Search Results

Search found 21 results on 1 pages for 'sendasync'.

Page 1/1 | 1 

  • Concurrent use of System.Net.Mail.SendAsync?

    - by Bob
    I want to use System.Net.Mail.SendAync in an ASP.NET MVC2 application. I see that it throws an InvalidOperationException if there is already a SendAsync call in progress. Does this mean only one SendAsync is allowed per host, or per thread? For example, if I simultaneously have 2 web users from 2 different remote hosts, can each use SendAsync at the same time?

    Read the article

  • No feedback from Socket.SendAsync

    - by BowserKingKoopa
    I'm creating a socket and I'm trying to send data through it using SendAsync. My socket isn't connected to anything so I expected to get an error of some sort. However I get nothing. I get no indication that the send didn't work. If I use the synchronous Send method instead of the asynchronous SendAsync method I get an Exception stating that the socket isn't connected to anything. That makes sense to me. When using SendAsync the completed event doesn't ever fire and I get no indication that the send didn't work. So basically my question is how can I tell when SendAsync fails? Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); SocketAsyncEventArgs args = new SocketAsyncEventArgs(); args.SetBuffer(new byte[0], 0, 0); args.Completed += delegate(object sender, SocketAsyncEventArgs e) { Debug.WriteLine("async send complete"); Debug.WriteLine("SOCKET ERROR: " + e.SocketError); }; bool completedSynchronously = socket.SendAsync(args); if (completedSynchronously) { Debug.WriteLine("sync send complete"); Debug.WriteLine("socket error: " + args.SocketError); }

    Read the article

  • SmtpClient.SendAsync - How to ensure my application doesn't finish before callback?

    - by James
    Hi, I need to send emails asychronously through a console application. I need to do some DB updates on the callback but my application is exiting before the callback code gets run! How can I stop this from happening in a nice manner rather than simply guessing how long to wait before exiting. I would imagine the Async calls get placed in some form of thread? Is it possible to check if any are waiting to be called? Sample Code private static void SendCompletedCallback(object sender, AsyncCompletedEventArgs e) { // Get the unique identifier for this asynchronous operation. String token = (string) e.UserState; if (e.Cancelled) { Console.WriteLine("[{0}] Send canceled.", token); } if (e.Error != null) { Console.WriteLine("[{0}] {1}", token, e.Error.ToString()); } else { // update DB Console.WriteLine("Message sent."); } } public static void Main(string[] args) { var users = Repository.GetUsers(); SmtpClient client = new SmtpClient("Host"); client.SendCompleted += new SendCompletedEventHandler(SendCompletedCallback); MailAddress from = new MailAddress("[email protected]", "System", Encoding.UTF8); foreach (var user in users) { MailAddress to = new MailAddress(user.Email); MailMessage message = new MailMessage(from, to); message.Body = "This is a test"; message.BodyEncoding = System.Text.Encoding.UTF8; message.Subject = "test message 1" + someArrows; message.SubjectEncoding = System.Text.Encoding.UTF8; string userState = String.Format("Message for user id {0}", user.ID); client.SendAsync(message, userState); message.Dispose(); } // need to wait here until I have received a callback for each message // otherwise the application will exit }

    Read the article

  • SmtpClient.SendAsync(); Not working on 64bit computer.

    - by j-t-s
    Hi All, Okay, Only a couple weeks ago I had an old 32bit computer, but had to buy a new computer, which happens to be 64bit. I've rewritten the method that sends e-mails asynchonously and it just does not work. And does NOT throw any exceptions either. What gives? I have also tried the Async method code found iin MSDN, and the BlackWasp tutorial code, and MANY others. They're all the same! The only difference here seems to be the fact that I'm now on a 64bit computer. How can I get around this? Google/MSDN has been of zero help. Thanks

    Read the article

  • SmtpClient.SendAsync(); Not working on my new (64bit) computer.

    - by j-t-s
    Hi All, Okay, Only a couple weeks ago I had an old 32bit computer, but had to buy a new computer, which happens to be 64bit. I've rewritten the method that sends e-mails asynchonously and it just does not work. And does NOT throw any exceptions either. What gives? I have also tried the Async method code found iin MSDN, and the BlackWasp tutorial code, and MANY others. They're all the same! The only difference here seems to be the fact that I'm now on a 64bit computer. How can I get around this? Google/MSDN has been of zero help. Thanks

    Read the article

  • SmtpClient.SendAsync(); Does not work anymore.

    - by j-t-s
    Hi All, I have recently purchased a new computer, and now my e-mails never get sent, and there are NEVER any exceptions thrown or anything. Can somebody please provide some samples that work using the SmtpClient class? Any help at all will be greatly appreciated. Thank you

    Read the article

  • SmtpClient.SendAsync code review

    - by Lieven Cardoen
    I don't know if this is the way it should be done: { ... var client = new SmtpClient {Host = _smtpServer}; client.SendCompleted += SendCompletedCallback; var userState = mailMessage; client.SendAsync(mailMessage, userState); ... } private static void SendCompletedCallback(object sender, AsyncCompletedEventArgs e) { // Get the unique identifier for this asynchronous operation. var mailMessage= (MailMessage)e.UserState; if (e.Cancelled) { Log.Info(String.Format("[{0}] Send canceled.", mailMessage)); } if (e.Error != null) { Log.Error(String.Format("[{0}] {1}", mailMessage, e.Error)); } else { Log.Info("Message sent."); } mailMessage.Dispose(); } Disposing the mailMessage after the client.SendAsync(...) throws an error. So I need to dispose it in the Callback handler.

    Read the article

  • sendAsync() does not send mail always in asp.net

    - by SR Dusad
    Hi I am not able to send asynchronous mail in asp.net using c# .Though my code is correct as If I try to send mail 10 times then only of 1 time it is successful,rest of 9 times there is no error message but mail is also not sent at its destination.I am sending data in mail attachment. I want to send a file upto 5MB in size . Any type of help will be appreciated.

    Read the article

  • Log message Request and Response in ASP.NET WebAPI

    - by Fredrik N
    By logging both incoming and outgoing messages for services can be useful in many scenarios, such as debugging, tracing, inspection and helping customers with request problems etc.  I have a customer that need to have both incoming and outgoing messages to be logged. They use the information to see strange behaviors and also to help customers when they call in  for help (They can by looking in the log see if the customers sends in data in a wrong or strange way).   Concerns Most loggings in applications are cross-cutting concerns and should not be  a core concern for developers. Logging messages like this:   // GET api/values/5 public string Get(int id) { //Cross-cutting concerns Log(string.Format("Request: GET api/values/{0}", id)); //Core-concern var response = DoSomething(); //Cross-cutting concerns Log(string.Format("Reponse: GET api/values/{0}\r\n{1}", id, response)); return response; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } will only result in duplication of code, and unnecessarily concerns for the developers to be aware of, if they miss adding the logging code, no logging will take place. Developers should focus on the core-concern, not the cross-cutting concerns. By just focus on the core-concern the above code will look like this: // GET api/values/5 public string Get(int id) { return DoSomething(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The logging should then be placed somewhere else so the developers doesn’t need to focus care about the cross-concern. Using Message Handler for logging There are different ways we could place the cross-cutting concern of logging message when using WebAPI. We can for example create a custom ApiController and override the ApiController’s ExecutingAsync method, or add a ActionFilter, or use a Message Handler. The disadvantage with custom ApiController is that we need to make sure we inherit from it, the disadvantage of ActionFilter, is that we need to add the filter to the controllers, both will modify our ApiControllers. By using a Message Handler we don’t need to do any changes to our ApiControllers. So the best suitable place to add our logging would be in a custom Message Handler. A Message Handler will be used before the HttpControllerDispatcher (The part in the WepAPI pipe-line that make sure the right controller is used and called etc). Note: You can read more about message handlers here, it will give you a good understanding of the WebApi pipe-line. To create a Message Handle we can inherit from the DelegatingHandler class and override the SendAsync method: public class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { return base.SendAsync(request, cancellationToken); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If we skip the call to the base.SendAsync our ApiController’s methods will never be invoked, nor other Message Handlers. Everything placed before base.SendAsync will be called before the HttpControllerDispatcher (before WebAPI will take a look at the request which controller and method it should be invoke), everything after the base.SendAsync, will be executed after our ApiController method has returned a response. So a message handle will be a perfect place to add cross-cutting concerns such as logging. To get the content of our response within a Message Handler we can use the request argument of the SendAsync method. The request argument is of type HttpRequestMessage and has a Content property (Content is of type HttpContent. The HttpContent has several method that can be used to read the incoming message, such as ReadAsStreamAsync, ReadAsByteArrayAsync and ReadAsStringAsync etc. Something to be aware of is what will happen when we read from the HttpContent. When we read from the HttpContent, we read from a stream, once we read from it, we can’t be read from it again. So if we read from the Stream before the base.SendAsync, the next coming Message Handlers and the HttpControllerDispatcher can’t read from the Stream because it’s already read, so our ApiControllers methods will never be invoked etc. The only way to make sure we can do repeatable reads from the HttpContent is to copy the content into a buffer, and then read from that buffer. This can be done by using the HttpContent’s LoadIntoBufferAsync method. If we make a call to the LoadIntoBufferAsync method before the base.SendAsync, the incoming stream will be read in to a byte array, and then other HttpContent read operations will read from that buffer if it’s exists instead directly form the stream. There is one method on the HttpContent that will internally make a call to the  LoadIntoBufferAsync for us, and that is the ReadAsByteArrayAsync. This is the method we will use to read from the incoming and outgoing message. public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var requestMessage = await request.Content.ReadAsByteArrayAsync(); var response = await base.SendAsync(request, cancellationToken); var responseMessage = await response.Content.ReadAsByteArrayAsync(); return response; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code will read the content of the incoming message and then call the SendAsync and after that read from the content of the response message. The following code will add more logic such as creating a correlation id to combine the request with the response, and create a log entry etc: public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); var responseMessage = await response.Content.ReadAsByteArrayAsync(); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } public class MessageLoggingHandler : MessageHandler { protected override async Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message) { await Task.Run(() => Debug.WriteLine(string.Format("{0} - Request: {1}\r\n{2}", correlationId, requestInfo, Encoding.UTF8.GetString(message)))); } protected override async Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message) { await Task.Run(() => Debug.WriteLine(string.Format("{0} - Response: {1}\r\n{2}", correlationId, requestInfo, Encoding.UTF8.GetString(message)))); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The code above will show the following in the Visual Studio output window when the “api/values” service (One standard controller added by the default WepAPI template) is requested with a Get http method : 6347483479959544375 - Request: GET http://localhost:3208/api/values 6347483479959544375 - Response: GET http://localhost:3208/api/values ["value1","value2"] .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Register a Message Handler To register a Message handler we can use the Add method of the GlobalConfiguration.Configration.MessageHandlers in for example Global.asax: public class WebApiApplication : System.Web.HttpApplication { protected void Application_Start() { GlobalConfiguration.Configuration.MessageHandlers.Add(new MessageLoggingHandler()); ... } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Summary By using a Message Handler we can easily remove cross-cutting concerns like logging from our controllers. You can also find the source code used in this blog post on ForkCan.com, feel free to make a fork or add comments, such as making the code better etc. Feel free to follow me on twitter @fredrikn if you want to know when I will write other blog posts etc.

    Read the article

  • asynchronous calls in asp.net

    - by lockedscope
    in this sample, two threads created; a worker thread created by BeginInvoke and an I/O completion thread created by SendAsync method. but another author in his UnsafeQueueNativeOverlapped example, don't recommend this. i want to use SendAsync or ...Async in an asp.net page and i want to use PageAsyncTask. however, its BeginEventHandler requires AsyncResult to be returned which SendAsync does not return. afaik, event based async pattern is the most recommended way so how could we call SendAsync or any ...Async methods without creating two threads and hurting the performance?

    Read the article

  • ASP.NET Web API Exception Handling

    - by Fredrik N
    When I talk about exceptions in my product team I often talk about two kind of exceptions, business and critical exceptions. Business exceptions are exceptions thrown based on “business rules”, for example if you aren’t allowed to do a purchase. Business exceptions in most case aren’t important to log into a log file, they can directly be shown to the user. An example of a business exception could be "DeniedToPurchaseException”, or some validation exceptions such as “FirstNameIsMissingException” etc. Critical Exceptions are all other kind of exceptions such as the SQL server is down etc. Those kind of exception message need to be logged and should not reach the user, because they can contain information that can be harmful if it reach out to wrong kind of users. I often distinguish business exceptions from critical exceptions by creating a base class called BusinessException, then in my error handling code I catch on the type BusinessException and all other exceptions will be handled as critical exceptions. This blog post will be about different ways to handle exceptions and how Business and Critical Exceptions could be handled. Web API and Exceptions the basics When an exception is thrown in a ApiController a response message will be returned with a status code set to 500 and a response formatted by the formatters based on the “Accept” or “Content-Type” HTTP header, for example JSON or XML. Here is an example:   public IEnumerable<string> Get() { throw new ApplicationException("Error!!!!!"); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response message will be: HTTP/1.1 500 Internal Server Error Content-Length: 860 Content-Type: application/json; charset=utf-8 { "ExceptionType":"System.ApplicationException","Message":"Error!!!!!","StackTrace":" at ..."} .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The stack trace will be returned to the client, this is because of making it easier to debug. Be careful so you don’t leak out some sensitive information to the client. So as long as you are developing your API, this is not harmful. In a production environment it can be better to log exceptions and return a user friendly exception instead of the original exception. There is a specific exception shipped with ASP.NET Web API that will not use the formatters based on the “Accept” or “Content-Type” HTTP header, it is the exception is the HttpResponseException class. Here is an example where the HttpReponseExcetpion is used: // GET api/values [ExceptionHandling] public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError)); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response will not contain any content, only header information and the status code based on the HttpStatusCode passed as an argument to the HttpResponseMessage. Because the HttpResponsException takes a HttpResponseMessage as an argument, we can give the response a content: public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("My Error Message"), ReasonPhrase = "Critical Exception" }); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The code above will have the following response:   HTTP/1.1 500 Critical Exception Content-Length: 5 Content-Type: text/plain; charset=utf-8 My Error Message .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The Content property of the HttpResponseMessage doesn’t need to be just plain text, it can also be other formats, for example JSON, XML etc. By using the HttpResponseException we can for example catch an exception and throw a user friendly exception instead: public IEnumerable<string> Get() { try { DoSomething(); return new string[] { "value1", "value2" }; } catch (Exception e) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Adding a try catch to every ApiController methods will only end in duplication of code, by using a custom ExceptionFilterAttribute or our own custom ApiController base class we can reduce code duplicationof code and also have a more general exception handler for our ApiControllers . By creating a custom ApiController’s and override the ExecuteAsync method, we can add a try catch around the base.ExecuteAsync method, but I prefer to skip the creation of a own custom ApiController, better to use a solution that require few files to be modified. The ExceptionFilterAttribute has a OnException method that we can override and add our exception handling. Here is an example: using System; using System.Diagnostics; using System.Net; using System.Net.Http; using System.Web.Http; using System.Web.Http.Filters; public class ExceptionHandlingAttribute : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { if (context.Exception is BusinessException) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(context.Exception.Message), ReasonPhrase = "Exception" }); } //Log Critical errors Debug.WriteLine(context.Exception); throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: Something to have in mind is that the ExceptionFilterAttribute will be ignored if the ApiController action method throws a HttpResponseException. The code above will always make sure a HttpResponseExceptions will be returned, it will also make sure the critical exceptions will show a more user friendly message. The OnException method can also be used to log exceptions. By using a ExceptionFilterAttribute the Get() method in the previous example can now look like this: public IEnumerable<string> Get() { DoSomething(); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To use the an ExceptionFilterAttribute, we can for example add the ExceptionFilterAttribute to our ApiControllers methods or to the ApiController class definition, or register it globally for all ApiControllers. You can read more about is here. Note: If something goes wrong in the ExceptionFilterAttribute and an exception is thrown that is not of type HttpResponseException, a formatted exception will be thrown with stack trace etc to the client. How about using a custom IHttpActionInvoker? We can create our own IHTTPActionInvoker and add Exception handling to the invoker. The IHttpActionInvoker will be used to invoke the ApiController’s ExecuteAsync method. Here is an example where the default IHttpActionInvoker, ApiControllerActionInvoker, is used to add exception handling: public class MyApiControllerActionInvoker : ApiControllerActionInvoker { public override Task<HttpResponseMessage> InvokeActionAsync(HttpActionContext actionContext, System.Threading.CancellationToken cancellationToken) { var result = base.InvokeActionAsync(actionContext, cancellationToken); if (result.Exception != null && result.Exception.GetBaseException() != null) { var baseException = result.Exception.GetBaseException(); if (baseException is BusinessException) { return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Error" }); } else { //Log critical error Debug.WriteLine(baseException); return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Critical Error" }); } } return result; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can register the IHttpActionInvoker with your own IoC to resolve the MyApiContollerActionInvoker, or add it in the Global.asax: GlobalConfiguration.Configuration.Services.Remove(typeof(IHttpActionInvoker), GlobalConfiguration.Configuration.Services.GetActionInvoker()); GlobalConfiguration.Configuration.Services.Add(typeof(IHttpActionInvoker), new MyApiControllerActionInvoker()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   How about using a Message Handler for Exception Handling? By creating a custom Message Handler, we can handle error after the ApiController and the ExceptionFilterAttribute is invoked and in that way create a global exception handler, BUT, the only thing we can take a look at is the HttpResponseMessage, we can’t add a try catch around the Message Handler’s SendAsync method. The last Message Handler that will be used in the Wep API pipe-line is the HttpControllerDispatcher and this Message Handler is added to the HttpServer in an early stage. The HttpControllerDispatcher will use the IHttpActionInvoker to invoke the ApiController method. The HttpControllerDipatcher has a try catch that will turn ALL exceptions into a HttpResponseMessage, so that is the reason why a try catch around the SendAsync in a custom Message Handler want help us. If we create our own Host for the Wep API we could create our own custom HttpControllerDispatcher and add or exception handler to that class, but that would be little tricky but is possible. We can in a Message Handler take a look at the HttpResponseMessage’s IsSuccessStatusCode property to see if the request has failed and if we throw the HttpResponseException in our ApiControllers, we could use the HttpResponseException and give it a Reason Phrase and use that to identify business exceptions or critical exceptions. I wouldn’t add an exception handler into a Message Handler, instead I should use the ExceptionFilterAttribute and register it globally for all ApiControllers. BUT, now to another interesting issue. What will happen if we have a Message Handler that throws an exception?  Those exceptions will not be catch and handled by the ExceptionFilterAttribute. I found a  bug in my previews blog post about “Log message Request and Response in ASP.NET WebAPI” in the MessageHandler I use to log incoming and outgoing messages. Here is the code from my blog before I fixed the bug:   public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); var responseMessage = await response.Content.ReadAsByteArrayAsync(); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If a ApiController throws a HttpResponseException, the Content property of the HttpResponseMessage from the SendAsync will be NULL. So a null reference exception is thrown within the MessageHandler. The yellow screen of death will be returned to the client, and the content is HTML and the Http status code is 500. The bug in the MessageHandler was solved by adding a check against the HttpResponseMessage’s IsSuccessStatusCode property: public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); byte[] responseMessage; if (response.IsSuccessStatusCode) responseMessage = await response.Content.ReadAsByteArrayAsync(); else responseMessage = Encoding.UTF8.GetBytes(response.ReasonPhrase); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we don’t handle the exceptions that can occur in a custom Message Handler, we can have a hard time to find the problem causing the exception. The savior in this case is the Global.asax’s Application_Error: protected void Application_Error() { var exception = Server.GetLastError(); Debug.WriteLine(exception); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I would recommend you to add the Application_Error to the Global.asax and log all exceptions to make sure all kind of exception is handled. Summary There are different ways we could add Exception Handling to the Wep API, we can use a custom ApiController, ExceptionFilterAttribute, IHttpActionInvoker or Message Handler. The ExceptionFilterAttribute would be a good place to add a global exception handling, require very few modification, just register it globally for all ApiControllers, even the IHttpActionInvoker can be used to minimize the modifications of files. Adding the Application_Error to the global.asax is a good way to catch all unhandled exception that can occur, for example exception thrown in a Message Handler.   If you want to know when I have posted a blog post, you can follow me on twitter @fredrikn

    Read the article

  • What is stopping data flow with .NET 3.5 asynchronous System.Net.Sockets.Socket?

    - by TonyG
    I have a .NET 3.5 client/server socket interface using the asynchronous methods. The client connects to the server and the connection should remain open until the app terminates. The protocol consists of the following pattern: send stx receive ack send data1 receive ack send data2 (repeat 5-6 while more data) receive ack send etx So a single transaction with two datablocks as above would consist of 4 sends from the client. After sending etx the client simply waits for more data to send out, then begins the next transmission with stx. I do not want to break the connection between individual exchanges or after each stx/data/etx payload. Right now, after connection, the client can send the first stx, and get a single ack, but I can't put more data onto the wire after that. Neither side disconnects, the socket is still intact. The client code is seriously abbreviated as follows - I'm following the pattern commonly available in online code samples. private void SendReceive(string data) { // ... SocketAsyncEventArgs completeArgs; completeArgs.Completed += new EventHandler<SocketAsyncEventArgs>(OnSend); clientSocket.SendAsync(completeArgs); // two AutoResetEvents, one for send, one for receive if ( !AutoResetEvent.WaitAll(autoSendReceiveEvents , -1) ) Log("failed"); else Log("success"); // ... } private void OnSend( object sender , SocketAsyncEventArgs e ) { // ... Socket s = e.UserToken as Socket; byte[] receiveBuffer = new byte[ 4096 ]; e.SetBuffer(receiveBuffer , 0 , receiveBuffer.Length); e.Completed += new EventHandler<SocketAsyncEventArgs>(OnReceive); s.ReceiveAsync(e); // ... } private void OnReceive( object sender , SocketAsyncEventArgs e ) {} // ... if ( e.BytesTransferred > 0 ) { Int32 bytesTransferred = e.BytesTransferred; String received = Encoding.ASCII.GetString(e.Buffer , e.Offset , bytesTransferred); dataReceived += received; } autoSendReceiveEvents[ SendOperation ].Set(); // could be moved elsewhere autoSendReceiveEvents[ ReceiveOperation ].Set(); // releases mutexes } The code on the server is very similar except that it receives first and then sends a response - the server is not doing anything (that I can tell) to modify the connection after it sends a response. The problem is that the second time I hit SendReceive in the client, the connection is already in a weird state. Do I need to do something in the client to preserve the SocketAsyncEventArgs, and re-use the same object for the lifetime of the socket/connection? I'm not sure which eventargs object should hang around during the life of the connection or a given exchange. Do I need to do something, or Not do something in the server to ensure it continues to Receive data? The server setup and response processing looks like this: void Start() { // ... listenSocket.Bind(...); listenSocket.Listen(0); StartAccept(null); // note accept as soon as we start. OK? mutex.WaitOne(); } void StartAccept(SocketAsyncEventArgs acceptEventArg) { if ( acceptEventArg == null ) { acceptEventArg = new SocketAsyncEventArgs(); acceptEventArg.Completed += new EventHandler<SocketAsyncEventArgs>(OnAcceptCompleted); } Boolean willRaiseEvent = this.listenSocket.AcceptAsync(acceptEventArg); if ( !willRaiseEvent ) ProcessAccept(acceptEventArg); // ... } private void OnAcceptCompleted( object sender , SocketAsyncEventArgs e ) { ProcessAccept(e); } private void ProcessAccept( SocketAsyncEventArgs e ) { // ... SocketAsyncEventArgs readEventArgs = new SocketAsyncEventArgs(); readEventArgs.SetBuffer(dataBuffer , 0 , Int16.MaxValue); readEventArgs.Completed += new EventHandler<SocketAsyncEventArgs>(OnIOCompleted); readEventArgs.UserToken = e.AcceptSocket; dataReceived = ""; // note server is degraded for single client/thread use // As soon as the client is connected, post a receive to the connection. Boolean willRaiseEvent = e.AcceptSocket.ReceiveAsync(readEventArgs); if ( !willRaiseEvent ) this.ProcessReceive(readEventArgs); // Accept the next connection request. this.StartAccept(e); } private void OnIOCompleted( object sender , SocketAsyncEventArgs e ) { // switch ( e.LastOperation ) case SocketAsyncOperation.Receive: ProcessReceive(e); // similar to client code // operate on dataReceived here case SocketAsyncOperation.Send: ProcessSend(e); // similar to client code } // execute this when a data has been processed into a response (ack, etc) private SendResponseToClient(string response) { // create buffer with response // currentEventArgs has class scope and is re-used currentEventArgs.SetBuffer(sendBuffer , 0 , sendBuffer.Length); Boolean willRaiseEvent = currentClient.SendAsync(currentEventArgs); if ( !willRaiseEvent ) ProcessSend(currentEventArgs); } A .NET trace shows the following when sending ABC\r\n: Socket#7588182::SendAsync() Socket#7588182::SendAsync(True#1) Data from Socket#7588182::FinishOperation(SendAsync) 00000000 : 41 42 43 0D 0A Socket#7588182::ReceiveAsync() Exiting Socket#7588182::ReceiveAsync() - True#1 And it stops there. It looks just like the first send from the client but the server shows no activity. I think that could be info overload for now but I'll be happy to provide more details as required. Thanks!

    Read the article

  • C# .Net 3.5 Asynchronous Socket Server Performance Problem

    - by iBrAaAa
    I'm developing an Asynchronous Game Server using .Net Socket Asynchronous Model( BeginAccept/EndAccept...etc.) The problem I'm facing is described like that: When I have only one client connected, the server response time is very fast but once a second client connects, the server response time increases too much. I've measured the time from a client sends a message to the server until it gets the reply in both cases. I found that the average time in case of one client is about 17ms and in case of 2 clients about 280ms!!! What I really see is that: When 2 clients are connected and only one of them is moving(i.e. requesting service from the server) it is equivalently equal to the case when only one client is connected(i.e. fast response). However, when the 2 clients move at the same time(i.e. requests service from the server at the same time) their motion becomes very slow (as if the server replies each one of them in order i.e. not simultaneously). Basically, what I am doing is that: When a client requests a permission for motion from the server and the server grants him the request, the server then broadcasts the new position of the client to all the players. So if two clients are moving in the same time, the server is eventually trying to broadcast to both clients the new position of each of them at the same time. EX: Client1 asks to go to position (2,2) Client2 asks to go to position (5,5) Server sends to each of Client1 & Client2 the same two messages: message1: "Client1 at (2,2)" message2: "Client2 at (5,5)" I believe that the problem comes from the fact that Socket class is thread safe according MSDN documentation http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx. (NOT SURE THAT IT IS THE PROBLEM) Below is the code for the server: /// /// This class is responsible for handling packet receiving and sending /// public class NetworkManager { /// /// An integer to hold the server port number to be used for the connections. Its default value is 5000. /// private readonly int port = 5000; /// /// hashtable contain all the clients connected to the server. /// key: player Id /// value: socket /// private readonly Hashtable connectedClients = new Hashtable(); /// /// An event to hold the thread to wait for a new client /// private readonly ManualResetEvent resetEvent = new ManualResetEvent(false); /// /// keeps track of the number of the connected clients /// private int clientCount; /// /// The socket of the server at which the clients connect /// private readonly Socket mainSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); /// /// The socket exception that informs that a client is disconnected /// private const int ClientDisconnectedErrorCode = 10054; /// /// The only instance of this class. /// private static readonly NetworkManager networkManagerInstance = new NetworkManager(); /// /// A delegate for the new client connected event. /// /// the sender object /// the event args public delegate void NewClientConnected(Object sender, SystemEventArgs e); /// /// A delegate for the position update message reception. /// /// the sender object /// the event args public delegate void PositionUpdateMessageRecieved(Object sender, PositionUpdateEventArgs e); /// /// The event which fires when a client sends a position message /// public PositionUpdateMessageRecieved PositionUpdateMessageEvent { get; set; } /// /// keeps track of the number of the connected clients /// public int ClientCount { get { return clientCount; } } /// /// A getter for this class instance. /// /// only instance. public static NetworkManager NetworkManagerInstance { get { return networkManagerInstance; } } private NetworkManager() {} /// Starts the game server and holds this thread alive /// public void StartServer() { //Bind the mainSocket to the server IP address and port mainSocket.Bind(new IPEndPoint(IPAddress.Any, port)); //The server starts to listen on the binded socket with max connection queue //1024 mainSocket.Listen(1024); //Start accepting clients asynchronously mainSocket.BeginAccept(OnClientConnected, null); //Wait until there is a client wants to connect resetEvent.WaitOne(); } /// /// Receives connections of new clients and fire the NewClientConnected event /// private void OnClientConnected(IAsyncResult asyncResult) { Interlocked.Increment(ref clientCount); ClientInfo newClient = new ClientInfo { WorkerSocket = mainSocket.EndAccept(asyncResult), PlayerId = clientCount }; //Add the new client to the hashtable and increment the number of clients connectedClients.Add(newClient.PlayerId, newClient); //fire the new client event informing that a new client is connected to the server if (NewClientEvent != null) { NewClientEvent(this, System.EventArgs.Empty); } newClient.WorkerSocket.BeginReceive(newClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), newClient); //Start accepting clients asynchronously again mainSocket.BeginAccept(OnClientConnected, null); } /// Waits for the upcoming messages from different clients and fires the proper event according to the packet type. /// /// private void WaitForData(IAsyncResult asyncResult) { ClientInfo sendingClient = null; try { //Take the client information from the asynchronous result resulting from the BeginReceive sendingClient = asyncResult.AsyncState as ClientInfo; // If client is disconnected, then throw a socket exception // with the correct error code. if (!IsConnected(sendingClient.WorkerSocket)) { throw new SocketException(ClientDisconnectedErrorCode); } //End the pending receive request sendingClient.WorkerSocket.EndReceive(asyncResult); //Fire the appropriate event FireMessageTypeEvent(sendingClient.ConvertBytesToPacket() as BasePacket); // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } catch (SocketException e) { if (e.ErrorCode == ClientDisconnectedErrorCode) { // Close the socket. if (sendingClient.WorkerSocket != null) { sendingClient.WorkerSocket.Close(); sendingClient.WorkerSocket = null; } // Remove it from the hash table. connectedClients.Remove(sendingClient.PlayerId); if (ClientDisconnectedEvent != null) { ClientDisconnectedEvent(this, new ClientDisconnectedEventArgs(sendingClient.PlayerId)); } } } catch (Exception e) { // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } } /// /// Broadcasts the input message to all the connected clients /// /// public void BroadcastMessage(BasePacket message) { byte[] bytes = message.ConvertToBytes(); foreach (ClientInfo client in connectedClients.Values) { client.WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, client); } } /// /// Sends the input message to the client specified by his ID. /// /// /// The message to be sent. /// The id of the client to receive the message. public void SendToClient(BasePacket message, int id) { byte[] bytes = message.ConvertToBytes(); (connectedClients[id] as ClientInfo).WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, connectedClients[id]); } private void SendAsync(IAsyncResult asyncResult) { ClientInfo currentClient = (ClientInfo)asyncResult.AsyncState; currentClient.WorkerSocket.EndSend(asyncResult); } /// Fires the event depending on the type of received packet /// /// The received packet. void FireMessageTypeEvent(BasePacket packet) { switch (packet.MessageType) { case MessageType.PositionUpdateMessage: if (PositionUpdateMessageEvent != null) { PositionUpdateMessageEvent(this, new PositionUpdateEventArgs(packet as PositionUpdatePacket)); } break; } } } The events fired are handled in a different class, here are the event handling code for the PositionUpdateMessage (Other handlers are irrelevant): private readonly Hashtable onlinePlayers = new Hashtable(); /// /// Constructor that creates a new instance of the GameController class. /// private GameController() { //Start the server server = new Thread(networkManager.StartServer); server.Start(); //Create an event handler for the NewClientEvent of networkManager networkManager.PositionUpdateMessageEvent += OnPositionUpdateMessageReceived; } /// /// this event handler is called when a client asks for movement. /// private void OnPositionUpdateMessageReceived(object sender, PositionUpdateEventArgs e) { Point currentLocation = ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position; Point locationRequested = e.PositionUpdatePacket.Position; ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position = locationRequested; // Broadcast the new position networkManager.BroadcastMessage(new PositionUpdatePacket { Position = locationRequested, PlayerId = e.PositionUpdatePacket.PlayerId }); }

    Read the article

  • .Net 3.5 Asynchronous Socket Server Performance Problem

    - by iBrAaAa
    I'm developing an Asynchronous Game Server using .Net Socket Asynchronous Model( BeginAccept/EndAccept...etc.) The problem I'm facing is described like that: When I have only one client connected, the server response time is very fast but once a second client connects, the server response time increases too much. I've measured the time from a client sends a message to the server until it gets the reply in both cases. I found that the average time in case of one client is about 17ms and in case of 2 clients about 280ms!!! What I really see is that: When 2 clients are connected and only one of them is moving(i.e. requesting service from the server) it is equivalently equal to the case when only one client is connected(i.e. fast response). However, when the 2 clients move at the same time(i.e. requests service from the server at the same time) their motion becomes very slow (as if the server replies each one of them in order i.e. not simultaneously). Basically, what I am doing is that: When a client requests a permission for motion from the server and the server grants him the request, the server then broadcasts the new position of the client to all the players. So if two clients are moving in the same time, the server is eventually trying to broadcast to both clients the new position of each of them at the same time. EX: Client1 asks to go to position (2,2) Client2 asks to go to position (5,5) Server sends to each of Client1 & Client2 the same two messages: message1: "Client1 at (2,2)" message2: "Client2 at (5,5)" I believe that the problem comes from the fact that Socket class is thread safe according MSDN documentation http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx. (NOT SURE THAT IT IS THE PROBLEM) Below is the code for the server: /// /// This class is responsible for handling packet receiving and sending /// public class NetworkManager { /// /// An integer to hold the server port number to be used for the connections. Its default value is 5000. /// private readonly int port = 5000; /// /// hashtable contain all the clients connected to the server. /// key: player Id /// value: socket /// private readonly Hashtable connectedClients = new Hashtable(); /// /// An event to hold the thread to wait for a new client /// private readonly ManualResetEvent resetEvent = new ManualResetEvent(false); /// /// keeps track of the number of the connected clients /// private int clientCount; /// /// The socket of the server at which the clients connect /// private readonly Socket mainSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); /// /// The socket exception that informs that a client is disconnected /// private const int ClientDisconnectedErrorCode = 10054; /// /// The only instance of this class. /// private static readonly NetworkManager networkManagerInstance = new NetworkManager(); /// /// A delegate for the new client connected event. /// /// the sender object /// the event args public delegate void NewClientConnected(Object sender, SystemEventArgs e); /// /// A delegate for the position update message reception. /// /// the sender object /// the event args public delegate void PositionUpdateMessageRecieved(Object sender, PositionUpdateEventArgs e); /// /// The event which fires when a client sends a position message /// public PositionUpdateMessageRecieved PositionUpdateMessageEvent { get; set; } /// /// keeps track of the number of the connected clients /// public int ClientCount { get { return clientCount; } } /// /// A getter for this class instance. /// /// only instance. public static NetworkManager NetworkManagerInstance { get { return networkManagerInstance; } } private NetworkManager() {} /// Starts the game server and holds this thread alive /// public void StartServer() { //Bind the mainSocket to the server IP address and port mainSocket.Bind(new IPEndPoint(IPAddress.Any, port)); //The server starts to listen on the binded socket with max connection queue //1024 mainSocket.Listen(1024); //Start accepting clients asynchronously mainSocket.BeginAccept(OnClientConnected, null); //Wait until there is a client wants to connect resetEvent.WaitOne(); } /// /// Receives connections of new clients and fire the NewClientConnected event /// private void OnClientConnected(IAsyncResult asyncResult) { Interlocked.Increment(ref clientCount); ClientInfo newClient = new ClientInfo { WorkerSocket = mainSocket.EndAccept(asyncResult), PlayerId = clientCount }; //Add the new client to the hashtable and increment the number of clients connectedClients.Add(newClient.PlayerId, newClient); //fire the new client event informing that a new client is connected to the server if (NewClientEvent != null) { NewClientEvent(this, System.EventArgs.Empty); } newClient.WorkerSocket.BeginReceive(newClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), newClient); //Start accepting clients asynchronously again mainSocket.BeginAccept(OnClientConnected, null); } /// Waits for the upcoming messages from different clients and fires the proper event according to the packet type. /// /// private void WaitForData(IAsyncResult asyncResult) { ClientInfo sendingClient = null; try { //Take the client information from the asynchronous result resulting from the BeginReceive sendingClient = asyncResult.AsyncState as ClientInfo; // If client is disconnected, then throw a socket exception // with the correct error code. if (!IsConnected(sendingClient.WorkerSocket)) { throw new SocketException(ClientDisconnectedErrorCode); } //End the pending receive request sendingClient.WorkerSocket.EndReceive(asyncResult); //Fire the appropriate event FireMessageTypeEvent(sendingClient.ConvertBytesToPacket() as BasePacket); // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } catch (SocketException e) { if (e.ErrorCode == ClientDisconnectedErrorCode) { // Close the socket. if (sendingClient.WorkerSocket != null) { sendingClient.WorkerSocket.Close(); sendingClient.WorkerSocket = null; } // Remove it from the hash table. connectedClients.Remove(sendingClient.PlayerId); if (ClientDisconnectedEvent != null) { ClientDisconnectedEvent(this, new ClientDisconnectedEventArgs(sendingClient.PlayerId)); } } } catch (Exception e) { // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } } /// /// Broadcasts the input message to all the connected clients /// /// public void BroadcastMessage(BasePacket message) { byte[] bytes = message.ConvertToBytes(); foreach (ClientInfo client in connectedClients.Values) { client.WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, client); } } /// /// Sends the input message to the client specified by his ID. /// /// /// The message to be sent. /// The id of the client to receive the message. public void SendToClient(BasePacket message, int id) { byte[] bytes = message.ConvertToBytes(); (connectedClients[id] as ClientInfo).WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, connectedClients[id]); } private void SendAsync(IAsyncResult asyncResult) { ClientInfo currentClient = (ClientInfo)asyncResult.AsyncState; currentClient.WorkerSocket.EndSend(asyncResult); } /// Fires the event depending on the type of received packet /// /// The received packet. void FireMessageTypeEvent(BasePacket packet) { switch (packet.MessageType) { case MessageType.PositionUpdateMessage: if (PositionUpdateMessageEvent != null) { PositionUpdateMessageEvent(this, new PositionUpdateEventArgs(packet as PositionUpdatePacket)); } break; } } } The events fired are handled in a different class, here are the event handling code for the PositionUpdateMessage (Other handlers are irrelevant): private readonly Hashtable onlinePlayers = new Hashtable(); /// /// Constructor that creates a new instance of the GameController class. /// private GameController() { //Start the server server = new Thread(networkManager.StartServer); server.Start(); //Create an event handler for the NewClientEvent of networkManager networkManager.PositionUpdateMessageEvent += OnPositionUpdateMessageReceived; } /// /// this event handler is called when a client asks for movement. /// private void OnPositionUpdateMessageReceived(object sender, PositionUpdateEventArgs e) { Point currentLocation = ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position; Point locationRequested = e.PositionUpdatePacket.Position; ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position = locationRequested; // Broadcast the new position networkManager.BroadcastMessage(new PositionUpdatePacket { Position = locationRequested, PlayerId = e.PositionUpdatePacket.PlayerId }); }

    Read the article

  • Consuming the Amazon S3 service from a Win8 Metro Application

    - by cibrax
    As many of the existing Http APIs for Cloud Services, AWS also provides a set of different platform SDKs for hiding many of complexities present in the APIs. While there is a platform SDK for .NET, which is open source and available in C#, that SDK does not work in Win8 Metro Applications for the changes introduced in WinRT. WinRT offers a complete different set of APIs for doing I/O operations such as doing http calls or using cryptography for signing or encrypting data, two aspects that are absolutely necessary for consuming AWS. All the I/O APIs available as part of WinRT are asynchronous, and uses the TPL model for .NET applications (HTML and JavaScript Metro applications use a model based in promises, which is similar concept).  In the case of S3, the http Authorization header is used for two purposes, authenticating clients and make sure the messages were not altered while they were in transit. For doing that, it uses a signature or hash of the message content and some of the headers using a symmetric key (That's just one of the available mechanisms). Windows Azure for example also uses the same mechanism in many of its APIs. There are three challenges that any developer working for first time in Metro will have to face to consume S3, the new WinRT APIs, the asynchronous nature of them and the complexity introduced for generating the Authorization header. Having said that, I decided to write this post with some of the gotchas I found myself trying to consume this Amazon service. 1. Generating the signature for the Authorization header All the cryptography APIs in WinRT are available under Windows.Security.Cryptography namespace. Many of operations available in these APIs uses the concept of buffers (IBuffer) for representing a chunk of binary data. As you will see in the example below, these buffers are mainly generated with the use of static methods in a WinRT class CryptographicBuffer available as part of the namespace previously mentioned. private string DeriveAuthToken(string resource, string httpMethod, string timestamp) { var stringToSign = string.Format("{0}\n" + "\n" + "\n" + "\n" + "x-amz-date:{1}\n" + "/{2}/", httpMethod, timestamp, resource); var algorithm = MacAlgorithmProvider.OpenAlgorithm("HMAC_SHA1"); var keyMaterial = CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(this.secret)); var hmacKey = algorithm.CreateKey(keyMaterial); var signature = CryptographicEngine.Sign( hmacKey, CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(stringToSign)) ); return CryptographicBuffer.EncodeToBase64String(signature); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The algorithm that determines the information or content you need to use for generating the signature is very well described as part of the AWS documentation. In this case, this method is generating a signature required for creating a new bucket. A HmacSha1 hash is computed using a secret or symetric key provided by AWS in the management console. 2. Sending an Http Request to the S3 service WinRT also ships with the System.Net.Http.HttpClient that was first introduced some months ago with ASP.NET Web API. This client provides a rich interface on top the traditional WebHttpRequest class, and also solves some of limitations found in this last one. There are a few things that don't work with a raw WebHttpRequest such as setting the Host header, which is something absolutely required for consuming S3. Also, HttpClient is more friendly for doing unit tests, as it receives a HttpMessageHandler as part of the constructor that can fake to emulate a real http call. This is how the code for consuming the service with HttpClient looks like, public async Task<S3Response> CreateBucket(string name, string region = null, params string[] acl) { var timestamp = string.Format("{0:r}", DateTime.UtcNow); var auth = DeriveAuthToken(name, "PUT", timestamp); var request = new HttpRequestMessage(HttpMethod.Put, "http://s3.amazonaws.com/"); request.Headers.Host = string.Format("{0}.s3.amazonaws.com", name); request.Headers.TryAddWithoutValidation("Authorization", "AWS " + this.key + ":" + auth); request.Headers.Add("x-amz-date", timestamp); var client = new HttpClient(); var response = await client.SendAsync(request); return new S3Response { Succeed = response.StatusCode == HttpStatusCode.OK, Message = (response.Content != null) ? await response.Content.ReadAsStringAsync() : null }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You will notice a few additional things in this code. By default, HttpClient validates the values for some well-know headers, and Authorization is one of them. It won't allow you to set a value with ":" on it, which is something that S3 expects. However, that's not a problem at all, as you can skip the validation by using the TryAddWithoutValidation method. Also, the code is heavily relying on the new async and await keywords to transform all the asynchronous calls into synchronous ones. In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, public class FakeHttpMessageHandler : HttpMessageHandler { HttpResponseMessage response; public FakeHttpMessageHandler(HttpResponseMessage response) { this.response = response; } protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.Threading.CancellationToken cancellationToken) { var tcs = new TaskCompletionSource<HttpResponseMessage>(); tcs.SetResult(response); return tcs.Task; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can use this handler for injecting any response while you are unit testing the code.

    Read the article

  • Consuming the Amazon S3 service from a Win8 Metro Application

    - by cibrax
    As many of the existing Http APIs for Cloud Services, AWS also provides a set of different platform SDKs for hiding many of complexities present in the APIs. While there is a platform SDK for .NET, which is open source and available in C#, that SDK does not work in Win8 Metro Applications for the changes introduced in WinRT. WinRT offers a complete different set of APIs for doing I/O operations such as doing http calls or using cryptography for signing or encrypting data, two aspects that are absolutely necessary for consuming AWS. All the I/O APIs available as part of WinRT are asynchronous, and uses the TPL model for .NET applications (HTML and JavaScript Metro applications use a model based in promises, which is similar concept).  In the case of S3, the http Authorization header is used for two purposes, authenticating clients and make sure the messages were not altered while they were in transit. For doing that, it uses a signature or hash of the message content and some of the headers using a symmetric key (That's just one of the available mechanisms). Windows Azure for example also uses the same mechanism in many of its APIs. There are three challenges that any developer working for first time in Metro will have to face to consume S3, the new WinRT APIs, the asynchronous nature of them and the complexity introduced for generating the Authorization header. Having said that, I decided to write this post with some of the gotchas I found myself trying to consume this Amazon service. 1. Generating the signature for the Authorization header All the cryptography APIs in WinRT are available under Windows.Security.Cryptography namespace. Many of operations available in these APIs uses the concept of buffers (IBuffer) for representing a chunk of binary data. As you will see in the example below, these buffers are mainly generated with the use of static methods in a WinRT class CryptographicBuffer available as part of the namespace previously mentioned. private string DeriveAuthToken(string resource, string httpMethod, string timestamp) { var stringToSign = string.Format("{0}\n" + "\n" + "\n" + "\n" + "x-amz-date:{1}\n" + "/{2}/", httpMethod, timestamp, resource); var algorithm = MacAlgorithmProvider.OpenAlgorithm("HMAC_SHA1"); var keyMaterial = CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(this.secret)); var hmacKey = algorithm.CreateKey(keyMaterial); var signature = CryptographicEngine.Sign( hmacKey, CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(stringToSign)) ); return CryptographicBuffer.EncodeToBase64String(signature); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The algorithm that determines the information or content you need to use for generating the signature is very well described as part of the AWS documentation. In this case, this method is generating a signature required for creating a new bucket. A HmacSha1 hash is computed using a secret or symetric key provided by AWS in the management console. 2. Sending an Http Request to the S3 service WinRT also ships with the System.Net.Http.HttpClient that was first introduced some months ago with ASP.NET Web API. This client provides a rich interface on top the traditional WebHttpRequest class, and also solves some of limitations found in this last one. There are a few things that don't work with a raw WebHttpRequest such as setting the Host header, which is something absolutely required for consuming S3. Also, HttpClient is more friendly for doing unit tests, as it receives a HttpMessageHandler as part of the constructor that can fake to emulate a real http call. This is how the code for consuming the service with HttpClient looks like, public async Task<S3Response> CreateBucket(string name, string region = null, params string[] acl) { var timestamp = string.Format("{0:r}", DateTime.UtcNow); var auth = DeriveAuthToken(name, "PUT", timestamp); var request = new HttpRequestMessage(HttpMethod.Put, "http://s3.amazonaws.com/"); request.Headers.Host = string.Format("{0}.s3.amazonaws.com", name); request.Headers.TryAddWithoutValidation("Authorization", "AWS " + this.key + ":" + auth); request.Headers.Add("x-amz-date", timestamp); var client = new HttpClient(); var response = await client.SendAsync(request); return new S3Response { Succeed = response.StatusCode == HttpStatusCode.OK, Message = (response.Content != null) ? await response.Content.ReadAsStringAsync() : null }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You will notice a few additional things in this code. By default, HttpClient validates the values for some well-know headers, and Authorization is one of them. It won't allow you to set a value with ":" on it, which is something that S3 expects. However, that's not a problem at all, as you can skip the validation by using the TryAddWithoutValidation method. Also, the code is heavily relying on the new async and await keywords to transform all the asynchronous calls into synchronous ones. In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, public class FakeHttpMessageHandler : HttpMessageHandler { HttpResponseMessage response; public FakeHttpMessageHandler(HttpResponseMessage response) { this.response = response; } protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.Threading.CancellationToken cancellationToken) { var tcs = new TaskCompletionSource<HttpResponseMessage>(); tcs.SetResult(response); return tcs.Task; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can use this handler for injecting any response while you are unit testing the code.

    Read the article

  • "Brute force attempt" on sending multiple emails

    - by bretddog
    While testing to send multiple emails, I successfully sent about 100 emails (with a 20KB pdf attachment), to the same email-address (my own), and they were all received. But on next attempt, my cPanel account was blocked, due to a "brute force attempt". Are there any special precautions I need to take when sending bulk emails? I simply looped through below code without pause for each email. What type of alert could that give on the email server, and how should I avoid it? client = New SmtpClient(smtp, Convert.ToInt32(port)) AddHandler client.SendCompleted, AddressOf OnAsyncSendComplete client.Credentials = New System.Net.NetworkCredential(usn, psw) client.SendAsync(mail, token) Should I wait for SendComplete event for each email before sending the next?

    Read the article

  • HttpRequest.BeginWebRequest not executing asynchronously

    - by Shawn Simon
    I have the following code: Private Function CreateRequest() As HttpWebRequest Dim request As HttpWebRequest = HttpWebRequest.Create(_url) request.Method = "POST" request.ContentType = "application/x-www-form-urlencoded" Dim postData As String = String.Join("&", GetPostData().Select(Function(s) String.Format("{0}={1}", s.Key, HttpUtility.UrlEncode(s.Value))).ToArray) Dim data As Byte() = (New ASCIIEncoding).GetBytes(postData) request.Timeout = _maxTimeoutSeconds * 1000 Dim stream = request.GetRequestStream stream.Write(data, 0, data.Length) stream.Close() Return request End Function Public Sub SendAsync(ByVal callback As Action(Of ResponseBase)) Dim request = CreateRequest() _attemptCount += 1 Dim reqID As Integer If _loggingContext IsNot Nothing Then Try reqID = Log.NotesRequest(_url.ToString, GetPostData, _loggingContext) Catch ex As Exception ErrorTracker.LogError(ex) End Try End If Dim responseState As New ResponseState responseState.LoggedNotesRequestID = reqID responseState.Request = request responseState.Callback = callback Dim response = request.BeginGetResponse(New AsyncCallback(AddressOf RespCallback), responseState) End Sub Private Sub RespCallback(ByVal ar As IAsyncResult) Dim responseState As ResponseState = CType(ar.AsyncState, ResponseState) ' Process response... I set up the request to go to a mock server which sleeps for 30 seconds. When I call BeginGetResponse, the application just waits at that line of code for the response. I want it to carry on with the app, and then just run the callback whenever it finishes. This code is run from a web page, and my callback just logs the response and sends an email. I don't want to use to have to wait for the response.

    Read the article

  • Sending a list of mails with SmtpClient

    - by Malcolm Frexner
    I use SendCompletedEventHandler of SmtpClient when sending a list of emails. The SendCompletedEventHandler is only called when have already sent all emails in the list. I expexted, that SendCompletedEventHandler is called one an email is send. Is there something wrong in my code? public void SendAllNewsletters(List<string> recipients) { string mailText = "My Tex"; foreach(string recipient in recipients) { //if this loop takes 10min then the first call to //SendCompletedCallback is after 10min SendNewsletter(mailText,recipient); } } public bool SendNewsletter(string mailText , string emailaddress) { SmtpClient sc = new SmtpClient(_smtpServer, _smtpPort); System.Net.NetworkCredential SMTPUserInfo = new System.Net.NetworkCredential(_smtpuser, _smtppassword); sc.Credentials = SMTPUserInfo; sc.SendCompleted += new SendCompletedEventHandler(SendCompletedCallback); MailMessage mm = null; mm = new MailMessage(mailText, emailaddress); mm.IsBodyHtml = true; mm.Priority = MailPriority.Normal; mm.Subject = "Something"; mm.Body = "Something"; mm.SubjectEncoding = Encoding.UTF8; mm.BodyEncoding = Encoding.UTF8; //Mail string userState = emailaddress; sc.SendAsync(mm, userState); return true; } public void SendCompletedCallback(object sender, AsyncCompletedEventArgs e) { // Get the unique identifier for this asynchronous operation. String token = (string)e.UserState; if (e.Error != null) { _news.SetNewsletterEmailsisSent(e.UserState.ToString(), _newslettername, false, e.Error.Message); } else { _news.SetNewsletterEmailsisSent(e.UserState.ToString(), _newslettername, true, string.Empty); } }

    Read the article

  • Doing unit and integration tests with the Web API HttpClient

    - by cibrax
    One of the nice things about the new HttpClient in System.Net.Http is the support for mocking responses or handling requests in a http server hosted in-memory. While the first option is useful for scenarios in which we want to test our client code in isolation (unit tests for example), the second one enables more complete integration testing scenarios that could include some more components in the stack such as model binders or message handlers for example.   The HttpClient can receive a HttpMessageHandler as argument in one of its constructors. public class HttpClient : HttpMessageInvoker { public HttpClient(); public HttpClient(HttpMessageHandler handler); public HttpClient(HttpMessageHandler handler, bool disposeHandler); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } For the first scenario, you can create a new HttpMessageHandler that fakes the response, which you can use in your unit test. The only requirement is that you somehow inject an HttpClient with this custom handler in the client code. public class FakeHttpMessageHandler : HttpMessageHandler { HttpResponseMessage response; public FakeHttpMessageHandler(HttpResponseMessage response) { this.response = response; } protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.Threading.CancellationToken cancellationToken) { var tcs = new TaskCompletionSource<HttpResponseMessage>(); tcs.SetResult(response); return tcs.Task; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In an unit test, you can do something like this. var fakeResponse = new HttpResponse(); var fakeHandler = new FakeHttpMessageHandler(fakeResponse); var httpClient = new HttpClient(fakeHandler); var customerService = new CustomerService(httpClient); // Do something // Asserts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } CustomerService in this case is the class under test, and the one that receives an HttpClient initialized with our fake handler. For the second scenario in integration tests, there is a In-Memory host “System.Web.Http.HttpServer” that also derives from HttpMessageHandler and you can use with a HttpClient instance in your test. This has been discussed already in these two great posts from Pedro and Filip. 

    Read the article

  • Help with Silverlight Sockets and Message delivery

    - by pixel3cs
    There are 4 months since I stopped developing my Silverlight Multiplayer Chess game. The problem was a bug wich I couldn't reproduce. Sice I got some free time this week I managed to discover the problem and I am now able to reproduce the bug. It seems that if I send 10 messages from client, one after another, with no delay between them, just like in the below example // when I press Enter, the client will 10 messages with no delay between them private void textBox_KeyDown(object sender, KeyEventArgs e) { if (e.Key == Key.Enter && textBox.Text.Length > 0) { for (int i = 0; i < 10; i++) { MessageBuilder mb = new MessageBuilder(); mb.Writer.Write((byte)GameCommands.NewChatMessageInTable); mb.Writer.Write(string.Format("{0}{2}: {1}", ClientVars.PlayerNickname, textBox.Text, i)); SendChatMessageEvent(mb.GetMessage()); //System.Threading.Thread.Sleep(100); } textBox.Text = string.Empty; } } // the method used by client to send a message to server public void SendData(Message message) { if (socket.Connected) { SocketAsyncEventArgs myMsg = new SocketAsyncEventArgs(); myMsg.RemoteEndPoint = socket.RemoteEndPoint; byte[] buffer = message.Buffer; myMsg.SetBuffer(buffer, 0, buffer.Length); socket.SendAsync(myMsg); } else { string err = "Server does not respond. You are disconnected."; socket.Close(); uiContext.Post(this.uiClient.ProcessOnErrorData, err); } } // the method used by server to receive data from client private void OnDataReceived(IAsyncResult async) { ClientSocketPacket client = async.AsyncState as ClientSocketPacket; int count = 0; try { if (client.Socket.Connected) count = client.Socket.EndReceive(async); // THE PROBLEM IS HERE // IF SERVER WAS RECEIVE ALL MESSAGES SEPARATELY, ONE BY ONE, THE COUNT // WAS ALWAYS 15, BUT BECAUSE THE SERVER RECEIVE 3 MESSAGES IN 1, THE COUNT // IS SOMETIME 45 } catch { HandleException(client); } client.MessageStream.Write(client.Buffer, 0, count); Message message; while (client.MessageStream.Read(out message)) { message.Tag = client; ThreadPool.QueueUserWorkItem(new WaitCallback(this.processingThreadEvent.ServerGotData), message); totalReceivedBytes += message.Buffer.Length; } try { if (client.Socket.Connected) client.Socket.BeginReceive(client.Buffer, 0, client.Buffer.Length, 0, new AsyncCallback(OnDataReceived), client); } catch { HandleException(client); } } there are sent only 3 big messages, and every big message contain 3 or 4 small messages. This is not the behavior I want. If I put a 100 milliseconds delay between message delivery, everything is work fine, but in a real world scenario users can send messages to server even at 1 millisecond between them. Are there any settings to be done in order to make the client send only one message at a time, or Even if I receive 3 messages in 1, are they full messages all the time (I dont't want to receive 2.5 messages in one big message) ? because if they are, I can read them and treat this new situation

    Read the article

1