Search Results

Search found 48 results on 2 pages for 'randint'.

Page 1/2 | 1 2  | Next Page >

  • Could random.randint(1,10) ever return 11?

    - by Tim Pietzcker
    When researching for this question and reading the sourcecode in random.py, I started wondering whether randrange and randint really behave as "advertised". I am very much inclined to believe so, but the way I read it, randrange is essentially implemented as start + int(random.random()*(stop-start)) (assuming integer values for start and stop), so randrange(1, 10) should return a random number between 1 and 9. randint(start, stop) is calling randrange(start, stop+1), thereby returning a number between 1 and 10. My question is now: If random() were ever to return 1.0, then randint(1,10) would return 11, wouldn't it?

    Read the article

  • Uniform distribution of binary values in Matlab

    - by JohnIdol
    I have a requirement for the generation of a given number N of vectors of given size each consistent of a uniform distribution of 0s and 1s. This is what I am doing at the moment, but I noticed that the distribution is strongly peaked at half 1s and half 0s, which is no good for what I am doing: a = randint(1, sizeOfVector, [0 1]); The unifrnd function looks promising for what I need, but I can't manage to understand how to output a binary vector of that size. Is it the case that I can use the unifrnd function (and if so how would be appreciated!) or can is there any other more convenient way to obtain such a set of vectors? Any help appreciated!

    Read the article

  • Why is my simple python gtk+cairo program running so slowly/stutteringly?

    - by synapz
    My program draws circles moving on the window. I think I must be missing some basic gtk/cairo concept because it seems to be running too slowly/stutteringly for what I am doing. Any ideas? Thanks for any help! #!/usr/bin/python import gtk import gtk.gdk as gdk import math import random import gobject # The number of circles and the window size. num = 128 size = 512 # Initialize circle coordinates and velocities. x = [] y = [] xv = [] yv = [] for i in range(num): x.append(random.randint(0, size)) y.append(random.randint(0, size)) xv.append(random.randint(-4, 4)) yv.append(random.randint(-4, 4)) # Draw the circles and update their positions. def expose(*args): cr = darea.window.cairo_create() cr.set_line_width(4) for i in range(num): cr.set_source_rgb(1, 0, 0) cr.arc(x[i], y[i], 8, 0, 2 * math.pi) cr.stroke_preserve() cr.set_source_rgb(1, 1, 1) cr.fill() x[i] += xv[i] y[i] += yv[i] if x[i] > size or x[i] < 0: xv[i] = -xv[i] if y[i] > size or y[i] < 0: yv[i] = -yv[i] # Self-evident? def timeout(): darea.queue_draw() return True # Initialize the window. window = gtk.Window() window.resize(size, size) window.connect("destroy", gtk.main_quit) darea = gtk.DrawingArea() darea.connect("expose-event", expose) window.add(darea) window.show_all() # Self-evident? gobject.idle_add(timeout) gtk.main()

    Read the article

  • Python: Random is barely random at all?

    - by orokusaki
    I did this to test the randomness of randint: >>> from random import randint >>> >>> uniques = [] >>> for i in range(4500): # You can see I optimistic. ... x = randint(500, 5000) ... if x in uniques: ... raise Exception('We duped ' + str(x) + ' at iteration number ' + str(i)) ... uniques.append(x) ... Traceback (most recent call last): File "(stdin)", line 4, in (module) Exception: 'We duped 4061 at iteration number 67 I tried about 10 times more and the best result I got was 121 iterations before a repeater. Is this the best sort of result you can get from the standard library?

    Read the article

  • plpgsql function to generate random readable strings

    - by Peter
    Hi I have written the following function but it's isn't returning anything when I run it. Can somebody help identify the issue? CREATE OR REPLACE FUNCTION GenerateReadableRandomString ( len INT ) RETURNS varchar AS $$ DECLARE validchars VARCHAR; randomstr VARCHAR; randint INT; i INT; BEGIN validchars := 'ABCEFHJKLMNPRTWXY3478'; i := 0; LOOP randint := ceil(random() * char_length(validchars)); randomstr := randomstr || substring(validchars from randint for 1); i := i + 1; EXIT WHEN i = len; END LOOP; RETURN randomstr; END; $$ LANGUAGE plpgsql;

    Read the article

  • sampling integers uniformly efficiently in python using numpy/scipy

    - by user248237
    I have a problem where depending on the result of a random coin flip, I have to sample a random starting position from a string. If the sampling of this random position is uniform over the string, I thought of two approaches to do it: one using multinomial from numpy.random, the other using the simple randint function of Python standard lib. I tested this as follows: from numpy import * from numpy.random import multinomial from random import randint import time def use_multinomial(length, num_points): probs = ones(length)/float(length) for n in range(num_points): result = multinomial(1, probs) def use_rand(length, num_points): for n in range(num_points): rand(1, length) def main(): length = 1700 num_points = 50000 t1 = time.time() use_multinomial(length, num_points) t2 = time.time() print "Multinomial took: %s seconds" %(t2 - t1) t1 = time.time() use_rand(length, num_points) t2 = time.time() print "Rand took: %s seconds" %(t2 - t1) if __name__ == '__main__': main() The output is: Multinomial took: 6.58072400093 seconds Rand took: 2.35189199448 seconds it seems like randint is faster, but it still seems very slow to me. Is there a vectorized way to get this to be much faster, using numpy or scipy? thanks.

    Read the article

  • How to get unique numbers using randomint python?

    - by user2519572
    I am creating a 'Euromillions Lottery generator' just for fun and I keep getting the same numbers printing out. How can I make it so that I get random numbers and never get the same number popping up: from random import randint numbers = randint(1,50) stars = randint(1,11) print "Your lucky numbers are: ", numbers, numbers, numbers, numbers, numbers print "Your lucky stars are: " , stars, stars The output is just: >>> Your lucky numbers are: 41 41 41 41 41 >>> Your lucky stars are: 8 8 >>> Good bye! How can I fix this? Regards

    Read the article

  • is this a correct way to generate rsa keys?

    - by calccrypto
    is this code going to give me correct values for RSA keys (assuming that the other functions are correct)? im having trouble getting my program to decrypt properly, as in certain blocks are not decrypting properly this is in python: import random def keygen(bits): p = q = 3 while p == q: p = random.randint(2**(bits/2-2),2**(bits/2)) q = random.randint(2**(bits/2-2),2**(bits/2)) p += not(p&1) # changes the values from q += not(q&1) # even to odd while MillerRabin(p) == False: # checks for primality p -= 2 while MillerRabin(q) == False: q -= 2 n = p * q tot = (p-1) * (q-1) e = tot while gcd(tot,e) != 1: e = random.randint(3,tot-1) d = getd(tot,e) # gets the multiplicative inverse while d<0: # i can probably replace this with mod d = d + tot return e,d,n one set of keys generated: e = 3daf16a37799d3b2c951c9baab30ad2d d = 16873c0dd2825b2e8e6c2c68da3a5e25 n = dc2a732d64b83816a99448a2c2077ced

    Read the article

  • Add collison detection to enemy sprites?

    - by xBroak
    i'd like to add the same collision detection used by the player sprite to the enemy sprites or 'creeps' ive added all the relevant code I can see yet collisons are still not being detected and handled, please find below the class, I have no idea what is wrong currently, the list of walls to collide with is 'wall_list' import pygame import pauseScreen as dm import re from pygame.sprite import Sprite from pygame import Rect, Color from random import randint, choice from vec2d import vec2d from simpleanimation import SimpleAnimation import displattxt black = (0,0,0) white = (255,255,255) blue = (0,0,255) green = (101,194,151) global currentEditTool currentEditTool = "Tree" global editMap editMap = False open('MapMaker.txt', 'w').close() def draw_background(screen, tile_img): screen.fill(black) img_rect = tile_img.get_rect() global rect rect = img_rect nrows = int(screen.get_height() / img_rect.height) + 1 ncols = int(screen.get_width() / img_rect.width) + 1 for y in range(nrows): for x in range(ncols): img_rect.topleft = (x * img_rect.width, y * img_rect.height) screen.blit(tile_img, img_rect) def changeTool(): if currentEditTool == "Tree": None elif currentEditTool == "Rock": None def pauseGame(): red = 255, 0, 0 green = 0,255, 0 blue = 0, 0,255 screen.fill(black) pygame.display.update() if editMap == False: choose = dm.dumbmenu(screen, [ 'Resume', 'Enable Map Editor', 'Quit Game'], 64,64,None,32,1.4,green,red) if choose == 0: print("hi") elif choose ==1: global editMap editMap = True elif choose ==2: print("bob") elif choose ==3: print("bob") elif choose ==4: print("bob") else: None else: choose = dm.dumbmenu(screen, [ 'Resume', 'Disable Map Editor', 'Quit Game'], 64,64,None,32,1.4,green,red) if choose == 0: print("Resume") elif choose ==1: print("Dis ME") global editMap editMap = False elif choose ==2: print("bob") elif choose ==3: print("bob") elif choose ==4: print("bob") else: None class Wall(pygame.sprite.Sprite): # Constructor function def __init__(self,x,y,width,height): pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface([width, height]) self.image.fill(green) self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x class insertTree(pygame.sprite.Sprite): def __init__(self,x,y,width,height, typ): pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load("images/map/tree.png").convert() self.image.set_colorkey(white) self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x class insertRock(pygame.sprite.Sprite): def __init__(self,x,y,width,height, typ): pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load("images/map/rock.png").convert() self.image.set_colorkey(white) self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x class Creep(pygame.sprite.Sprite): """ A creep sprite that bounces off walls and changes its direction from time to time. """ change_x=0 change_y=0 def __init__( self, screen, creep_image, explosion_images, field, init_position, init_direction, speed): """ Create a new Creep. screen: The screen on which the creep lives (must be a pygame Surface object, such as pygame.display) creep_image: Image (surface) object for the creep explosion_images: A list of image objects for the explosion animation. field: A Rect specifying the 'playing field' boundaries. The Creep will bounce off the 'walls' of this field. init_position: A vec2d or a pair specifying the initial position of the creep on the screen. init_direction: A vec2d or a pair specifying the initial direction of the creep. Must have an angle that is a multiple of 45 degres. speed: Creep speed, in pixels/millisecond (px/ms) """ Sprite.__init__(self) self.screen = screen self.speed = speed self.field = field self.rect = creep_image.get_rect() # base_image holds the original image, positioned to # angle 0. # image will be rotated. # self.base_image = creep_image self.image = self.base_image self.explosion_images = explosion_images # A vector specifying the creep's position on the screen # self.pos = vec2d(init_position) # The direction is a normalized vector # self.direction = vec2d(init_direction).normalized() self.state = Creep.ALIVE self.health = 15 def is_alive(self): return self.state in (Creep.ALIVE, Creep.EXPLODING) def changespeed(self,x,y): self.change_x+=x self.change_y+=y def update(self, time_passed, walls): """ Update the creep. time_passed: The time passed (in ms) since the previous update. """ if self.state == Creep.ALIVE: # Maybe it's time to change the direction ? # self._change_direction(time_passed) # Make the creep point in the correct direction. # Since our direction vector is in screen coordinates # (i.e. right bottom is 1, 1), and rotate() rotates # counter-clockwise, the angle must be inverted to # work correctly. # self.image = pygame.transform.rotate( self.base_image, -self.direction.angle) # Compute and apply the displacement to the position # vector. The displacement is a vector, having the angle # of self.direction (which is normalized to not affect # the magnitude of the displacement) # displacement = vec2d( self.direction.x * self.speed * time_passed, self.direction.y * self.speed * time_passed) self.pos += displacement # When the image is rotated, its size is changed. # We must take the size into account for detecting # collisions with the walls. # self.image_w, self.image_h = self.image.get_size() bounds_rect = self.field.inflate( -self.image_w, -self.image_h) if self.pos.x < bounds_rect.left: self.pos.x = bounds_rect.left self.direction.x *= -1 elif self.pos.x > bounds_rect.right: self.pos.x = bounds_rect.right self.direction.x *= -1 elif self.pos.y < bounds_rect.top: self.pos.y = bounds_rect.top self.direction.y *= -1 elif self.pos.y > bounds_rect.bottom: self.pos.y = bounds_rect.bottom self.direction.y *= -1 # collision detection old_x=bounds_rect.left new_x=old_x+self.direction.x bounds_rect.left = new_x # hit a wall? collide = pygame.sprite.spritecollide(self, walls, False) if collide: # yes bounds_rect.left=old_x old_y=self.pos.y new_y=old_y+self.direction.y self.pos.y = new_y collide = pygame.sprite.spritecollide(self, walls, False) if collide: # yes self.pos.y=old_y elif self.state == Creep.EXPLODING: if self.explode_animation.active: self.explode_animation.update(time_passed) else: self.state = Creep.DEAD self.kill() elif self.state == Creep.DEAD: pass #------------------ PRIVATE PARTS ------------------# # States the creep can be in. # # ALIVE: The creep is roaming around the screen # EXPLODING: # The creep is now exploding, just a moment before dying. # DEAD: The creep is dead and inactive # (ALIVE, EXPLODING, DEAD) = range(3) _counter = 0 def _change_direction(self, time_passed): """ Turn by 45 degrees in a random direction once per 0.4 to 0.5 seconds. """ self._counter += time_passed if self._counter > randint(400, 500): self.direction.rotate(45 * randint(-1, 1)) self._counter = 0 def _point_is_inside(self, point): """ Is the point (given as a vec2d) inside our creep's body? """ img_point = point - vec2d( int(self.pos.x - self.image_w / 2), int(self.pos.y - self.image_h / 2)) try: pix = self.image.get_at(img_point) return pix[3] > 0 except IndexError: return False def _decrease_health(self, n): """ Decrease my health by n (or to 0, if it's currently less than n) """ self.health = max(0, self.health - n) if self.health == 0: self._explode() def _explode(self): """ Starts the explosion animation that ends the Creep's life. """ self.state = Creep.EXPLODING pos = ( self.pos.x - self.explosion_images[0].get_width() / 2, self.pos.y - self.explosion_images[0].get_height() / 2) self.explode_animation = SimpleAnimation( self.screen, pos, self.explosion_images, 100, 300) global remainingCreeps remainingCreeps-=1 if remainingCreeps == 0: print("all dead") def draw(self): """ Blit the creep onto the screen that was provided in the constructor. """ if self.state == Creep.ALIVE: # The creep image is placed at self.pos. To allow for # smooth movement even when the creep rotates and the # image size changes, its placement is always # centered. # self.draw_rect = self.image.get_rect().move( self.pos.x - self.image_w / 2, self.pos.y - self.image_h / 2) self.screen.blit(self.image, self.draw_rect) # The health bar is 15x4 px. # health_bar_x = self.pos.x - 7 health_bar_y = self.pos.y - self.image_h / 2 - 6 self.screen.fill( Color('red'), (health_bar_x, health_bar_y, 15, 4)) self.screen.fill( Color('green'), ( health_bar_x, health_bar_y, self.health, 4)) elif self.state == Creep.EXPLODING: self.explode_animation.draw() elif self.state == Creep.DEAD: pass def mouse_click_event(self, pos): """ The mouse was clicked in pos. """ if self._point_is_inside(vec2d(pos)): self._decrease_health(3) #begin new player class Player(pygame.sprite.Sprite): change_x=0 change_y=0 frame = 0 def __init__(self,x,y): pygame.sprite.Sprite.__init__(self) # LOAD PLATER IMAGES # Set height, width self.images = [] for i in range(1,17): img = pygame.image.load("images/player/" + str(i)+".png").convert() #player images img.set_colorkey(white) self.images.append(img) self.image = self.images[0] self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x self.health = 15 self.image_w, self.image_h = self.image.get_size() health_bar_x = self.rect.x - 7 health_bar_y = self.rect.y - self.image_h / 2 - 6 screen.fill( Color('red'), (health_bar_x, health_bar_y, 15, 4)) screen.fill( Color('green'), ( health_bar_x, health_bar_y, self.health, 4)) def changespeed(self,x,y): self.change_x+=x self.change_y+=y def _decrease_health(self, n): """ Decrease my health by n (or to 0, if it's currently less than n) """ self.health = max(0, self.health - n) if self.health == 0: self._explode() def update(self,walls): # collision detection old_x=self.rect.x new_x=old_x+self.change_x self.rect.x = new_x # hit a wall? collide = pygame.sprite.spritecollide(self, walls, False) if collide: # yes self.rect.x=old_x old_y=self.rect.y new_y=old_y+self.change_y self.rect.y = new_y collide = pygame.sprite.spritecollide(self, walls, False) if collide: # yes self.rect.y=old_y # right to left if self.change_x < 0: self.frame += 1 if self.frame > 3*4: self.frame = 0 # Grab the image, divide by 4 # every 4 frames. self.image = self.images[self.frame//4] # Move left to right. # images 4...7 instead of 0...3. if self.change_x > 0: self.frame += 1 if self.frame > 3*4: self.frame = 0 self.image = self.images[self.frame//4+4] if self.change_y > 0: self.frame += 1 if self.frame > 3*4: self.frame = 0 self.image = self.images[self.frame//4+4+4] if self.change_y < 0: self.frame += 1 if self.frame > 3*4: self.frame = 0 self.image = self.images[self.frame//4+4+4+4] score = 0 # initialize pyGame pygame.init() # 800x600 sized screen global screen screen = pygame.display.set_mode([800, 600]) screen.fill(black) #bg_tile_img = pygame.image.load('images/map/grass.png').convert_alpha() #draw_background(screen, bg_tile_img) #pygame.display.flip() # Set title pygame.display.set_caption('Test') #background = pygame.Surface(screen.get_size()) #background = background.convert() #background.fill(black) # Create the player player = Player( 50,50 ) player.rect.x=50 player.rect.y=50 movingsprites = pygame.sprite.RenderPlain() movingsprites.add(player) # Make the walls. (x_pos, y_pos, width, height) global wall_list wall_list=pygame.sprite.RenderPlain() wall=Wall(0,0,10,600) # left wall wall_list.add(wall) wall=Wall(10,0,790,10) # top wall wall_list.add(wall) #wall=Wall(10,200,100,10) # poke wall wall_list.add(wall) wall=Wall(790,0,10,600) #(x,y,thickness, height) wall_list.add(wall) wall=Wall(10,590,790,10) #(x,y,thickness, height) wall_list.add(wall) f = open('MapMaker.txt') num_lines = sum(1 for line in f) print(num_lines) lineCount = 0 with open("MapMaker.txt") as infile: for line in infile: f = open('MapMaker.txt') print(line) coords = line.split(',') #print(coords[0]) #print(coords[1]) #print(coords[2]) #print(coords[3]) #print(coords[4]) if "tree" in line: print("tree in") wall=insertTree(int(coords[0]),int(coords[1]), int(coords[2]),int(coords[3]),coords[4]) wall_list.add(wall) elif "rock" in line: print("rock in") wall=insertRock(int(coords[0]),int(coords[1]), int(coords[2]),int(coords[3]),coords[4] ) wall_list.add(wall) width = 20 height = 540 height = height - 48 for i in range(0,23): width = width + 32 name = insertTree(width,540,790,10,"tree") #wall_list.add(name) name = insertTree(width,height,690,10,"tree") #wall_list.add(name) CREEP_SPAWN_TIME = 200 # frames creep_spawn = CREEP_SPAWN_TIME clock = pygame.time.Clock() bg_tile_img = pygame.image.load('images/map/grass.png').convert() img_rect = bg_tile_img FIELD_RECT = Rect(50, 50, 700, 500) CREEP_FILENAMES = [ 'images/player/1.png', 'images/player/1.png', 'images/player/1.png'] N_CREEPS = 3 creep_images = [ pygame.image.load(filename).convert_alpha() for filename in CREEP_FILENAMES] explosion_img = pygame.image.load('images/map/tree.png').convert_alpha() explosion_images = [ explosion_img, pygame.transform.rotate(explosion_img, 90)] creeps = pygame.sprite.RenderPlain() done = False #bg_tile_img = pygame.image.load('images/map/grass.png').convert() #draw_background(screen, bg_tile_img) totalCreeps = 0 remainingCreeps = 3 while done == False: creep_images = pygame.image.load("images/player/1.png").convert() creep_images.set_colorkey(white) draw_background(screen, bg_tile_img) if len(creeps) != N_CREEPS: if totalCreeps < N_CREEPS: totalCreeps = totalCreeps + 1 print(totalCreeps) creeps.add( Creep( screen=screen, creep_image=creep_images, explosion_images=explosion_images, field=FIELD_RECT, init_position=( randint(FIELD_RECT.left, FIELD_RECT.right), randint(FIELD_RECT.top, FIELD_RECT.bottom)), init_direction=(choice([-1, 1]), choice([-1, 1])), speed=0.01)) for creep in creeps: creep.update(60,wall_list) creep.draw() for event in pygame.event.get(): if event.type == pygame.QUIT: done=True if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: player.changespeed(-2,0) creep.changespeed(-2,0) if event.key == pygame.K_RIGHT: player.changespeed(2,0) creep.changespeed(2,0) if event.key == pygame.K_UP: player.changespeed(0,-2) creep.changespeed(0,-2) if event.key == pygame.K_DOWN: player.changespeed(0,2) creep.changespeed(0,2) if event.key == pygame.K_ESCAPE: pauseGame() if event.key == pygame.K_1: global currentEditTool currentEditTool = "Tree" changeTool() if event.key == pygame.K_2: global currentEditTool currentEditTool = "Rock" changeTool() if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT: player.changespeed(2,0) creep.changespeed(2,0) if event.key == pygame.K_RIGHT: player.changespeed(-2,0) creep.changespeed(-2,0) if event.key == pygame.K_UP: player.changespeed(0,2) creep.changespeed(0,2) if event.key == pygame.K_DOWN: player.changespeed(0,-2) creep.changespeed(0,-2) if event.type == pygame.MOUSEBUTTONDOWN and pygame.mouse.get_pressed()[0]: for creep in creeps: creep.mouse_click_event(pygame.mouse.get_pos()) if editMap == True: x,y = pygame.mouse.get_pos() if currentEditTool == "Tree": name = insertTree(x-10,y-25, 10 , 10, "tree") wall_list.add(name) wall_list.draw(screen) f = open('MapMaker.txt', "a+") image = pygame.image.load("images/map/tree.png").convert() screen.blit(image, (30,10)) pygame.display.flip() f.write(str(x) + "," + str(y) + ",790,10, tree\n") #f.write("wall=insertTree(" + str(x) + "," + str(y) + ",790,10)\nwall_list.add(wall)\n") elif currentEditTool == "Rock": name = insertRock(x-10,y-25, 10 , 10,"rock") wall_list.add(name) wall_list.draw(screen) f = open('MapMaker.txt', "a+") f.write(str(x) + "," + str(y) + ",790,10,rock\n") #f.write("wall=insertRock(" + str(x) + "," + str(y) + ",790,10)\nwall_list.add(wall)\n") else: None #pygame.display.flip() player.update(wall_list) movingsprites.draw(screen) wall_list.draw(screen) pygame.display.flip() clock.tick(60) pygame.quit()

    Read the article

  • Generate a random letter in Python

    - by Waterfox
    Is there a way to generate random letters in Python (like random.randint but for letters)? The range functionality of random.randint would be nice but having a generator that just outputs a random letter would be better than nothing.

    Read the article

  • vtk glyphs 3D, indenpently color and rotation

    - by user3684219
    I try to display thanks to vtk (python wrapper) several glyphs in a scene with each their own colour and rotation. Unfortunately, just the rotation (using vtkTensorGlyph) is taken in consideration by vtk. Reversely, just color is taken in consideration when I use a vtkGlyph3D. Here is a ready to use piece of code with a vtkTensorGlyph. Each cube should have a random color but there all will be in the same color. I read and read again the doc of vtk but I found no solution. Thanks in advance for any idea #!/usr/bin/env python # -*- coding: utf-8 -*- import vtk import scipy.linalg as sc import random as ra import numpy as np import itertools points = vtk.vtk.vtkPoints() # where to locate each glyph in the scene tensors = vtk.vtkDoubleArray() # rotation for each glyph tensors.SetNumberOfComponents(9) colors = vtk.vtkUnsignedCharArray() # should be the color for each glyph colors.SetNumberOfComponents(3) # let's make 10 cubes in the scene for i in range(0, 50, 5): points.InsertNextPoint(i, i, i) # position of a glyph colors.InsertNextTuple3(ra.randint(0, 255), ra.randint(0, 255), ra.randint(0, 255) ) # pick random color rot = list(itertools.chain(*np.reshape(sc.orth(np.random.rand(3, 3)).transpose(), (1, 9)).tolist())) # random rotation matrix (row major) tensors.InsertNextTuple9(*rot) polydata = vtk.vtkPolyData() # create the polydatas polydata.SetPoints(points) polydata.GetPointData().SetTensors(tensors) polydata.GetPointData().SetScalars(colors) cubeSource = vtk.vtkCubeSource() cubeSource.Update() glyphTensor = vtk.vtkTensorGlyph() glyphTensor.SetColorModeToScalars() # is it really work ? try: glyphTensor.SetInput(polydata) except AttributeError: glyphTensor.SetInputData(polydata) glyphTensor.SetSourceConnection(cubeSource.GetOutputPort()) glyphTensor.ColorGlyphsOn() # should not color all cubes independently ? glyphTensor.ThreeGlyphsOff() glyphTensor.ExtractEigenvaluesOff() glyphTensor.Update() # next is usual vtk code mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(glyphTensor.GetOutputPort()) actor = vtk.vtkActor() actor.SetMapper(mapper) ren = vtk.vtkRenderer() ren.SetBackground(0.2, 0.5, 0.3) ren.AddActor(actor) renwin = vtk.vtkRenderWindow() renwin.AddRenderer(ren) iren = vtk.vtkRenderWindowInteractor() iren.SetInteractorStyle(vtk.vtkInteractorStyleTrackballCamera()) iren.SetRenderWindow(renwin) renwin.Render() iren.Initialize() renwin.Render() iren.Start()

    Read the article

  • Dynamically add items to Tkinter Canvas

    - by nick369
    I'm attempting to learn Tkinter with the goal of being able to create a 'real-time' scope to plot data. As a test, I'm trying to draw a polygon on the canvas every time the 'draw' button is pressed. The triangle position is randomized. I have two problems: There is a triangle on the canvas as soon as the program starts, why and how do I fix this? It doesn't draw any triangles when I press the button, at least none that I can see. CODE from Tkinter import * from random import randint class App: def __init__(self,master): #frame = Frame(master) #frame.pack(side = LEFT) self.plotspc = Canvas(master,height = 100, width = 200, bg = "white") self.plotspc.grid(row=0,column = 2, rowspan = 5) self.button = Button(master, text = "Quit", fg = "red", \ command = master.quit) self.button.grid(row=0,column=0) self.drawbutton = Button(master, text = "Draw", command = \ self.pt([50,50])) self.drawbutton.grid(row = 0, column = 1) def pt(self, coords): coords[0] = coords[0] + randint(-20,20) coords[1] = coords[1] + randint(-20,20) x = (0,5,10) y = (0,10,0) xp = [coords[0] + xv for xv in x] yp = [coords[1] + yv for yv in y] ptf = zip(xp,yp) self.plotspc.create_polygon(*ptf) if _name_ == "_main_": root = Tk() app = App(root) root.mainloop() The code is formatting strangely within the code tags, I have no idea how to fix this.

    Read the article

  • Counting the number of occurrences of characters in an array

    - by Anthony Pittelli
    This is what I have but it is not working, this is confusing for me. If you scroll down I commented on someones post the exact problem I am having and what I am trying to do. I was thinking maybe the problem is my code to generate the random characters: public void add (char fromChar, char toChar){ Random r = new Random(); //creates a random object int randInt; for (int i=0; i<charArray.length; i++){ randInt = r.nextInt((toChar-fromChar) +1); charArray[i] = (char) randInt; //casts these integers as characters } }//end add public int[] countLetters() { int[] count = new int[26]; char current; for (int b = 0; b <= 26; b++) { for (int i = 97; i <= 123; i++) { char a = (char) i; for (int ch = 0; ch < charArray.length; ch++) { current = charArray[ch]; if (current == a) { count[b]++; } } } } return count; }

    Read the article

  • Memory efficient int-int dict in Python

    - by Bolo
    Hi, I need a memory efficient int-int dict in Python that would support the following operations in O(log n) time: d[k] = v # replace if present v = d[k] # None or a negative number if not present I need to hold ~250M pairs, so it really has to be tight. Do you happen to know a suitable implementation (Python 2.7)? EDIT Removed impossible requirement and other nonsense. Thanks, Craig and Kylotan! To rephrase. Here's a trivial int-int dictionary with 1M pairs: >>> import random, sys >>> from guppy import hpy >>> h = hpy() >>> h.setrelheap() >>> d = {} >>> for _ in xrange(1000000): ... d[random.randint(0, sys.maxint)] = random.randint(0, sys.maxint) ... >>> h.heap() Partition of a set of 1999530 objects. Total size = 49161112 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 1 0 25165960 51 25165960 51 dict (no owner) 1 1999521 100 23994252 49 49160212 100 int On average, a pair of integers uses 49 bytes. Here's an array of 2M integers: >>> import array, random, sys >>> from guppy import hpy >>> h = hpy() >>> h.setrelheap() >>> a = array.array('i') >>> for _ in xrange(2000000): ... a.append(random.randint(0, sys.maxint)) ... >>> h.heap() Partition of a set of 14 objects. Total size = 8001108 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 1 7 8000028 100 8000028 100 array.array On average, a pair of integers uses 8 bytes. I accept that 8 bytes/pair in a dictionary is rather hard to achieve in general. Rephrased question: is there a memory-efficient implementation of int-int dictionary that uses considerably less than 49 bytes/pair?

    Read the article

  • In python, is there anyway to have a variable be a different random number everytime?

    - by woah113
    Basically I have this: import random variable1 = random.randint(13, 19) And basically what that does is assign variable1 a random number between 13 and 19. Great. But, what I want it to do is assign a different random number between 13 and 19 to that variable every time it is called. Is there anyway I can do this? If I'm not being clear enough here's an example: import random variable1 = random.randint(13, 19) print(variable1) print(variable1) print(variable1) And the output I want would look something like this: ./script.py 15 19 13 So yeah, anyway I could do this in python? (More specifically python3. but the answer would probably be similar to a python2 answer)

    Read the article

  • reuse generators

    - by wiso
    I need to check the central limit with dices. Rool D dices. Sum the results. Repeat the same thing for N times. Change D and repeat. There's no need to store random values so I want to use only generators. The problem is that generators are consuming, I can't resuging them more times. Now my code use explicit for and I don't like it. dice_numbers = (1, 2, 10, 100, 1000) repetitions = 10000 for dice_number in dice_numbers: # how many dice to sum sum_container = [] for r in range(repetitions): rool_sum = sum((random.randint(1,6) for _ in range(dice_number))) sum_container.append(rool_sum) plot_histogram(sum_container) I want to create something like for r in repetitions: rools_generator = (random.randint(1,6) for _ in range(dice_number) sum_generator = (sum(rools_generator) for _ in range(r)) but the second time I resuse rools_generator it is condumed. I need to construct generator class?

    Read the article

  • Choosing randomly all the elements in the the list just once

    - by Dalek
    How is it possible to randomly choose a number from a list with n elements, n time without picking the same element of the list twice. I wrote a code to choose the sequence number of the elements in the list but it is slow: >>>redshift=np.array([0.92,0.17,0.51,1.33,....,0.41,0.82]) >>>redshift.shape (1225,) exclude=[] k=0 ng=1225 while (k < ng): flag1=0 sq=random.randint(0, ng) while (flag1<1): if sq in exclude: flag1=1 sq=random.randint(0, ng) else: print sq exclude.append(sq) flag1=0 z=redshift[sq] k+=1 It doesn't choose all the sequence number of elements in the list.

    Read the article

  • add collision detection to sprite?

    - by xBroak
    bassically im trying to add collision detection to the sprite below, using the following: self.rect = bounds_rect collide = pygame.sprite.spritecollide(self, wall_list, False) if collide: # yes print("collide") However it seems that when the collide is triggered it continuously prints 'collide' over and over when instead i want them to simply not be able to walk through the object, any help? def update(self, time_passed): """ Update the creep. time_passed: The time passed (in ms) since the previous update. """ if self.state == Creep.ALIVE: # Maybe it's time to change the direction ? # self._change_direction(time_passed) # Make the creep point in the correct direction. # Since our direction vector is in screen coordinates # (i.e. right bottom is 1, 1), and rotate() rotates # counter-clockwise, the angle must be inverted to # work correctly. # self.image = pygame.transform.rotate( self.base_image, -self.direction.angle) # Compute and apply the displacement to the position # vector. The displacement is a vector, having the angle # of self.direction (which is normalized to not affect # the magnitude of the displacement) # displacement = vec2d( self.direction.x * self.speed * time_passed, self.direction.y * self.speed * time_passed) self.pos += displacement # When the image is rotated, its size is changed. # We must take the size into account for detecting # collisions with the walls. # self.image_w, self.image_h = self.image.get_size() global bounds_rect bounds_rect = self.field.inflate( -self.image_w, -self.image_h) if self.pos.x < bounds_rect.left: self.pos.x = bounds_rect.left self.direction.x *= -1 elif self.pos.x > bounds_rect.right: self.pos.x = bounds_rect.right self.direction.x *= -1 elif self.pos.y < bounds_rect.top: self.pos.y = bounds_rect.top self.direction.y *= -1 elif self.pos.y > bounds_rect.bottom: self.pos.y = bounds_rect.bottom self.direction.y *= -1 self.rect = bounds_rect collide = pygame.sprite.spritecollide(self, wall_list, False) if collide: # yes print("collide") elif self.state == Creep.EXPLODING: if self.explode_animation.active: self.explode_animation.update(time_passed) else: self.state = Creep.DEAD self.kill() elif self.state == Creep.DEAD: pass #------------------ PRIVATE PARTS ------------------# # States the creep can be in. # # ALIVE: The creep is roaming around the screen # EXPLODING: # The creep is now exploding, just a moment before dying. # DEAD: The creep is dead and inactive # (ALIVE, EXPLODING, DEAD) = range(3) _counter = 0 def _change_direction(self, time_passed): """ Turn by 45 degrees in a random direction once per 0.4 to 0.5 seconds. """ self._counter += time_passed if self._counter > randint(400, 500): self.direction.rotate(45 * randint(-1, 1)) self._counter = 0 def _point_is_inside(self, point): """ Is the point (given as a vec2d) inside our creep's body? """ img_point = point - vec2d( int(self.pos.x - self.image_w / 2), int(self.pos.y - self.image_h / 2)) try: pix = self.image.get_at(img_point) return pix[3] > 0 except IndexError: return False def _decrease_health(self, n): """ Decrease my health by n (or to 0, if it's currently less than n) """ self.health = max(0, self.health - n) if self.health == 0: self._explode() def _explode(self): """ Starts the explosion animation that ends the Creep's life. """ self.state = Creep.EXPLODING pos = ( self.pos.x - self.explosion_images[0].get_width() / 2, self.pos.y - self.explosion_images[0].get_height() / 2) self.explode_animation = SimpleAnimation( self.screen, pos, self.explosion_images, 100, 300) global remainingCreeps remainingCreeps-=1 if remainingCreeps == 0: print("all dead")

    Read the article

  • Matplotlib, plotting discreet values

    - by Arkapravo
    I am trying to plot the following ! from numpy import * from pylab import * import random for x in range(1,500): y = random.randint(1,25000) print(x,y) plot(x,y) show() However, I keep getting a blank graph (?). Just to make sure that the program logic is correct I added the code print(x,y), just the confirm that (x,y) pairs are being generated. (x,y) pairs are being generated, but there is no plot, I keep getting a blank graph. Any help ?

    Read the article

  • Matlab - binary vector with high concentration of 1s (or 0s)

    - by JohnIdol
    What's the best way to generate a number X of random binary vectors of size N with concentration of 1s (or, simmetrically, of 0s) that spans from very low to very high? Using randint or unidrnd (as in this question) will generate binary vectors with uniform distributions, which is not what I need in this case. Any help appreciated!

    Read the article

  • Matplotlib: plotting discrete values

    - by Arkapravo
    I am trying to plot the following ! from numpy import * from pylab import * import random for x in range(1,500): y = random.randint(1,25000) print(x,y) plot(x,y) show() However, I keep getting a blank graph (?). Just to make sure that the program logic is correct I added the code print(x,y), just the confirm that (x,y) pairs are being generated. (x,y) pairs are being generated, but there is no plot, I keep getting a blank graph. Any help ?

    Read the article

  • Unknown syntax error.

    - by matt1024
    Why do I get a syntax error running this code? If I remove the highlighted section (return cards[i]) I get the error highlighting the function call instead. Please help :) def dealcards(): for i in range(len(cards)): cards[i] = '' for j in range(8): cards[i] = cards[i].append(random.randint(0,9) return cards[i] print (dealcards())

    Read the article

1 2  | Next Page >