Search Results

Search found 11 results on 1 pages for 'serviceknowntype'.

Page 1/1 | 1 

  • Understanding ServiceKnownType in WCF

    - by SLC
    I am having a little trouble understanding ServiceKnownType in WCF. Taken from this blog, the following code does not work: [DataContract(Namespace = “http://mycompany.com/”)] public class Shape{…} [DataContract(Namespace = “http://mycompany.com/”)] public class Circle : Shape {…} [ServiceContract] public interface IMyServer { [OperationContract] bool AddShape(Shape shape); } . IMyServer client = new ChannelFactory<IMyServer>(binding, endPoint).CreateChannel(); client.AddShape(new Circle()); The reason it doesn't work is because you are trying to add a circle, but the servicecontract only allows a Shape. You are supposed to do something with knowntypes, but I am a bit confused about how that works. Since that code is in the service, why doesn't it know automatically that a Circle is derived from Shape? Additionally, what does ServiceKnownType actually do? When ServiceKnownType is put below the DataContract, apparently that makes it work. I am guessing it says hey, this particular object type called Shape can also be a Circle. I am having trouble understanding why it would do it this way around, because if you add a new type like Square you are going to have to add that too, wouldn't it make sense if it cannot infer it, to put the KnownType onto the Square rather than the Shape? So the Square says hey, I am a Shape, and you don't have to fiddle with the Shape class?

    Read the article

  • What is the difference in WCF when using KnownType and ServiceKnownType?

    - by Paul Speranza
    I have a service that returns an array of animal but the list can contain cats, dogs, etc, which all extend animal. I know I need to use either the KnownType or ServiceKnownType attribute, and on the entity class or the service class, respectively. What is the difference between the 2 attributes? I prefer the ServiceKnownType because it is applied on the service, exactly where it is needed and called for, as opposed to KnownType which is applied on my entity. To me applying it on the entity class means knowing too far ahead how my entity class is being used. For now I have it on my entity and it works like a charm, but I am looking for guidance here as to best practices and usefullness. Thanks, Paul Speranza

    Read the article

  • Applying ServiceKnownTypeAttribute to WCF service with Spring

    - by avidgoffer
    I am trying to apply the ServiceKnownTypeAttribute to my WCF Service but keep getting the error below my config. Does anyone have any ideas? <object id="HHGEstimating" type="Spring.ServiceModel.ServiceExporter, Spring.Services"> <property name="TargetName" value="HHGEstimatingHelper"/> <property name="Name" value="HHGEstimating"/> <property name="Namespace" value="http://www.igcsoftware.com/HHGEstimating"/> <property name="TypeAttributes"> <list> <ref local="wcfErrorBehavior"/> <ref local="wcfSilverlightFaultBehavior"/> <object type="System.ServiceModel.ServiceKnownTypeAttribute, System.ServiceModel"> <constructor-arg name="type" value="IGCSoftware.HHG.Business.UserControl.AtlasUser, IGCSoftware.HHG.Business"/> </object> </list> </property> Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: Spring.Objects.Factory.ObjectCreationException: Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [ObjectCreationException: Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'] Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveInnerObjectDefinition(String name, String innerObjectName, String argumentName, IObjectDefinition definition, Boolean singletonOwner) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:300 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolvePropertyValue(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:150 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveValueIfNecessary(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:112 Spring.Objects.Factory.Config.ManagedList.Resolve(String objectName, IObjectDefinition definition, String propertyName, ManagedCollectionElementResolver resolver) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Config\ManagedList.cs:126 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolvePropertyValue(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:201 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveValueIfNecessary(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:112 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.ApplyPropertyValues(String name, RootObjectDefinition definition, IObjectWrapper wrapper, IPropertyValues properties) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:373 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.PopulateObject(String name, RootObjectDefinition definition, IObjectWrapper wrapper) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:563 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.ConfigureObject(String name, RootObjectDefinition definition, IObjectWrapper wrapper) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:1844 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.InstantiateObject(String name, RootObjectDefinition definition, Object[] arguments, Boolean allowEagerCaching, Boolean suppressConfigure) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:918 Spring.Objects.Factory.Support.AbstractObjectFactory.CreateAndCacheSingletonInstance(String objectName, RootObjectDefinition objectDefinition, Object[] arguments) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractObjectFactory.cs:2120 Spring.Objects.Factory.Support.AbstractObjectFactory.GetObjectInternal(String name, Type requiredType, Object[] arguments, Boolean suppressConfigure) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractObjectFactory.cs:2046 Spring.Objects.Factory.Support.DefaultListableObjectFactory.PreInstantiateSingletons() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\DefaultListableObjectFactory.cs:505 Spring.Context.Support.AbstractApplicationContext.Refresh() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\AbstractApplicationContext.cs:911 _dynamic_Spring.Context.Support.XmlApplicationContext..ctor(Object[] ) +197 Spring.Reflection.Dynamic.SafeConstructor.Invoke(Object[] arguments) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Reflection\Dynamic\DynamicConstructor.cs:116 Spring.Context.Support.RootContextInstantiator.InvokeContextConstructor(ConstructorInfo ctor) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:550 Spring.Context.Support.ContextInstantiator.InstantiateContext() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:494 Spring.Context.Support.ContextHandler.InstantiateContext(IApplicationContext parentContext, Object configContext, String contextName, Type contextType, Boolean caseSensitive, String[] resources) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:330 Spring.Context.Support.ContextHandler.Create(Object parent, Object configContext, XmlNode section) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:280 [ConfigurationErrorsException: Error creating context 'spring.root': Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'] System.Configuration.BaseConfigurationRecord.EvaluateOne(String[] keys, SectionInput input, Boolean isTrusted, FactoryRecord factoryRecord, SectionRecord sectionRecord, Object parentResult) +202 System.Configuration.BaseConfigurationRecord.Evaluate(FactoryRecord factoryRecord, SectionRecord sectionRecord, Object parentResult, Boolean getLkg, Boolean getRuntimeObject, Object& result, Object& resultRuntimeObject) +1061 System.Configuration.BaseConfigurationRecord.GetSectionRecursive(String configKey, Boolean getLkg, Boolean checkPermission, Boolean getRuntimeObject, Boolean requestIsHere, Object& result, Object& resultRuntimeObject) +1431 System.Configuration.BaseConfigurationRecord.GetSection(String configKey, Boolean getLkg, Boolean checkPermission) +56 System.Configuration.BaseConfigurationRecord.GetSection(String configKey) +8 System.Web.Configuration.HttpConfigurationSystem.GetApplicationSection(String sectionName) +45 System.Web.Configuration.HttpConfigurationSystem.GetSection(String sectionName) +49 System.Web.Configuration.HttpConfigurationSystem.System.Configuration.Internal.IInternalConfigSystem.GetSection(String configKey) +6 System.Configuration.ConfigurationManager.GetSection(String sectionName) +78 Spring.Util.ConfigurationUtils.GetSection(String sectionName) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Util\ConfigurationUtils.cs:69 Spring.Context.Support.ContextRegistry.InitializeContextIfNeeded() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextRegistry.cs:340 Spring.Context.Support.ContextRegistry.GetContext() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextRegistry.cs:206 Spring.ServiceModel.Activation.ServiceHostFactory.CreateServiceHost(String reference, Uri[] baseAddresses) in l:\projects\spring-net\trunk\src\Spring\Spring.Services\ServiceModel\Activation\ServiceHostFactory.cs:66 System.ServiceModel.HostingManager.CreateService(String normalizedVirtualPath) +11687036 System.ServiceModel.HostingManager.ActivateService(String normalizedVirtualPath) +42 System.ServiceModel.HostingManager.EnsureServiceAvailable(String normalizedVirtualPath) +479 [ServiceActivationException: The service '/HHGEstimating.svc' cannot be activated due to an exception during compilation. The exception message is: Error creating context 'spring.root': Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'.] System.ServiceModel.AsyncResult.End(IAsyncResult result) +11592858 System.ServiceModel.Activation.HostedHttpRequestAsyncResult.End(IAsyncResult result) +194 System.ServiceModel.Activation.HostedHttpRequestAsyncResult.ExecuteSynchronous(HttpApplication context, Boolean flowContext) +176 System.ServiceModel.Activation.HttpModule.ProcessRequest(Object sender, EventArgs e) +275 System.Web.SyncEventExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +68 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +75

    Read the article

  • AutoMapper MappingFunction from Source Type of NameValueCollection

    - by REA_ANDREW
    I have had a situation arise today where I need to construct a complex type from a source of a NameValueCollection.  A little while back I submitted a patch for the Agatha Project to include REST (JSON and XML) support for the service contract.  I realized today that as useful as it is, it did not actually support true REST conformance, as REST should support GET so that you can use JSONP from JavaScript directly meaning you can query cross domain services.  My original implementation for POX and JSON used the POST method and this immediately rules out JSONP as from reading, JSONP only works with GET Requests. This then raised another issue.  The current operation contract of Agatha and one of its main benefits is that you can supply an array of Request objects in a single request, limiting the about of server requests you need to make.  Now, at the present time I am thinking that this will not be the case for the REST imlementation but will yield the benefits of the fact that : The same Request objects can be used for SOAP and RST (POX, JSON) The construct of the JavaScript functions will be simpler and more readable It will enable the use of JSONP for cross domain REST Services The current contract for the Agatha WcfRequestProcessor is at time of writing the following: [ServiceContract] public interface IWcfRequestProcessor { [OperationContract(Name = "ProcessRequests")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] Response[] Process(params Request[] requests); [OperationContract(Name = "ProcessOneWayRequests", IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] void ProcessOneWayRequests(params OneWayRequest[] requests); }   My current proposed solution, and at the very early stages of my concept is as follows: [ServiceContract] public interface IWcfRestJsonRequestProcessor { [OperationContract(Name="process")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] [WebGet(UriTemplate = "process/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] Response[] Process(string name, NameValueCollection parameters); [OperationContract(Name="processoneway",IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [WebGet(UriTemplate = "process-one-way/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] void ProcessOneWayRequests(string name, NameValueCollection parameters); }   Now this part I have not yet implemented, it is the preliminart step which I have developed which will allow me to take the name of the Request Type and the NameValueCollection and construct the complex type which is that of the Request which I can then supply to a nested instance of the original IWcfRequestProcessor  and work as it should normally.  To give an example of some of the urls which you I envisage with this method are: http://www.url.com/service.svc/json/process/getweather/?location=london http://www.url.com/service.svc/json/process/getproductsbycategory/?categoryid=1 http://www.url.om/service.svc/json/process/sayhello/?name=andy Another reason why my direction has gone to a single request for the REST implementation is because of restrictions which are imposed by browsers on the length of the url.  From what I have read this is on average 2000 characters.  I think that this is a very acceptable usage limit in the context of using 1 request, but I do not think this is acceptable for accommodating multiple requests chained together.  I would love to be corrected on that one, I really would but unfortunately from what I have read I have come to the conclusion that this is not the case. The mapping function So, as I say this is just the first pass I have made at this, and I am not overly happy with the try catch for detecting types without default constructors.  I know there is a better way but for the minute, it escapes me.  I would also like to know the correct way for adding mapping functions and not using the anonymous way that I have used.  To achieve this I have used recursion which I am sure is what other mapping function use. As you do have to go as deep as the complex type is. public static object RecurseType(NameValueCollection collection, Type type, string prefix) { try { var returnObject = Activator.CreateInstance(type); foreach (var property in type.GetProperties()) { foreach (var key in collection.AllKeys) { if (String.IsNullOrEmpty(prefix) || key.Length > prefix.Length) { var propertyNameToMatch = String.IsNullOrEmpty(prefix) ? key : key.Substring(property.Name.IndexOf(prefix) + prefix.Length + 1); if (property.Name == propertyNameToMatch) { property.SetValue(returnObject, Convert.ChangeType(collection.Get(key), property.PropertyType), null); } else if(property.GetValue(returnObject,null) == null) { property.SetValue(returnObject, RecurseType(collection, property.PropertyType, String.Concat(prefix, property.PropertyType.Name)), null); } } } } return returnObject; } catch (MissingMethodException) { //Quite a blunt way of dealing with Types without default constructor return null; } }   Another thing is performance, I have not measured this in anyway, it is as I say the first pass, so I hope this can be the start of a more perfected implementation.  I tested this out with a complex type of three levels, there is no intended logical meaning to the properties, they are simply for the purposes of example.  You could call this a spiking session, as from here on in, now I know what I am building I would take a more TDD approach.  OK, purists, why did I not do this from the start, well I didn’t, this was a brain dump and now I know what I am building I can. The console test and how I used with AutoMapper is as follows: static void Main(string[] args) { var collection = new NameValueCollection(); collection.Add("Name", "Andrew Rea"); collection.Add("Number", "1"); collection.Add("AddressLine1", "123 Street"); collection.Add("AddressNumber", "2"); collection.Add("AddressPostCodeCountry", "United Kingdom"); collection.Add("AddressPostCodeNumber", "3"); AutoMapper.Mapper.CreateMap<NameValueCollection, Person>() .ConvertUsing(x => { return(Person) RecurseType(x, typeof(Person), null); }); var person = AutoMapper.Mapper.Map<NameValueCollection, Person>(collection); Console.WriteLine(person.Name); Console.WriteLine(person.Number); Console.WriteLine(person.Address.Line1); Console.WriteLine(person.Address.Number); Console.WriteLine(person.Address.PostCode.Country); Console.WriteLine(person.Address.PostCode.Number); Console.ReadLine(); }   Notice the convention that I am using and that this method requires you do use.  Each property is prefixed with the constructed name of its parents combined.  This is the convention used by AutoMapper and it makes sense. I can also think of other uses for this including using with ASP.NET MVC ModelBinders for creating a complex type from the QueryString which is itself is a NameValueCollection. Hope this is of some help to people and I would welcome any code reviews you could give me. References: Agatha : http://code.google.com/p/agatha-rrsl/ AutoMapper : http://automapper.codeplex.com/   Cheers for now, Andrew   P.S. I will have the proposed solution for a more complete REST implementation for AGATHA very soon. 

    Read the article

  • Object hierarchy returned by WCF Service is different than expected

    - by robalot
    Good Day Everyone... My understanding may be wrong, but I thought once you applied the correct attributes the DataContractSerializer would render fully-qualified instances back to the caller. The code runs and the objects return. But oddly enough, once I look at the returned objects I noticed the namespacing disappeared and the object-hierarchy being exposed through the (web applications) service reference seems to become "flat" (somehow). Now, I expect this from a web-service…but not through WFC. Of course, my understanding of what WFC can do may be wrong. ...please keep in mind I'm still experimenting with all this. So my questions are… Q: Can I do something within the WFC Service to force the namespacing to render through the (service reference) data client proxy? Q: Or perhaps, am I (merely) consuming the service incorrectly? Q: Is this even possible? The service code looks like… [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)] public class DataService : IFishData { public C1FE GetC1FE(Int32 key) { //… more stuff here … } public Project GetProject(Int32 key) { //… more stuff here … } } [ServiceContract] [ServiceKnownType(typeof(wcfFISH.StateManagement.C1FE.New))] [ServiceKnownType(typeof(wcfFISH.StateManagement.Project.New))] public interface IFishData { [OperationContract] C1FE GetC1FE(Int32 key); [OperationContract] Project GetProject(Int32 key); } [DataContract] [KnownType(typeof(wcfFISH.StateManagement.ObjectState))] public class Project { [DataMember] public wcfFISH.StateManagement.ObjectState ObjectState { get; set; } //… more stuff here … } [DataContract] KnownType(typeof(wcfFISH.StateManagement.ObjectState))] public class C1FE { [DataMember] public wcfFISH.StateManagement.ObjectState ObjectState { get; set; } //… more stuff here … } [DataContract(Namespace = "wcfFISH.StateManagement")] [KnownType(typeof(wcfFISH.StateManagement.C1FE.New))] [KnownType(typeof(wcfFISH.StateManagement.Project.New))] public abstract class ObjectState { //… more stuff here … } [DataContract(Namespace = "wcfFISH.StateManagement.C1FE", Name="New")] [KnownType(typeof(wcfFISH.StateManagement.ObjectState))] public class New : ObjectState { //… more stuff here … } [DataContract(Namespace = "wcfFISH.StateManagement.Project", Name = "New")] [KnownType(typeof(wcfFISH.StateManagement.ObjectState))] public class New : ObjectState { //… more stuff here … } The web application code looks like… public partial class Fish_Invite : BaseForm { protected void btnTest_Click(object sender, EventArgs e) { Project project = new Project(); project.Get(base.ProjectKey, base.AsOf); mappers.Project mapProject = new mappers.Project(); srFish.Project fishProject = new srFish.Project(); srFish.FishDataClient fishService = new srFish.FishDataClient(); mapProject.MapTo(project, fishProject); fishProject = fishService.AddProject(fishProject, IUser.UserName); project = null; } } In case I’m not being clear… The issue arises as there is a difference in (the name spacing) that I expect to see (returned) is different from what is actually returned. fishProject.ObjectState should look like... srFish.StateManagement.Project.New fishC1FE.ObjectState should look like... srFish.StateManagement.C1FE.New fishProject.ObjectState looks like... srFish.New1 fishC1FE.ObjectState looks like... srFish.New …“Help me Obi-Wan Kenobi, you’re my only hope!”

    Read the article

  • Serializing data using IEnumerable<T> with WebGet

    - by Jim
    possible duplicate: Cannot serialize parameter of type ‘System.Linq.Enumerable… ’ when using WCF, LINQ, JSON Hi, If my method signiature looks like this, it works fine. [WebGet] MyClass[] WebMethod() If the signiature looks like this [WebGet] IEnumerable<T> WebMethod() I get the following error: Cannot serialize parameter of type 'X.Y.Z.T+<WebMethod>d__2c' (for operation 'WebMethod', contract 'IService') because it is not the exact type 'System.Collections.Generic.IEnumerable`1[X.Y.Z.T]' in the method signature and is not in the known types collection. In order to serialize the parameter, add the type to the known types collection for the operation using ServiceKnownTypeAttribute. I have tried adding. ServiceKnownType(typeof(IEnumerable)) Same error. Is this a bug in 2010 beta 2, or is this likely to be correct going forward? Thanks

    Read the article

  • WCF DataContract Upcasting

    - by Jarred Froman
    I'm trying to take a datacontract object that I received on the server, do some manipulation on it and then return an upcasted version of it however it doesn't seem to be working. I can get it to work by using the KnownType or ServiceKnownType attributes, but I don't want to roundtrip all of the data. Below is an example: [DataContract] public class MyBaseObject { [DataMember] public int Id { get; set; } } [DataContract] public class MyDerivedObject : MyBaseObject { [DataMember] public string Name { get; set; } } [ServiceContract(Namespace = "http://My.Web.Service")] public interface IServiceProvider { [OperationContract] List<MyBaseObject> SaveMyObjects(List<MyDerivedObject> myDerivedObjects); } public class ServiceProvider : IServiceProvider { public List<MyBaseObject> SaveMyObjects(List<MyDerivedObject> myDerivedObjects) { ... do some work ... myDerivedObjects[0].Id = 123; myDerivedObjects[1].Id = 456; myDerivedObjects[2].Id = 789; ... do some work ... return myDerivedObjects.Cast<MyBaseObject>().ToList(); } } Anybody have any ideas how to get this to work without having to recreate new objects or using the KnownType attributes?

    Read the article

  • Testing for interface implementation in WCF/SOA

    - by rabidpebble
    I have a reporting service that implements a number of reports. Each report requires certain parameters. Groups of logically related parameters are placed in an interface, which the report then implements: [ServiceContract] [ServiceKnownType(typeof(ExampleReport))] public interface IService1 { [OperationContract] void Process(IReport report); } public interface IReport { string PrintedBy { get; set; } } public interface IApplicableDateRangeParameter { DateTime StartDate { get; set; } DateTime EndDate { get; set; } } [DataContract] public abstract class Report : IReport { [DataMember] public string PrintedBy { get; set; } } [DataContract] public class ExampleReport : Report, IApplicableDateRangeParameter { [DataMember] public DateTime StartDate { get; set; } [DataMember] public DateTime EndDate { get; set; } } The problem is that the WCF DataContractSerializer does not expose these interfaces in my client library, thus I can't write the generic report generating front-end that I plan to. Can WCF expose these interfaces, or is this a limitation of the serializer? If the latter case, then what is the canonical approach to this OO pattern? I've looked into NetDataContractSerializer but it doesn't seem to be an officially supported implementation (which means it's not an option in my project). Currently I've resigned myself to including the interfaces in a library that is common between the service and the client application, but this seems like an unnecessary extra dependency to me. Surely there is a more straightforward way to do this? I was under the impression that WCF was supposed to replace .NET remoting; checking if an object implements an interface seems to be one of the most basic features required of a remoting interface?

    Read the article

  • Can't get KnownType to work with WCF

    - by Kelly Cline
    I have an interface and a class defined in separate assemblies, like this: namespace DataInterfaces { public interface IPerson { string Name { get; set; } } } namespace DataObjects { [DataContract] [KnownType( typeof( IPerson ) ) ] public class Person : IPerson { [DataMember] public string Name { get; set; } } } This is my Service Interface: public interface ICalculator { [OperationContract] IPerson GetPerson ( ); } When I update my Service Reference for my Client, I get this in the Reference.cs: public object GetPerson() { return base.Channel.GetPerson(); I was hoping that KnownType would give me IPerson instead of "object" here. I have also tried [KnownType( typeof( Person ) ) ] with the same result. I have control of both client and server, so I have my DataObjects (where Person is defined) and DataInterfaces (where IPerson is defined) assemblies in both places. Is there something obvious I am missing? I thought KnownType was the answer to being able to use interfaces with WCF. ----- FURTHER INFORMATION ----- I removed the KnownType from the Person class and added [ServiceKnownType( typeof( Person ) ) ] to my service interface, as suggested by Richard. The client-side proxy still looks the same, public object GetPerson() { return base.Channel.GetPerson(); , but now it doesn't blow up. The client just has an "object", though, so it has to cast it to IPerson before it is useful. var person = client.GetPerson ( ); Console.WriteLine ( ( ( IPerson ) person ).Name );

    Read the article

  • WCF: Configuring Known Types

    - by jerbersoft
    I want to know as to how to configure known types in WCF. For example, I have a Person class and an Employee class. The Employee class is a sublass of the Person class. Both class are marked with a [DataContract] attribute. I dont want to hardcode the known type of a class, like putting a [ServiceKnownType(typeof(Employee))] at the Person class so that WCF will know that Employee is a subclass of Person. Now, I added to the host's App.config the following XML configuration: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.runtime.serialization> <dataContractSerializer> <declaredTypes> <add type="Person, WCFWithNoLibrary, Version=1.0.0.0,Culture=neutral,PublicKeyToken=null"> <knownType type="Employee, WCFWithNoLibrary, Version=1.0.0.0,Culture=neutral, PublicKeyToken=null" /> </add> </declaredTypes> </dataContractSerializer> </system.runtime.serialization> <system.serviceModel> ....... </system.serviceModel> </configuration> I compiled it, run the host, added a service reference at the client and added some code and run the client. But an error occured: The formatter threw an exception while trying to deserialize the message: There was an error while trying to deserialize parameter http://www.herbertsabanal.net:person. The InnerException message was 'Error in line 1 position 247. Element 'http://www.herbertsabanal.net:person' contains data of the 'http://www.herbertsabanal.net/Data:Employee' data contract. The deserializer has no knowledge of any type that maps to this contract. Add the type corresponding to 'Employee' to the list of known types - for example, by using the KnownTypeAttribute attribute or by adding it to the list of known types passed to DataContractSerializer.'. Please see InnerException for more details. Below are the data contracts: [DataContract(Namespace="http://www.herbertsabanal.net/Data", Name="Person")] class Person { string _name; int _age; [DataMember(Name="Name", Order=0)] public string Name { get { return _name; } set { _name = value; } } [DataMember(Name="Age", Order=1)] public int Age { get { return _age; } set { _age = value; } } } [DataContract(Namespace="http://www.herbertsabanal.net/Data", Name="Employee")] class Employee : Person { string _id; [DataMember] public string ID { get { return _id; } set { _id = value; } } } Btw, I didn't use class libraries (WCF class libraries or non-WCF class libraries) for my service. I just plain coded it in the host project. I guess there must be a problem at the config file (please see config file above). Or I must be missing something. Any help would be pretty much appreciated.

    Read the article

1