Search Results

Search found 4585 results on 184 pages for 'signal analysis'.

Page 1/184 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Issues with signal handling [closed]

    - by user34790
    I am trying to actually study the signal handling behavior in multiprocess system. I have a system where there are three signal generating processes generating signals of type SIGUSR1 and SIGUSR1. I have two handler processes that handle a particular type of signal. I have another monitoring process that also receives the signals and then does its work. I have a certain issue. Whenever my signal handling processes generate a signal of a particular type, it is sent to the process group so it is received by the signal handling processes as well as the monitoring processes. Whenever the signal handlers of monitoring and signal handling processes are called, I have printed to indicate the signal handling. I was expecting a uniform series of calls for the signal handlers of the monitoring and handling processes. However, looking at the output I could see like at the beginning the monitoring and signal handling processes's signal handlers are called uniformly. However, after I could see like signal handler processes handlers being called in a burst followed by the signal handler of monitoring process being called in a burst. Here is my code and output #include <iostream> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <cstdio> #include <stdlib.h> #include <sys/ipc.h> #include <sys/shm.h> #define NUM_SENDER_PROCESSES 3 #define NUM_HANDLER_PROCESSES 4 #define NUM_SIGNAL_REPORT 10 #define MAX_SIGNAL_COUNT 100000 using namespace std; volatile int *usrsig1_handler_count; volatile int *usrsig2_handler_count; volatile int *usrsig1_sender_count; volatile int *usrsig2_sender_count; volatile int *lock_1; volatile int *lock_2; volatile int *lock_3; volatile int *lock_4; volatile int *lock_5; volatile int *lock_6; //Used only by the monitoring process volatile int monitor_count; volatile int usrsig1_monitor_count; volatile int usrsig2_monitor_count; double time_1[NUM_SIGNAL_REPORT]; double time_2[NUM_SIGNAL_REPORT]; //Used only by the main process int total_signal_count; //For shared memory int shmid; const int shareSize = sizeof(int) * (10); double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } pid_t senders[NUM_SENDER_PROCESSES]; pid_t handlers[NUM_HANDLER_PROCESSES]; pid_t reporter; void signal_catcher_1(int); void signal_catcher_2(int); void signal_catcher_int(int); void signal_catcher_monitor(int); void signal_catcher_main(int); void terminate_processes() { //Kill the child processes int status; cout << "Time up terminating the child processes" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); //Wait for the child processes to finish for(int i=0; i<NUM_SENDER_PROCESSES; i++) { waitpid(senders[i], &status, 0); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { waitpid(handlers[i], &status, 0); } waitpid(reporter, &status, 0); } int main(int argc, char *argv[]) { if(argc != 2) { cout << "Required parameters missing. " << endl; cout << "Option 1 = 1 which means run for 30 seconds" << endl; cout << "Option 2 = 2 which means run until 100000 signals" << endl; exit(0); } int option = atoi(argv[1]); pid_t pid; if(option == 2) { if(signal(SIGUSR1, signal_catcher_main) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, signal_catcher_main) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } if(signal(SIGINT, signal_catcher_int) == SIG_ERR) { perror("3"); exit(1); } /////////////////////////////////////////////////////////////////////////////////////// ////////////////////// Initializing the shared memory ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// cout << "Initializing the shared memory" << endl; if ((shmid=shmget(IPC_PRIVATE,shareSize,IPC_CREAT|0660))< 0) { perror("shmget fail"); exit(1); } usrsig1_handler_count = (int *) shmat(shmid, NULL, 0); usrsig2_handler_count = usrsig1_handler_count + 1; usrsig1_sender_count = usrsig2_handler_count + 1; usrsig2_sender_count = usrsig1_sender_count + 1; lock_1 = usrsig2_sender_count + 1; lock_2 = lock_1 + 1; lock_3 = lock_2 + 1; lock_4 = lock_3 + 1; lock_5 = lock_4 + 1; lock_6 = lock_5 + 1; //Initialize them to be zero *usrsig1_handler_count = 0; *usrsig2_handler_count = 0; *usrsig1_sender_count = 0; *usrsig2_sender_count = 0; *lock_1 = 0; *lock_2 = 0; *lock_3 = 0; *lock_4 = 0; *lock_5 = 0; *lock_6 = 0; cout << "End of initializing the shared memory" << endl; ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////// End of initializing the shared memory /////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////Registering the signal handlers/////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal handlers" << endl; for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { if((pid = fork()) == 0) { if(i%2 == 0) { struct sigaction action; action.sa_handler = signal_catcher_1; sigset_t block_mask; action.sa_flags = 0; sigaction(SIGUSR1,&action,NULL); if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1 ,SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } struct sigaction action; action.sa_handler = signal_catcher_2; action.sa_flags = 0; sigaction(SIGUSR2,&action,NULL); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { //cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } cout << "End of registering the signal handlers" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////End of registering the signal handlers ////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////Registering the monitoring process ////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the monitoring process" << endl; if((pid = fork()) == 0) { struct sigaction action; action.sa_handler = signal_catcher_monitor; sigemptyset(&action.sa_mask); sigset_t block_mask; sigemptyset(&block_mask); sigaddset(&block_mask,SIGUSR1); sigaddset(&block_mask,SIGUSR2); action.sa_flags = 0; action.sa_mask = block_mask; sigaction(SIGUSR1,&action,NULL); sigaction(SIGUSR2,&action,NULL); if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { cout << "Monitor's pid is " << pid << endl; reporter = pid; } cout << "End of registering the monitoring process" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////End of registering the monitoring process//////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Sleep to make sure that the monitor and handler processes are well initialized and ready to handle signals sleep(5); ////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////Registering the signal generators/////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal generators" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } srand(i); while(true) { int signal_id = rand()%2 + 1; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); while(__sync_lock_test_and_set(lock_4,1) != 0) { } (*usrsig1_sender_count)++; *lock_4 = 0; } else { killpg(getpgid(getpid()), SIGUSR2); while(__sync_lock_test_and_set(lock_5,1) != 0) { } (*usrsig2_sender_count)++; *lock_5=0; } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { //cout << "Registered the sender " << pid << endl; senders[i] = pid; } } //cout << "End of registering the signal generators" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////End of registering the signal generators/////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Either sleep for 30 seconds and terminate the program or if the number of signals generated reaches 10000, terminate the program if(option = 1) { sleep(90); terminate_processes(); } else { while(true) { if(total_signal_count >= MAX_SIGNAL_COUNT) { terminate_processes(); } else { sleep(0.001); } } } } void signal_catcher_1(int the_sig) { while(__sync_lock_test_and_set(lock_1,1) != 0) { } (*usrsig1_handler_count) = (*usrsig1_handler_count) + 1; cout << "Signal Handler 1 " << *usrsig1_handler_count << endl; __sync_lock_release(lock_1); } void signal_catcher_2(int the_sig) { while(__sync_lock_test_and_set(lock_2,1) != 0) { } (*usrsig2_handler_count) = (*usrsig2_handler_count) + 1; __sync_lock_release(lock_2); } void signal_catcher_main(int the_sig) { while(__sync_lock_test_and_set(lock_6,1) != 0) { } total_signal_count++; *lock_6 = 0; } void signal_catcher_int(int the_sig) { for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } void signal_catcher_monitor(int the_sig) { cout << "Monitoring process " << *usrsig1_handler_count << endl; } Here is the initial segment of output Monitoring process 0 Monitoring process 0 Monitoring process 0 Monitoring process 0 Signal Handler 1 1 Monitoring process 2 Signal Handler 1 2 Signal Handler 1 3 Signal Handler 1 4 Monitoring process 4 Monitoring process Signal Handler 1 6 Signal Handler 1 7 Monitoring process 7 Monitoring process 8 Monitoring process 8 Signal Handler 1 9 Monitoring process 9 Monitoring process 9 Monitoring process 10 Signal Handler 1 11 Monitoring process 11 Monitoring process 12 Signal Handler 1 13 Signal Handler 1 14 Signal Handler 1 15 Signal Handler 1 16 Signal Handler 1 17 Signal Handler 1 18 Monitoring process 19 Signal Handler 1 20 Monitoring process 20 Signal Handler 1 21 Monitoring process 21 Monitoring process 21 Monitoring process 22 Monitoring process 22 Monitoring process 23 Signal Handler 1 24 Signal Handler 1 25 Monitoring process 25 Signal Handler 1 27 Signal Handler 1 28 Signal Handler 1 29 Here is the segment when the signal handler processes signal handlers are called in a burst Signal Handler 1 456 Signal Handler 1 457 Signal Handler 1 458 Signal Handler 1 459 Signal Handler 1 460 Signal Handler 1 461 Signal Handler 1 462 Signal Handler 1 463 Signal Handler 1 464 Signal Handler 1 465 Signal Handler 1 466 Signal Handler 1 467 Signal Handler 1 468 Signal Handler 1 469 Signal Handler 1 470 Signal Handler 1 471 Signal Handler 1 472 Signal Handler 1 473 Signal Handler 1 474 Signal Handler 1 475 Signal Handler 1 476 Signal Handler 1 477 Signal Handler 1 478 Signal Handler 1 479 Signal Handler 1 480 Signal Handler 1 481 Signal Handler 1 482 Signal Handler 1 483 Signal Handler 1 484 Signal Handler 1 485 Signal Handler 1 486 Signal Handler 1 487 Signal Handler 1 488 Signal Handler 1 489 Signal Handler 1 490 Signal Handler 1 491 Signal Handler 1 492 Signal Handler 1 493 Signal Handler 1 494 Signal Handler 1 495 Signal Handler 1 496 Signal Handler 1 497 Signal Handler 1 498 Signal Handler 1 499 Signal Handler 1 500 Signal Handler 1 501 Signal Handler 1 502 Signal Handler 1 503 Signal Handler 1 504 Signal Handler 1 505 Signal Handler 1 506 Here is the segment when the monitoring processes signal handlers are called in a burst Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Why isn't it uniform afterwards. Why are they called in a burst?

    Read the article

  • Confusion related to sigwait in multiprocess system

    - by user34790
    I am having difficulty in understanding IPC in multiprocess system. I have this system where there are three child processes that send two types of signals to their process group. There are four types of signal handling processes responsible for a particular type of signal. There is this monitoring process which waits for both the signals and then processes accordingly. When I run this program for a while, the monitoring process doesn't seem to pick up the signal as well as the signal handling process. I could see in the log that the signal is only being generated but not handled at all. My code is given below #include <cstdlib> #include <iostream> #include <iomanip> #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <unistd.h> #include <fcntl.h> #include <cstdio> #include <stdlib.h> #include <stdio.h> #include <pthread.h> using namespace std; double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } double getinterval() { srand(time(NULL)); int r = rand()%10 + 1; double s = (double)r/100; } int count; int count_1; int count_2; double time_1[10]; double time_2[10]; pid_t senders[1]; pid_t handlers[4]; pid_t reporter; void catcher(int sig) { printf("Signal catcher called for %d",sig); } int main(int argc, char *argv[]) { void signal_catcher_int(int); pid_t pid,w; int status; if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); return 1; } if(signal(SIGUSR2 ,SIG_IGN) == SIG_ERR) { perror("2"); return 2; } if(signal(SIGINT,signal_catcher_int) == SIG_ERR) { perror("3"); return 2; } //Registering the signal handler for(int i=0; i<4; i++) { if((pid = fork()) == 0) { cout << i << endl; //struct sigaction sigact; sigset_t sigset; int sig; int result = 0; sigemptyset(&sigset); if(i%2 == 0) { if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); return 2; } sigaddset(&sigset, SIGUSR1); sigprocmask(SIG_BLOCK, &sigset, NULL); } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("2"); return 2; } sigaddset(&sigset, SIGUSR2); sigprocmask(SIG_BLOCK, &sigset, NULL); } while(true) { int result = sigwait(&sigset, &sig); if(result == 0) { cout << "The caught signal is " << sig << endl; } } exit(0); } else { cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } //Registering the monitoring process if((pid = fork()) == 0) { sigset_t sigset; int sig; int result = 0; sigemptyset(&sigset); sigaddset(&sigset, SIGUSR1); sigaddset(&sigset, SIGUSR2); sigprocmask(SIG_BLOCK, &sigset, NULL); while(true) { int result = sigwait(&sigset, &sig); if(result == 0) { cout << "The monitored signal is " << sig << endl; } else { cout << "error" << endl; } } } else { reporter = pid; } sleep(3); //Registering the signal generator for(int i=0; i<1; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); return 1; } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); return 2; } srand(time(0)); while(true) { volatile int signal_id = rand()%2 + 1; cout << "Generating the signal " << signal_id << endl; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); } else { killpg(getpgid(getpid()), SIGUSR2); } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { cout << "Registered the sender " << pid << endl; senders[i] = pid; } } while(w = wait(&status)) { cout << "Wait on PID " << w << endl; } } void signal_catcher_int(int the_sig) { //cout << "Handling the Ctrl C signal " << endl; for(int i=0; i<1; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<4; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } Any suggestions? Here is a sample of the output as well In the beginning Registerd the handler 9544 Registerd the handler 9545 1 Registerd the handler 9546 Registerd the handler 9547 2 3 0 Registered the sender 9550 Generating the signal 1 The caught signal is 10 The monitored signal is 10 The caught signal is 10 Generating the signal 1 The caught signal is 10 The monitored signal is 10 The caught signal is 10 Generating the signal 1 The caught signal is 10 The monitored signal is 10 The caught signal is 10 Generating the signal 1 The caught signal is 10 The monitored signal is 10 The caught signal is 10 Generating the signal 2 The caught signal is 12 The caught signal is 12 The monitored signal is 12 Generating the signal 2 Generating the signal 2 The caught signal is 12 The caught signal is 12 Generating the signal 1 The caught signal is 12 The monitored signal is 10 The monitored signal is 12 Generating the signal 1 Generating the signal 2 The caught signal is 12 Generating the signal 1 Generating the signal 2 10 The monitored signal is 10 The caught signal is 12 Generating the signal 1 The caught signal is 12 The monitored signal is GenThe caught signal is TheThe caught signal is 10 Generating the signal 2 Later on The monitored signal is GenThe monitored signal is 10 Generating the signal 1 Generating the signal 2 The caught signal is 10 The caught signal is 10 The caught signal is 10 The caught signal is 12 Generating the signal 1 Generating the signal 2 Generating the signal 1 Generating the signal 1 Generating the signal 2 Generating the signal 2 Generating the signal 2 Generating the signal 2 Generating the signal 2 Generating the signal 1 The caught signal is 12 The caught signal is 10 The caught signal is 10 Generating the signal 2 Generating the signal 1 Generating the signal 1 Generating the signal 2 Generating the signal 1 Generating the signal 2 Generating the signal 2 Generating the signal 2 Generating the signal 1 Generating the signal 2 Generating the signal 1 Generating the signal 2 Generating the signal 2 The caught signal is 10 Generating the signal 2 Generating the signal 1 Generating the signal 1 As you can see initially, the signal was generated and handled both by my signal handlers and monitoring processes. But later on the signal was generated a lot, but it was not quite processes in the same magnitude as before. Further I could see very less signal processing by the monitoring process Can anyone please provide some insights. What's going on?

    Read the article

  • Visual Studio 2013 Static Code Analysis in depth: What? When and How?

    - by Hosam Kamel
    In this post I'll illustrate in details the following points What is static code analysis? When to use? Supported platforms Supported Visual Studio versions How to use Run Code Analysis Manually Run Code Analysis Automatically Run Code Analysis while check-in source code to TFS version control (TFSVC) Run Code Analysis as part of Team Build Understand the Code Analysis results & learn how to fix them Create your custom rule set Q & A References What is static Rule analysis? Static Code Analysis feature of Visual Studio performs static code analysis on code to help developers identify potential design, globalization, interoperability, performance, security, and a lot of other categories of potential problems according to Microsoft's rules that mainly targets best practices in writing code, and there is a large set of those rules included with Visual Studio grouped into different categorized targeting specific coding issues like security, design, Interoperability, globalizations and others. Static here means analyzing the source code without executing it and this type of analysis can be performed through automated tools (like Visual Studio 2013 Code Analysis Tool) or manually through Code Review which already supported in Visual Studio 2012 and 2013 (check Using Code Review to Improve Quality video on Channel9) There is also Dynamic analysis which performed on executing programs using software testing techniques such as Code Coverage for example. When to use? Running Code analysis tool at regular intervals during your development process can enhance the quality of your software, examines your code for a set of common defects and violations is always a good programming practice. Adding that Code analysis can also find defects in your code that are difficult to discover through testing allowing you to achieve first level quality gate for you application during development phase before you release it to the testing team. Supported platforms .NET Framework, native (C and C++) Database applications. Support Visual Studio versions All version of Visual Studio starting Visual Studio 2013 (except Visual Studio Test Professional) check Feature comparisons Create and modify a custom rule set required Visual Studio Premium or Ultimate. How to use? Code Analysis can be run manually at any time from within the Visual Studio IDE, or even setup to automatically run as part of a Team Build or check-in policy for Team Foundation Server. Run Code Analysis Manually To run code analysis manually on a project, on the Analyze menu, click Run Code Analysis on your project or simply right click on the project name on the Solution Explorer choose Run Code Analysis from the context menu Run Code Analysis Automatically To run code analysis each time that you build a project, you select Enable Code Analysis on Build on the project's Property Page Run Code Analysis while check-in source code to TFS version control (TFSVC) Team Foundation Version Control (TFVC) provides a way for organizations to enforce practices that lead to better code and more efficient group development through Check-in policies which are rules that are set at the team project level and enforced on developer computers before code is allowed to be checked in. (This is available only if you're using Team Foundation Server) Require permissions on Team Foundation Server: you must have the Edit project-level information permission set to Allow typically your account must be part of Project Administrators, Project Collection Administrators, for more information about Team Foundation permissions check http://msdn.microsoft.com/en-us/library/ms252587(v=vs.120).aspx In Team Explorer, right-click the team project name, point to Team Project Settings, and then click Source Control. In the Source Control dialog box, select the Check-in Policy tab. Click Add to create a new check-in policy. Double-click the existing Code Analysis item in the Policy Type list to change the policy. Check or Uncheck the policy option based on the configurations you need to perform as illustrated below: Enforce check-in to only contain files that are part of current solution: code analysis can run only on files specified in solution and project configuration files. This policy guarantees that all code that is part of a solution is analyzed. Enforce C/C++ Code Analysis (/analyze): Requires that all C or C++ projects be built with the /analyze compiler option to run code analysis before they can be checked in. Enforce Code Analysis for Managed Code: Requires that all managed projects run code analysis and build before they can be checked in. Check Code analysis rule set reference on MSDN What is Rule Set? Rule Set is a group of code analysis rules like the example below where Microsoft.Design is the rule set name where "Do not declare static members on generic types" is the code analysis rule Once you configured the Analysis rule the policy will be enabled for all the team member in this project whenever a team member check-in any source code to the TFSVC the policy section will highlight the Code Analysis policy as below TFS is a very extensible platform so you can simply implement your own custom Code Analysis Check-in policy, check this link for more details http://msdn.microsoft.com/en-us/library/dd492668.aspx but you have to be aware also about compatibility between different TFS versions check http://msdn.microsoft.com/en-us/library/bb907157.aspx Run Code Analysis as part of Team Build With Team Foundation Build (TFBuild), you can create and manage build processes that automatically compile and test your applications, and perform other important functions. Code Analysis can be enabled in the Build Definition file by selecting the correct value for the build process parameter "Perform Code Analysis" Once configure, Kick-off your build definition to queue a new build, Code Analysis will run as part of build workflow and you will be able to see code analysis warning as part of build report Understand the Code Analysis results & learn how to fix them Now after you went through Code Analysis configurations and the different ways of running it, we will go through the Code Analysis result how to understand them and how to resolve them. Code Analysis window in Visual Studio will show all the analysis results based on the rule sets you configured in the project file properties, let's dig deep into what each result item contains: 1 Check ID The unique identifier for the rule. CheckId and Category are used for in-source suppression of a warning.       2 Title The title of warning message       3 Description A description of the problem or suggested fix 4 File Name File name and the line of code number which violate the code analysis rule set 5 Category The code analysis category for this error 6 Warning /Error Depend on how you configure it in the rule set the default is Warning level 7 Action Copy: copy the warning information to the clipboard Create Work Item: If you're connected to Team Foundation Server you can create a work item most probably you may create a Task or Bug and assign it for a developer to fix certain code analysis warning Suppress Message: There are times when you might decide not to fix a code analysis warning. You might decide that resolving the warning requires too much recoding in relation to the probability that the issue will arise in any real-world implementation of your code. Or you might believe that the analysis that is used in the warning is inappropriate for the particular context. You can suppress individual warnings so that they no longer appear in the Code Analysis window. Two options available: In Source inserts a SuppressMessage attribute in the source file above the method that generated the warning. This makes the suppression more discoverable. In Suppression File adds a SuppressMessage attribute to the GlobalSuppressions.cs file of the project. This can make the management of suppressions easier. Note that the SuppressMessage attribute added to GlobalSuppression.cs also targets the method that generated the warning. It does not suppress the warning globally.       Visual Studio makes it very easy to fix Code analysis warning, all you have to do is clicking on the Check Id hyperlink if you are not aware how to fix the warring and you'll be directed to MSDN online or local copy based on the configuration you did while installing Visual Studio and you will find all the information about the warring including how to fix it. Create a Custom Code Analysis Rule Set The Microsoft standard rule sets provide groups of rules that are organized by function and depth. For example, the Microsoft Basic Design Guidelines Rules and the Microsoft Extended Design Guidelines Rules contain rules that focus on usability and maintainability issues, with added emphasis on naming rules in the Extended rule set, you can create and modify a custom rule set to meet specific project needs associated with code analysis. To create a custom rule set, you open one or more standard rule sets in the rule set editor. Create and modify a custom rule set required Visual Studio Premium or Ultimate. You can check How to: Create a Custom Rule Set on MSDN for more details http://msdn.microsoft.com/en-us/library/dd264974.aspx Q & A Visual Studio static code analysis vs. FxCop vs. StyleCpp http://www.excella.com/blog/stylecop-vs-fxcop-difference-between-code-analysis-tools/ Code Analysis for SharePoint Apps and SPDisposeCheck? This post lists some of the rule set you can run specifically for SharePoint applications and how to integrate SPDisposeCheck as well. Code Analysis for SQL Server Database Projects? This post illustrate how to run static code analysis on T-SQL through SSDT ReSharper 8 vs. Visual Studio 2013? This document lists some of the features that are provided by ReSharper 8 but are missing or not as fully implemented in Visual Studio 2013. References A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext What is New in Code Analysis for Visual Studio 2013 http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/03/what-is-new-in-code-analysis-for-visual-studio-2013.aspx Analyze the code quality of Windows Store apps using Visual Studio static code analysis http://msdn.microsoft.com/en-us/library/windows/apps/hh441471.aspx [Hands-on-lab] Using Code Analysis with Visual Studio 2012 to Improve Code Quality http://download.microsoft.com/download/A/9/2/A9253B14-5F23-4BC8-9C7E-F5199DB5F831/Using%20Code%20Analysis%20with%20Visual%20Studio%202012%20to%20Improve%20Code%20Quality.docx Originally posted at "Hosam Kamel| Developer & Platform Evangelist" http://blogs.msdn.com/hkamel

    Read the article

  • Get signal names from numbers in Python

    - by Brian M. Hunt
    Is there a way to map a signal number (e.g. signal.SIGINT) to its respective name (i.e. "SIGINT")? I'd like to be able to print the name of a signal in the log when I receive it, however I cannot find a map from signal numbers to names in Python, i.e. import signal def signal_handler(signum, frame): logging.debug("Received signal (%s)" % sig_names[signum]) signal.signal(signal.SIGINT, signal_handler) For some dictionary sig_names, so when the process receives SIGINT it prints: Received signal (SIGINT) Thank you.

    Read the article

  • detect sender of signal (linux, ptrace)

    - by osgx
    Hello Can I distinguish signal, between delivered directly to a process and delivered via debugger. Case 1: $ ./process1 process1 (not ptraced) set up handler alarm(5); .... signal is handled and I can parse handler parameters Case 2: $ debugger1 ./process1 process1 (is ptraced by debugger1) set up handler alarm(5); ... signal is catched by debugger1. It resumes process1 with PTRACE_CONT, signal_number is 4th parameter of PTRACE_CONT. signal is redelivered to process1 it is handled. So, how can I detect in signal handler, was it redelivered by debugger or send by system? OS is Linux, kernel is 2.6.30. Programs are written in plain C.

    Read the article

  • White Paper on Analysis Services Tabular Large-scale Solution #ssas #tabular

    - by Marco Russo (SQLBI)
    Since the first beta of Analysis Services 2012, I worked with many companies designing and implementing solutions based on Analysis Services Tabular. I am glad that Microsoft published a white paper about a case-study using one of these scenarios: An Analysis Services Case Study: Using Tabular Models in a Large-scale Commercial Solution. Alberto Ferrari is the author of the white paper and many people contributed to it. The final result is a very technical document based on a case study, which provides a level of detail that I don’t see often in other case studies (which are usually more marketing-oriented). This white paper has the following structure: Requirements (data model, capacity planning, client tool) Options considered (SQL Server Columnstore Indexes, SSAS Multidimensional, SSAS Tabular) Data Model optimizations (memory compression, query performance, scalability) Partitioning and Processing strategy for near real-time latency Hardware selection (NUMA analysis, Azure VM tests) Scalability tests (estimation of maximum users per node) If you are in charge of evaluating Tabular as analytical engine, or if you have to design your solution based on Tabular, this white paper is a must read. But if you just want to increase your knowledge of Analysis Services, you will find a lot of useful technical information. That said, my favorite quote of the document is the following one, funny but true: […] After several trials, the clear winner was a video gaming machine that one guy on the team used at home. That computer outperformed any available server, running twice as fast as the server-class machines we had in house. At that point, it was clear that the criteria for choosing the server would have to be expanded a bit, simply because it would have been impossible to convince the boss to build a cluster of gaming machines and trust it to serve our customers.  But, honestly, if a business has the flexibility to buy gaming machines (assuming the machines can handle capacity) – do this. Owen Graupman, inContact I want to write a longer discussion about how companies are adopting Tabular in scenarios where it is the hidden engine of a more complex solution (and not the classical “BI system”), because it is more frequent than you might expect (and has several advantages over many alternative approaches).

    Read the article

  • Basket Analysis with #dax in #powerpivot and #ssas #tabular

    - by Marco Russo (SQLBI)
    A few days ago I published a new article on DAX Patterns web site describing how to implement Basket Analysis in DAX. This topic is a very classical one and is also covered in the many-to-many revolution white paper. It has been also discussed in several blog posts, listed here in historical order: Simple Basket Analysis in DAX by Chris Webb PowerPivot, basket analysis and the hidden many to many by Alberto Ferrari Applied Basket Analysis in Power Pivot using DAX by Gerhard Brueckl As usual, in DAX Patterns we try to present the required DAX formulas in a way that is easy to adapt to specific models. We also try to show a good implementation from a performance point of view. Further optimizations are always possible in DAX. However, in order to keep the model simple to adapt in different scenarios, we avoid presenting optimizations that would require particular assumptions or restrictions on the data model. I hope you will find the Basket Analysis pattern useful. Even if you do not need it today, reading the DAX formula is a good exercise to check your knowledge of evaluation contexts in DAX. For example, describing how does it work the following expression is not a trivial task! [Orders with Both Products] := CALCULATE (     DISTINCTCOUNT ( Sales[SalesOrderNumber] ),     CALCULATETABLE (         SUMMARIZE ( Sales, Sales[SalesOrderNumber] ),         ALL ( Product ),         USERELATIONSHIP ( Sales[ProductCode], 'Filter Product'[Filter ProductCode] )     ) ) The good news is that you can use the patterns even if you do not really understand all the details of the DAX formulas you are using! Any feedback on this new pattern is very welcome.

    Read the article

  • WiFi signal is lost every 3 minutes

    - by Software Monkey
    For several weeks now my Android phone has been losing it's WiFi signal momentarily, typically at about 3 minute intervals (about 3 minutes, 1.5 seconds) and occasionally at some longer interval that always seems to be just over 3 minutes. This causes an interruption of several seconds while the WiFi connection is re-established and typically fails any kind of download/streaming that is happening, makes web sites "unreachable" and generally makes the phone unusable as a data device due to the frequency. The signal remains down for about a second, but the phone takes a few more seconds to reconnect to the router. This happens regardless of proximity to the router, which otherwise show a very strong signal - usually -40 to -30 dBm or better in the same room, nowhere less than 060 dBm anywhere in the house. Changing channels does not help (I've tried 1, 4, 8 and 9). Nor does turning off the router's guest access. Nor does turning off the 5.0 GHz band. Monitoring the signal on my phone with WiFi analyzer, shows all WiFi signals on all channels drop to nothing when the WiFi connection is lost (there are two other networks on different channels which are strong enough to be relevant, with about 6 others constantly fading in and out). WiFi analyzer shows 3 separate signals for my router, the main 2.4 GHz, the guest 2.4 GHz and the 5.0 GHz. Using WiFi Analyzer on my wife's phone side-by-side shows no change in signal when my phone drops, nor does her phone drop. Monitoring the signal using our laptop, side-by-side likewise shows no signal loss and likewise the laptop does not lose it's WiFi connection. But, at work, the phone seems to not exhibit the same behavior, or, if it does, it's very occasional. Monitoring it all day at work I only saw the signal drop 3 or 4 times. The signal strength of the various networks there is comparatively weak. AT&T were super helpful: "Sorry, we can't help you with WiFi problems. You could try doing a factory reset on your phone". </sarcasm The router is relatively new, but has been working fine with this phone since last Dec. Phone : Motorola Atrix (about 8 months old). Router : Belkin N750 DB (F9K1103 v1 (01C)). Router Firmware: 1.00.46 (2011/10/28 6:37:11). Security : WPA/WPA2-Personal (PSK)

    Read the article

  • How much system and business analysis should a programmer be reasonably expected to do?

    - by Rahul
    In most places I have worked for, there were no formal System or Business Analysts and the programmers were expected to perform both the roles. One had to understand all the subsystems and their interdependencies inside out. Further, one was also supposed to have a thorough knowledge of the business logic of the applications and interact directly with the users to gather requirements, answer their queries etc. In my current job, for ex, I spend about 70% time doing system analysis and only 30% time programming. I consider myself a good programmer but struggle with developing a good understanding of the business rules of a complex application. Often, this creates a handicap because while I can write efficient algorithms and thread-safe code, I lose out to guys who may be average programmers but have a much better understanding of the business processes. So I want to know - How much business and systems knowledge should a programmer have ? - How does one go about getting this knowledge in an immensely complex software system (e.g. trading applications) with several interdependent business processes but poorly documented business rules.

    Read the article

  • Analysis Services Tabular books #ssas #tabular

    - by Marco Russo (SQLBI)
    Many people are looking for books about Analysis Services Tabular. Today there are two books available and they complement each other: Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model by Marco Russo, Alberto Ferrari and Chris Webb Applied Microsoft SQL Server 2012 Analysis Services: Tabular Modeling by Teo Lachev The book I wrote with Alberto and Chris is a complete guide to create tabular models and has a good coverage about DAX, including how to use it for enriching a semantic model with calculated columns and measures and how to use it for querying a Tabular model. In my experience, DAX as a query language is a very interesting option for custom analytical applications that requires a fast calculation engine, or simply for standard reports running in Reporting Services and accessing a Tabular model. You can freely preview the table of content and read some excerpts from the book on Safari Books Online. The book is in printing and should be shipped within mid-July, so finally it will be very soon on the shelf of all the people already preordered it! The Teo Lachev’s book, covers the full spectrum of Tabular models provided by Microsoft: starting with self-service BI, you have users creating a model with PowerPivot for Excel, publishing it to PowerPivot for SharePoint and exploring data by using Power View; then, the PowerPivot for Excel model can be imported in a Tabular model and published in Analysis Services, adding more control on the model through row-level security and partitioning, for example. Teo’s book follows a step-by-step approach describing each feature that is very good for a beginner that is new to PowerPivot and/or to BISM Tabular. If you need to get the big picture and to start using the products that are part of the new Microsoft wave of BI products, the Teo’s book is for you. After you read the book from Teo, or if you already have a certain confidence with PowerPivot or BISM Tabular and you want to go deeper about internals, best practices, design patterns in just BISM Tabular, then our book is a suggested read: it contains several chapters about DAX, includes discussions about new opportunities in data model design offered by Tabular models, and also provides examples of optimizations you can obtain in DAX and best practices in data modeling and queries. It might seem strange that an author write a review of a book that might seem to compete with his one, but in reality these two books complement each other and are not alternatives. If you have any doubt, buy both: you will be not disappointed! Moreover, Amazon usually offers you a deal to buy three books, including the Visualizing Data with Microsoft Power View, another good choice for getting all the details about Power View.

    Read the article

  • Using the Static Code Analysis feature of Visual Studio (Premium/Ultimate) to find memory leakage problems

    - by terje
    Memory for managed code is handled by the garbage collector, but if you use any kind of unmanaged code, like native resources of any kind, open files, streams and window handles, your application may leak memory if these are not properly handled.  To handle such resources the classes that own these in your application should implement the IDisposable interface, and preferably implement it according to the pattern described for that interface. When you suspect a memory leak, the immediate impulse would be to start up a memory profiler and start digging into that.   However, before you follow that impulse, do a Static Code Analysis run with a ruleset tuned to finding possible memory leaks in your code.  If you get any warnings from this, fix them before you go on with the profiling. How to use a ruleset In Visual Studio 2010 (Premium and Ultimate editions) you can define your own rulesets containing a list of Static Code Analysis checks.   I have defined the memory checks as shown in the lists below as ruleset files, which can be downloaded – see bottom of this post.  When you get them, you can easily attach them to every project in your solution using the Solution Properties dialog. Right click the solution, and choose Properties at the bottom, or use the Analyze menu and choose “Configure Code Analysis for Solution”: In this dialog you can now choose the Memorycheck ruleset for every project you want to investigate.  Pressing Apply or Ok opens every project file and changes the projects code analysis ruleset to the one we have specified here. How to define your own ruleset  (skip this if you just download my predefined rulesets) If you want to define the ruleset yourself, open the properties on any project, choose Code Analysis tab near the bottom, choose any ruleset in the drop box and press Open Clear out all the rules by selecting “Source Rule Sets” in the Group By box, and unselect the box Change the Group By box to ID, and select the checks you want to include from the lists below. Note that you can change the action for each check to either warning, error or none, none being the same as unchecking the check.   Now go to the properties window and set a new name and description for your ruleset. Then save (File/Save as) the ruleset using the new name as its name, and use it for your projects as detailed above. It can also be wise to add the ruleset to your solution as a solution item. That way it’s there if you want to enable Code Analysis in some of your TFS builds.   Running the code analysis In Visual Studio 2010 you can either do your code analysis project by project using the context menu in the solution explorer and choose “Run Code Analysis”, you can define a new solution configuration, call it for example Debug (Code Analysis), in for each project here enable the Enable Code Analysis on Build   In Visual Studio Dev-11 it is all much simpler, just go to the Solution root in the Solution explorer, right click and choose “Run code analysis on solution”.     The ruleset checks The following list is the essential and critical memory checks.  CheckID Message Can be ignored ? Link to description with fix suggestions CA1001 Types that own disposable fields should be disposable No  http://msdn.microsoft.com/en-us/library/ms182172.aspx CA1049 Types that own native resources should be disposable Only if the pointers assumed to point to unmanaged resources point to something else  http://msdn.microsoft.com/en-us/library/ms182173.aspx CA1063 Implement IDisposable correctly No  http://msdn.microsoft.com/en-us/library/ms244737.aspx CA2000 Dispose objects before losing scope No  http://msdn.microsoft.com/en-us/library/ms182289.aspx CA2115 1 Call GC.KeepAlive when using native resources See description  http://msdn.microsoft.com/en-us/library/ms182300.aspx CA2213 Disposable fields should be disposed If you are not responsible for release, of if Dispose occurs at deeper level  http://msdn.microsoft.com/en-us/library/ms182328.aspx CA2215 Dispose methods should call base class dispose Only if call to base happens at deeper calling level  http://msdn.microsoft.com/en-us/library/ms182330.aspx CA2216 Disposable types should declare a finalizer Only if type does not implement IDisposable for the purpose of releasing unmanaged resources  http://msdn.microsoft.com/en-us/library/ms182329.aspx CA2220 Finalizers should call base class finalizers No  http://msdn.microsoft.com/en-us/library/ms182341.aspx Notes: 1) Does not result in memory leak, but may cause the application to crash   The list below is a set of optional checks that may be enabled for your ruleset, because the issues these points too often happen as a result of attempting to fix up the warnings from the first set.   ID Message Type of fault Can be ignored ? Link to description with fix suggestions CA1060 Move P/invokes to NativeMethods class Security No http://msdn.microsoft.com/en-us/library/ms182161.aspx CA1816 Call GC.SuppressFinalize correctly Performance Sometimes, see description http://msdn.microsoft.com/en-us/library/ms182269.aspx CA1821 Remove empty finalizers Performance No http://msdn.microsoft.com/en-us/library/bb264476.aspx CA2004 Remove calls to GC.KeepAlive Performance and maintainability Only if not technically correct to convert to SafeHandle http://msdn.microsoft.com/en-us/library/ms182293.aspx CA2006 Use SafeHandle to encapsulate native resources Security No http://msdn.microsoft.com/en-us/library/ms182294.aspx CA2202 Do not dispose of objects multiple times Exception (System.ObjectDisposedException) No http://msdn.microsoft.com/en-us/library/ms182334.aspx CA2205 Use managed equivalents of Win32 API Maintainability and complexity Only if the replace doesn’t provide needed functionality http://msdn.microsoft.com/en-us/library/ms182365.aspx CA2221 Finalizers should be protected Incorrect implementation, only possible in MSIL coding No http://msdn.microsoft.com/en-us/library/ms182340.aspx   Downloadable ruleset definitions I have defined three rulesets, one called Inmeta.Memorycheck with the rules in the first list above, and Inmeta.Memorycheck.Optionals containing the rules in the second list, and the last one called Inmeta.Memorycheck.All containing the sum of the two first ones.  All three rulesets can be found in the  zip archive  “Inmeta.Memorycheck” downloadable from here.   Links to some other resources relevant to Static Code Analysis MSDN Magazine Article by Mickey Gousset on Static Code Analysis in VS2010 MSDN :  Analyzing Managed Code Quality by Using Code Analysis, root of the documentation for this Preventing generated code from being analyzed using attributes Online training course on Using Code Analysis with VS2010 Blogpost by Tatham Oddie on custom code analysis rules How to write custom rules, from Microsoft Code Analysis Team Blog Microsoft Code Analysis Team Blog

    Read the article

  • Books or help on OO Analysis

    - by Pat
    I have this course where we learn about the domain model, use cases, contracts and eventually leap into class diagrams and sequence diagrams to define good software classes. I just had an exam and I got trashed, but part of the reason is we barely have any practical material, I spent at least two good months without drawing a single class diagram by myself from a case study. I'm not here to blame the system or the class I'm in, I'm just wondering if people have some exercise-style books that either provide domain models with glossaries, system sequence diagrams and ask you to use GRASP to make software classes? I could really use some alone-time practicing going from analysis to conception of software entities. I'm almost done with Larman's book called "Applying UML and Patterns An Introduction to Object-Oriented Analysis and Design and Iterative Development, Third Edition". It's a good book, but I'm not doing anything by myself since it doesn't come with exercises. Thanks.

    Read the article

  • "continue" and "break" for static analysis

    - by B. VB.
    I know there have been a number of discussions of whether break and continue should be considered harmful generally (with the bottom line being - more or less - that it depends; in some cases they enhance clarity and readability, but in other cases they do not). Suppose a new project is starting development, with plans for nightly builds including a run through a static analyzer. Should it be part of the coding guidelines for the project to avoid (or strongly discourage) the use of continue and break, even if it can sacrifice a little readability and require excessive indentation? I'm most interested in how this applies to C code. Essentially, can the use of these control operators significantly complicate the static analysis of the code possibly resulting in additional false negatives, that would otherwise register a potential fault if break or continue were not used? (Of course a complete static analysis proving the correctness of an aribtrary program is an undecidable proposition, so please keep responses about any hands-on experience with this you have, and not on theoretical impossibilities) Thanks in advance!

    Read the article

  • How to use OO for data analysis? [closed]

    - by Konsta
    In which ways could object-orientation (OO) make my data analysis more efficient and let me reuse more of my code? The data analysis can be broken up into get data (from db or csv or similar) transform data (filter, group/pivot, ...) display/plot (graph timeseries, create tables, etc.) I mostly use Python and its Pandas and Matplotlib packages for this besides some DB connectivity (SQL). Almost all of my code is a functional/procedural mix. While I have started to create a data object for a certain collection of time series, I wonder if there are OO design patterns/approaches for other parts of the process that might increase efficiency?

    Read the article

  • Samsung S23A750D 23" 120Hz get no signal

    - by John Carter
    I have a few days ago received this monitor. Samsung S23A750D 23" 120Hz I am using it with a Gainward Nvidia GTX570 Phantom GPU via DisplayPort cabling. The trouble I am having is that the monitor has great trouble picking up a signal from the GPU when the computer has gone into sleep mode or been switched off (at this point I can get a signal to the monitor). It's only when I turn the computer back on and then the monitor that I get no signal. To get a signal I have to remove the power cable and put back in or sometimes remove the DP cable and put back in. I have tried not turning the monitor off (the monitor goes into a sleep mode when the computer goes into sleep mode) but on putting the computer on it does not pick up a signal. It is only by removing the power cable and/or DisplayPort cable will I get a signal. And this is intermittent. I have tried upgrading the firmware from Samsung but this hasn't helped. Any ideas?

    Read the article

  • Microsoft SQL Server 2012 Analysis Services – The BISM Tabular Model #ssas #tabular #bism

    - by Marco Russo (SQLBI)
    I, Alberto and Chris spent many months (many nights, holidays and also working days of the last months) writing the book we would have liked to read when we started working with Analysis Services Tabular. A book that explains how to use Tabular, how to model data with Tabular, how Tabular internally works and how to optimize a Tabular model. All those things you need to start on a real project in order to make an happy customer. You know, we’re all consultants after all, so customer satisfaction is really important to be paid for our job! Now the book writing is finished, we’re in the final stage of editing and reviews and we look forward to get our print copy. Its title is very long: Microsoft SQL Server 2012 Analysis Services – The BISM Tabular Model. But the important thing is that you can already (pre)order it. This is the list of chapters: 01. BISM Architecture 02. Guided Tour on Tabular 03. Loading Data Inside Tabular 04. DAX Basics 05. Understanding Evaluation Contexts 06. Querying Tabular 07. DAX Advanced 08. Understanding Time Intelligence in DAX 09. Vertipaq Engine 10. Using Tabular Hierarchies 11. Data modeling in Tabular 12. Using Advanced Tabular Relationships 13. Tabular Presentation Layer 14. Tabular and PowerPivot for Excel 15. Tabular Security 16. Interfacing with Tabular 17. Tabular Deployment 18. Optimization and Monitoring And this is the book cover – have a good read!

    Read the article

  • Is there a real difference between dynamic analysis and testing?

    - by user970696
    Often testing is regarded as a dynamic analysis of a software. Yet while writing my thesis, the reviewer noted to me that dynamic analysis is about analyzing the program behind the scenes - e.g. profiling and that it is not the same as testing because its "analysis" which looks inside and observes. I know that "static analysis" is not testing, should we then separate this "dynamic analysis" also from testing? Some books do refer to dynamic analysis in this sense. I would maybe say that testing is a one mean of dynamic analysis?

    Read the article

  • dependency analysis from C# code thru to database tables/columns

    - by fpdave
    I'm looking for a tool to do system wide dependency analysis in C# code and SQL-Server databases. Its looking like the only tool available that does this might be CAST (cast software), which is expensive and it does lots more besides that I dont really need. c# code thru to database column dependency would be hugely useful for many reasons, including: - determining effects of database changes throughout the system - seeing hot spots in the database schema - finding dead stored procedures/tables/etc - understanding the existing code base does anyone know of any such tools?

    Read the article

  • Having trouble running code analysis from command prompt with msbuild

    - by devlife
    I'm using VS2010 RC while targeting .NET 3.5. I can run code analysis via Visual Studio without a problem. However, when I try to run code analysis on our CI server it isn't getting executed. When I attempt to build using msbuild 4.0 I get the following exception: C:\Program Files (x86)\MSBuild\Microsoft\VisualStudio\v10.0\CodeAnalysis\Microsoft.CodeAnalysis.targets(129,9): error MSB4018: The "CodeAnalysis" task failed unexpectedly. C:\Program Files (x86)\MSBuild\Microsoft\VisualStudio\v10.0\CodeAnalysis\Microsoft.CodeAnalysis.targets(129,9): error MSB4018: System.TypeLoadException: Could not load type 'System.Runtime.Versioning.TargetFrameworkAttribute' from assembly 'mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Like I said, it works fine when I run it through VS.

    Read the article

  • What static analysis tools are available for C#?

    - by Paul Mrozowski
    What tools are there available for static analysis against C# code? I know about FxCop and StyleCop. Are there others? I've run across NStatic before but it's been in development for what seems like forever - it's looking pretty slick from what little I've seen of it, so it would be nice if it would ever see the light of day. Along these same lines (this is primarily my interest for static analysis), tools for testing code for multithreading issues (deadlocks, race conditions, etc.) also seem a bit scarce. Typemock Racer just popped up so I'll be looking at that. Anything beyond this? Real-life opinions about tools you've used are appreciated.

    Read the article

  • R vs Python for data analysis

    - by The_Cthulhu_Kid
    I have been programming for about a year and I am really interested in data analysis and machine learning. I am taking part in a couple of online courses and am reading a couple of books. Everything I am doing uses either R or Python and I am looking for suggestions on whether or not I should concentrate on one language (and if so which) or carry on with both; do they complement each other? -- I should mention that I use C# in school but am familiar with Python through self-study.

    Read the article

  • What is a non commital approach to software analysis

    - by dsjbirch
    When I think about software analysis the first thing which comes to mind is SSADM and the UML. But, what I want is a high level view of the system before I commit to a programming paradigm. Where am I going wrong? How do I approach a problem in a high level and generic way before I commit to a paradigm? What are the diagrams/tools available to support me? Edit: Some examples of tools that appear to be what I'm after are... A block diagram - http://en.wikipedia.org/wiki/Block_diagram A data flow diagram - http://en.wikipedia.org/wiki/Data_flow_diagram

    Read the article

  • Runtime analysis

    - by Joe Smith
    can someone please help me with the analysis of the following function (for inputs of size n). The part that confuses me the most is the inner for loop. def prefix_sums(L): # Total cost = ? pSum = [] #cost = 1 for a in range(len(L)+1): # range + body of function = (n+1) + (n+1)*(body) ? s = 0 #cost = 1 for b in range(a): # cost = ? s = s + L[b] #cost = operation + accessing list = 2 pSum.append(s) #cost = 1 return pSum #cost = 1 What I need to do is figure out the cost of each statement.

    Read the article

  • How do I deal with analysis paralysis?

    - by Anne Nonimus
    Very frequently, I am stuck when choosing the best design decision. Even for small details, such as function definitions, control flow, and variable names, I spend unusually long periods perusing the benefits and trade-offs of my choices. I feel like I am losing a lot of efficiency by spending my hours on insignificant details like these. Even though, I know in the back of my mind that I can change these things if my current design doesn't work out, I have trouble deciding firmly on one choice. What should I do to combat this problem?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >