_and_set(lock_6,1) != 0) { } total_signal_count++; *lock_6 = 0; } void signal_catcher_int(int the_sig) { for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } void signal_catcher_monitor(int the_sig) { cout << "Monitoring process " << *usrsig1_handler_count << endl; } Here is the initial segment of output Monitoring process 0 Monitoring process 0 Monitoring process 0 Monitoring process 0 Signal Handler 1 1 Monitoring process 2 Signal Handler 1 2 Signal Handler 1 3 Signal Handler 1 4 Monitoring process 4 Monitoring process Signal Handler 1 6 Signal Handler 1 7 Monitoring process 7 Monitoring process 8 Monitoring process 8 Signal Handler 1 9 Monitoring process 9 Monitoring process 9 Monitoring process 10 Signal Handler 1 11 Monitoring process 11 Monitoring process 12 Signal Handler 1 13 Signal Handler 1 14 Signal Handler 1 15 Signal Handler 1 16 Signal Handler 1 17 Signal Handler 1 18 Monitoring process 19 Signal Handler 1 20 Monitoring process 20 Signal Handler 1 21 Monitoring process 21 Monitoring process 21 Monitoring process 22 Monitoring process 22 Monitoring process 23 Signal Handler 1 24 Signal Handler 1 25 Monitoring process 25 Signal Handler 1 27 Signal Handler 1 28 Signal Handler 1 29 Here is the segment when the signal handler processes signal handlers are called in a burst Signal Handler 1 456 Signal Handler 1 457 Signal Handler 1 458 Signal Handler 1 459 Signal Handler 1 460 Signal Handler 1 461 Signal Handler 1 462 Signal Handler 1 463 Signal Handler 1 464 Signal Handler 1 465 Signal Handler 1 466 Signal Handler 1 467 Signal Handler 1 468 Signal Handler 1 469 Signal Handler 1 470 Signal Handler 1 471 Signal Handler 1 472 Signal Handler 1 473 Signal Handler 1 474 Signal Handler 1 475 Signal Handler 1 476 Signal Handler 1 477 Signal Handler 1 478 Signal Handler 1 479 Signal Handler 1 480 Signal Handler 1 481 Signal Handler 1 482 Signal Handler 1 483 Signal Handler 1 484 Signal Handler 1 485 Signal Handler 1 486 Signal Handler 1 487 Signal Handler 1 488 Signal Handler 1 489 Signal Handler 1 490 Signal Handler 1 491 Signal Handler 1 492 Signal Handler 1 493 Signal Handler 1 494 Signal Handler 1 495 Signal Handler 1 496 Signal Handler 1 497 Signal Handler 1 498 Signal Handler 1 499 Signal Handler 1 500 Signal Handler 1 501 Signal Handler 1 502 Signal Handler 1 503 Signal Handler 1 504 Signal Handler 1 505 Signal Handler 1 506 Here is the segment when the monitoring processes signal handlers are called in a burst Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Why isn't it uniform afterwards. Why are they called in a burst?

    Read the article

  • Network traffic monitoring for unexperienced users

    - by Eduardo Casteluci
    I'm a really unexperienced Ubuntu user and I'm having a hard time monitoring my network traffic. I just need to know what websites each one of the devices connected to my network are accessing. I've tried to use ntop, but I couldn't work around it. Is that possible? I mean, is it possible to know that kind of data only by specifing a local IP address? How can I do that? It's a security issue that I'm facing and I need to work that "easy" monitoring out. Thanks

    Read the article

  • How does process priority influence a process

    - by Luis Alvarado - The Wolverine
    Assuming we have read the following question: Change niceness (priority) of a running process and we know about root, non-root permissions: What actually happens when a running process (Through renice) or a new process (Through nice) gets its priority changed to a positive/negative value it previously had. Does it mean more memory is assign to it? Does more CPU power go to that particular process? Does it reduce any timing for resources for that process? What happens when the process priority change?

    Read the article

  • JMX Based Monitoring - Part Three - Web App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I showed a technique for integrating a JMX console with Oracle WebLogic which is a standard feature of Oracle WebLogic 11g. Customers on other Web Application servers and other versions of Oracle WebLogic can refer to the documentation provided with the server to do a similar thing. In this blog entry I am going to discuss a new feature that is only present in Oracle Utilities Application Framework 4 and above that allows JMX to be used for management and monitoring the Oracle Utilities Web Applications. In this case JMX can be used to perform monitoring as well as provide the management of the cache. In Oracle Utilities Application Framework you can enable Web Application Server JMX monitoring that is unique to the framework by specifying a JMX port number in RMI Port number for JMX Web setting and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6740 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6740/oracle/ouaf/webAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.base.support.management.mbean.JVMInfo=enabled ouaf.jmx.com.splwg.base.web.mbeans.FlushBean=enabled ouaf.jmx.* files - contain the userid and password. The default setup uses the JMX default security configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see the JMX Site. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes, I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.management.connnector.url.default entry and the credentials you specified in the jmx.remote.x.* files. Remember these are encrypted by default so if you try and view the file you may be able to decipher it visually. For example: There are three Mbeans available to you: flushBean - This is a JMX replacement for the jsp versions of the flush utilities provided in previous releases of the Oracle Utilities Application Framework. You can manage the cache using the provided operations from JMX. The jsp versions of the flush utilities are still provided, for backward compatibility, but now are authorization controlled. JVMInfo - This is a JMX replacement for the jsp version of the JVMInfo screen used by support to get a handle on JVM information. This information is environmental not operational and is used for support purposes. The jsp versions of the JVMInfo utilities are still provided, for backward compatibility, but now is also authorization controlled. JVMSystem - This is an implementation of the Java system MXBeans for use in monitoring. We provide our own implementation of the base Mbeans to save on creating another JMX configuration for internal monitoring and to provide a consistent interface across platforms for the MXBeans. This Mbean is disabled by default and can be enabled using the enableJVMSystemBeans operation. This Mbean allows for the monitoring of the ClassLoading, Memory, OperatingSystem, Runtime and the Thread MX beans. Refer to the Server Administration Guides provided with your product and the Technical Best Practices Whitepaper for information about individual statistics. The Web Application Server JMX monitoring allows greater visibility for monitoring and management of the Oracle Utilities Application Framework application from jconsole or any JSR160 compliant JMX browser or JMX console.

    Read the article

  • System Monitoring service - Hosted

    - by sevitzdotcom
    I'm looking for a system monitoring service, a bit like New Relic, but for more the system itself than the ruby side of things. i.e. something like Zabbix, but hosted like New Relic. I wont something I can just drop an 'agent' on the servers, and then do all the config and monitoring and notifications on a nice slick 3rd party system. So essential Zabbix Meats New Relic meets Pingdom. Any ideas?

    Read the article

  • Network monitoring tools with API features

    - by Kev
    We use ks-soft's Advanced Hostmonitor package to monitor around 2000 items on our network. We think it's great, the chap that supports it is fantastic, the product is fast, stable and mature but I feel as as we grow as a company it's beginning to show some friction points in the area of integration with our back office admin systems. One of the things we'd like to do is be able to add new tests to whatever monitoring tool we use via an API. For example, when orders for servers come from our retail interface, the server gets built automatically, and as part of the automated build process we'd like to automatically add new tests to the network monitoring systems. Hostmonitor has some support for this via a feature called HM Script but we're starting to encounter some speedbumps - we can't add new operators/users we can't define new "Action Profiles" - these are the actions to be taken when a test goes good or bad. What we love about hostmonitor though are the Action Profiles. For example if a Windows IIS box goes bad our action profile for a bad test does something like: Check host again (one time) Wait another 30 seconds then test again Try restart app pool on remote machine (up to two times) Send an email to ops about the restart failure Try restarting IIS on remote machine (up to four times) Page duty admin (up to 5 times - stops after duty admin ACKS alert) Page backup duty admin (5 times - stops after duty admin ACKS alert) I'm starting to look around at other network monitoring tools and I'm looking for: a comprehensive API to be able to add/remove/control tests/test "action profiles"/operators (not just plugins, we need control and admin interfaces) the ability to have quite detailed action/escalation profiles (and define these via an API) I've looked at Nagios and Icinga but Ican't seem to glean from their documentation whether we could have these features or not, or if we could, how much work would be involved to implement/customise. Can anyone provide any advice, guidance or experiences?

    Read the article

  • Have local admin privileges on Windows XP, but getting "Error terminating process: Access is denied"

    - by Chris W. Rea
    On one of the Windows XP machines I use regularly, there is a process that starts up periodically. I'd like to be able to kill the process – sometimes – because it occasionally runs when I'm busy doing something machine-intensive. I've already tried dropping the process priority to "Idle" to mitigate the effects, but it isn't the CPU that's the problem. Rather, the process is very disk-intensive and no matter the process priority, it still causes significant disk thrashing when running, impacting everything else I'm doing at the time. Using Process Explorer, I can find the process, right-click, and choose Kill Process, but I always get the message "Error terminating process: Access is denied." This is not an operating system process, but third-party software. What might that process be doing to prevent itself from being terminated? How can I kill such a process? Is there a way for me to modify the process's security or access control list (ACL) somewhere, using Process Explorer or another tool, so that I can effectively kill it?

    Read the article

  • Service monitoring service, which I can ping instead of getting pinged

    - by Jack Juiceson
    I'm looking for a service, which can send me an alert if my program didn't ping(some http request) in X minutes. Pretty much like any service monitoring, but instead of service pinging my server I want, my program to ping the monitor service. This is because our program, can't get incoming connections, yet we need to monitor it's alive. And easiest for us will be to have a service we can ping. Thank you, - Jack

    Read the article

  • PHP Network Monitoring

    - by Vlad Patrascu
    Is there a way that I can monitor the traffic, Upload/Download (separately) using PHP? I`d like to echo out something like that: Upload: 523 GB | Download: 25 GB This should be based on the System Uptime, so if I restart the computer, the count should restart. Thanks in Advance.

    Read the article

  • Monitoring multiple sites on a single server using OpsView

    - by Kev
    We have several web servers. On each of these servers there can be ~250 web sites. I need to add a HTTP check for each site on each server. Each site has a reserved host header that we know can always be resolved in the format of: w10000.hostchecks.mycompany.com w10020.hostchecks.mycompany.com w11992.hostchecks.mycompany.com ..and so on.. What I want is for there to be a master ping check on the web server's main IP address and then separate HTTP checks for each of the sites on the server. If the master ping test fails then I want the HTTP tests to cease until the master ping check goes OK. I had a stab at this and tried do the following: Create a parent host that does a ping check on the server's main ip address (e.g. server is named WEB0001). For each of the sites that reside on WEB0001: Create a separate Host with a Primary Hostname of wXXXXX.hostchecks.mycompany.com Make WEB0001 the parent host Add a monitor (HTTP check to a special url that is mapped into each site using a virtual directory: H- $HOSTADDRESS$ -u /__hostcheck/IsAlive.aspx -w 5 -c 10 -p 80 However I find that if I down the parent server (WEB0001) the http checks seem to continue. Am I going about this completely the wrong way?

    Read the article

  • Monitoring bespoke software with Zenoss

    - by Andy S
    We've got a lot of back-end applications that we need to monitor the performance of (metrics such as orders waiting to be processed, time since last run, etc). Currently, this is done by an in-house watchdog application that fires out emails whenever a threshold is exceeded, but there's no way to acknowledge an issue and squelch these alerts. Rather than build our own complete alerting system, we'd like to tie in to the Zenoss installation we use to monitor our servers. I've found a few articles on creating events programmatically, but I'd rather Zenoss itself monitors the values that the current watchdog app is looking at (so we get the benefits of graphing and history as well). Is it possible, then, to programmatically provide a data feed (rather than an event) to Zenoss? Or is there another way to go about this?

    Read the article

  • Creating an office network and monitoring all activity without a proxy

    - by Robert
    We are setting up our office network and would like to track all the websites visited by our employees. However, we would not like to use any proxy based solutions. Our work is highly dependent on applications in which you cannot configure a proxy. Hence, the approach we would like to follow is setting up a router inside a computer (something like this : http://www.techrepublic.com/article/configure-windows-server-2003-to-act-as-a-router/5844624) This will also allow us to attach multiple ethernet cards and have redundancy in internet connectivity with complete abstraction from the user about which connection is being used. But most importantly, since all the traffic will be going through the computer (configured as a router) I assume there will be a way to run packet analysis on all the request / responses being made. For example, list all the FTP servers connected to (port 21), give a graph of all the URLs visited per day by frequency. Is there already a software which does this ? Or is it possible to build something like this ?

    Read the article

  • Monitoring Dell/HP Servers Running ESXi (Free)

    - by Untalented
    What are you all doing to monitor ESXi servers that run the free edition? With the lack of SNMP support, it seems fairly limited to me. What'd I'd like to be able to do is get some type of alert when a drive or other hardware fails. I've seen a few articles on getting OpenManage installed on an ESXi box (to rebuild an array), but it seems to be quite a pain as well. Even if I get OpenManage working, I won't have alerts without SNMP. Any comments, input, or guidance would be greatly appreciated.

    Read the article

  • Network monitoring solution

    - by Hellfrost
    Hello Serverfault ! I have a big distributed system I need to monitor. Background: My system is comprised of two servers, concentrating and controlling the system. Each server is connected to a set of devices (some custom kind of RF controllers, doesnt matter to my question), each device connects to a network switch, and eventually all devices talk to the servers, the protocol between the servers and the devices is UDP, usually the packets are very small, but there are really a LOT of packets. the network is also somewhat complex, and is deployed on a large area physically. i'll have 150-300 of these devices, each generating up to 100+ packets per second, and several network switches, perhaps on 2 different subnets. Question I'm looking for some solution that will allow me to monitor all this mess, how many packets are sent, where, how do they move through the network, bandwidth utilization, throughput, stuff like that. what would you recommend to achieve this? BTW Playing nice with windows is a requirement.

    Read the article

  • Looking for comprehensive computer monitoring software

    - by cornjuliox
    Summer in this country is insanely hot. So hot in fact, that I think we just lost a machine due to overheating (last recorded CPU/GPU temp was close to 100 C, now it wont start and lets out a long series of short beeps on power up), but that's not my concern here. Since heat is such a problem for me, I use several different pieces of software to monitor temperatures in my machine. I use MSI Afterburner to monitor GPU temp, control GPU fan speed and for some light overclocking, and then I use Speccy and SpeedFan to monitor the rest of the system, CPU temp and everything. The setup works fine for now, but I want to consolidate all this into one program so I'm not juggling several windows at once. Is there any program out there that will let me monitor the following from a single window: CPU Temp and Fan Speed CPU clock GPU Temp and Fan Speed GPU clock, both core and memory Additionally, mobo temp (Speccy lists both CPU and Motherboard temp, I assume that the latter is referring to North and Southbridge temperatures. I'm also looking for the ability to chart these data points on a graph over time, basically to see just how high the temperatures spike under load and for general analysis. It'd be nice if it could handle overclocking of both CPU and GPU in real time too. Any suggestions? Edit: I forgot to mention that I'm on Windows 7, 64-bit

    Read the article

  • JMX Based Monitoring - Part Four - Business App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I talked about the Oracle Utilities Application Framework V4 feature for monitoring and managing aspects of the Web Application Server using JMX. In this blog entry I am going to discuss a similar new feature that allows JMX to be used for management and monitoring the Oracle Utilities business application server component. This feature is primarily focussed on performance tracking of the product. In first release of Oracle Utilities Customer Care And Billing (V1.x I am talking about), we used to use Oracle Tuxedo as part of the architecture. In Oracle Utilities Application Framework V2.0 and above, we removed Tuxedo from the architecture. One of the features that some customers used within Tuxedo was the performance tracking ability. The idea was that you enabled performance logging on the individual Tuxedo servers and then used a utility named txrpt to produce a performance report. This report would list every service called, the number of times it was called and the average response time. When I worked a performance consultant, I used this report to identify badly performing services and also gauge the overall performance characteristics of a site. When Tuxedo was removed from the architecture this information was also lost. While you can get some information from access.log and some Mbeans supplied by the Web Application Server it was not at the same granularity as txrpt or as useful. I am happy to say we have not only reintroduced this facility in Oracle Utilities Application Framework but it is now accessible via JMX and also we have added more detail into the performance tracking. Most of this new design was working with customers around the world to make sure we introduced a new feature that not only satisfied their performance tracking needs but allowed for finer grained performance analysis. As with the Web Application Server, the Business Application Server JMX monitoring is enabled by specifying a JMX port number in RMI Port number for JMX Business and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. These credentials are shared across the Web Application Server and Business Application Server for authorization purposes. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6750 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6750/oracle/ouaf/ejbAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.ejb.service.management.PerformanceStatistics=enabled ouaf.jmx.* files - contain the userid and password. The default configuration uses the JMX default configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see JMX Security for more details. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.runtime.management.connnector.url.default entry. For example: You are then able to track performance of the product using the PerformanceStatistics Mbean. The attributes of the PerformanceStatistics Mbean are counts of each object type. This is where this facility differs from txrpt. The information that is collected includes the following: The Service Type is captured so you can filter the results in terms of the type of service. For maintenance type services you can even see the transaction type (ADD, CHANGE etc) so you can see the performance of updates against read transactions. The Minimum and Maximum are also collected to give you an idea of the spread of performance. The last call is recorded. The date, time and user of the last call are recorded to give you an idea of the timeliness of the data. The Mbean maintains a set of counters per Service Type to give you a summary of the types of transactions being executed. This gives you an overall picture of the types of transactions and volumes at your site. There are a number of interesting operations that can also be performed: reset - This resets the statistics back to zero. This is an important operation. For example, txrpt is restricted to collecting statistics per hour, which is ok for most people. But what if you wanted to be more granular? This operation allows to set the collection period to anything you wish. The statistics collected will represent values since the last restart or last reset. completeExecutionDump - This is the operation that produces a CSV in memory to allow extraction of the data. All the statistics are extracted (see the Server Administration Guide for a full list). This can be then loaded into a database, a tool or simply into your favourite spreadsheet for analysis. Here is an extract of an execution dump from my demonstration environment to give you an idea of the format: ServiceName, ServiceType, MinTime, MaxTime, Avg Time, # of Calls, Latest Time, Latest Date, Latest User ... CFLZLOUL, EXECUTE_LIST, 15.0, 64.0, 22.2, 10, 16.0, 2009-12-16::11-25-36-932, ASHORTEN CILBBLLP, READ, 106.0, 1184.0, 466.3333333333333, 6, 106.0, 2009-12-16::11-39-01-645, BOBAMA CILBBLLP, DELETE, 70.0, 146.0, 108.0, 2, 70.0, 2009-12-15::12-53-58-280, BPAYS CILBBLLP, ADD, 860.0, 4903.0, 2243.5, 8, 860.0, 2009-12-16::17-54-23-862, LELLISON CILBBLLP, CHANGE, 112.0, 3410.0, 815.1666666666666, 12, 112.0, 2009-12-16::11-40-01-103, ASHORTEN CILBCBAL, EXECUTE_LIST, 8.0, 84.0, 26.0, 22, 23.0, 2009-12-16::17-54-01-643, LJACKMAN InitializeUserInfoService, READ_SYSTEM, 49.0, 962.0, 70.83777777777777, 450, 63.0, 2010-02-25::11-21-21-667, ASHORTEN InitializeUserService, READ_SYSTEM, 130.0, 2835.0, 234.85777777777778, 450, 216.0, 2010-02-25::11-21-21-446, ASHORTEN MenuLoginService, READ_SYSTEM, 530.0, 1186.0, 703.3333333333334, 9, 530.0, 2009-12-16::16-39-31-172, ASHORTEN NavigationOptionDescriptionService, READ_SYSTEM, 2.0, 7.0, 4.0, 8, 2.0, 2009-12-21::09-46-46-892, ASHORTEN ... There are other operations and attributes available. Refer to the Server Administration Guide provided with your product to understand the full et of operations and attributes. This is one of the many features I am proud that we implemented as it allows flexible monitoring of the performance of the product.

    Read the article

  • Why do we need fork to create new process

    - by user3671483
    In Unix whenever we want to create a new process, we fork the current process i.e. we create a new child process which is exactly the same as the parent process and then we do exec system call to replace the child process with a new process i.e. we replace all the data for the parent process eith that for the new process. Why do we create a copy of the parent process in the first place and why don't we create a new process directly? I am new to Unix please explain in lay-man terms.

    Read the article

  • Getting an alert when my oracle database goes up or down

    - by CodeSlave
    How can I get an e-mail alert when my oracle database comes up or down? I have a database that I need to know when it goes down (it would be nice to know if it has come back up), preferably from a remote machine. Conceivably I could hack together something that TNSPings my DB and e-mails me when that changes, but I'm hoping there's a free package out there. Something that would run on windows. Any strong recommendations?

    Read the article

  • Nagios core Event Handler not working

    - by sivashanmugam
    Nagios Event Handler is not triggering when the service is taking more time to response or down. My configuration in below nagios.cfg enable_event_handlers=1 localhost.cfg define service { use generic-service host_name Server service_description test-server servicegroups test-service check_command check-service is_volatile 0 check_period 24x7 max_check_attempts 4 normal_check_interval 2 retry_check_interval 2 contact_groups testcontacts notification_period 24x7 notification_options w,u,c,r notifications_enabled 1 event_handler_enabled 1 event_handler recheck-service } command.cfg define command{ command_name recheck-service command_line /usr/local/nagios/libexec/alert.sh $SERVICESTATE$ $SERVICESTATETYPE$ $SERVICEATTEMPT$ } alert.sh file !/bin/sh set -x case "$1" in OK) # The service just came back up, so don't do anything... ;; WARNING) # We don't really care about warning states, since the service is probably still running... ;; UNKNOWN) # We don't know what might be causing an unknown error, so don't do anything... ;; CRITICAL) Aha! The HTTP service appears to have a problem - perhaps we should restart the server... Is this a "soft" or a "hard" state? case "$2" in We're in a "soft" state, meaning that Nagios is in the middle of retrying the check before it turns into a "hard" state and contacts get notified... SOFT) # What check attempt are we on? We don't want to restart the web server on the first check, because it may just be a fluke! case "$3" in Wait until the check has been tried 3 times before restarting the web server. If the check fails on the 4th time (after we restart the web server), the state type will turn to "hard" and contacts will be notified of the problem. Hopefully this will restart the web server successfully, so the 4th check will result in a "soft" recovery. If that happens no one gets notified because we fixed the problem! 3) echo -n "Going To Ping the Virtual Machine (3rd soft critical state)..." # Call the init script to restart the HTTPD server myresult=`/usr/local/nagios/libexec/check_http xyz.com -t 100 | grep 'time'| awk '{print $10}'` echo "Your Service Is taking the following time Delay" "$myresult Seconds" |mail -s "WARNING : Service Taken More Time To Response" [email protected] ;; esac ;; # The HTTP service somehow managed to turn into a hard error without getting fixed. # It should have been restarted by the code above, but for some reason it didn't. # Let's give it one last try, shall we? # Note: Contacts have already been notified of a problem with the service at this

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >