Search Results

Search found 2 results on 1 pages for 'reubensammut'.

Page 1/1 | 1 

  • What is the point of the logical operators in C?

    - by reubensammut
    I was just wondering if there is an XOR logical operator in C (something like && for AND but for XOR). I know I can split an XOR into ANDs, NOTs and ORs but a simple XOR would be much better. Then it occurred to me that if I use the normal XOR bitwise operator between two conditions, it might just work. And for my tests it did. Consider: int i = 3; int j = 7; int k = 8; Just for the sake of this rather stupid example, if I need k to be either greater than i or greater than j but not both, XOR would be quite handy. if ((k > i) XOR (k > j)) printf("Valid"); else printf("Invalid"); or printf("%s",((k > i) XOR (k > j)) ? "Valid" : "Invalid"); I put the bitwise XOR ^ and it produced "Invalid". Putting the results of the two comparisons in two integers resulted in the 2 integers to contain a 1, hence the XOR produced a false. I've then tried it with the & and | bitwise operators and both gave the expected results. All this makes sense knowing that true conditions have a non zero value, whilst false conditions have zero values. I was wondering, is there a reason to use the logical && and || when the bitwise operators &, | and ^ work just the same? Thanks Reuben

    Read the article

  • Long Double in C

    - by reubensammut
    I've been reading the C Primer Plus book and got to this example #include <stdio.h> int main(void) { float aboat = 32000.0; double abet = 2.14e9; long double dip = 5.32e-5; printf("%f can be written %e\n", aboat, aboat); printf("%f can be written %e\n", abet, abet); printf("%f can be written %e\n", dip, dip); return 0; } After I ran this on my macbook I was quite shocked at the output: 32000.000000 can be written 3.200000e+04 2140000000.000000 can be written 2.140000e+09 2140000000.000000 can be written 2.140000e+09 So I looked round and found out that the correct format to display long double is to use %Lf. However I still can't understand why I got the double abet value instead of what I got when I ran it on Cygwin, Ubuntu and iDeneb which is roughly -1950228512509697486020297654959439872418023994430148306244153100897726713609 013030397828640261329800797420159101801613476402327600937901161313172717568.0 00000 can be written 2.725000e+02 Any ideas?

    Read the article

1