Search Results

Search found 2 results on 1 pages for 'smichak'.

Page 1/1 | 1 

  • Incremental PCA

    - by smichak
    Hi, Lately, I've been looking into an implementation of an incremental PCA algorithm in python - I couldn't find something that would meet my needs so I did some reading and implemented an algorithm I found in some paper. Here is the module's code - the relevant paper on which it is based is mentioned in the module's documentation. I would appreciate any feedback from people who are interested in this. Micha #!/usr/bin/env python """ Incremental PCA calculation module. Based on P.Hall, D. Marshall and R. Martin "Incremental Eigenalysis for Classification" which appeared in British Machine Vision Conference, volume 1, pages 286-295, September 1998. Principal components are updated sequentially as new observations are introduced. Each new observation (x) is projected on the eigenspace spanned by the current principal components (U) and the residual vector (r = x - U(U.T*x)) is used as a new principal component (U' = [U r]). The new principal components are then rotated by a rotation matrix (R) whose columns are the eigenvectors of the transformed covariance matrix (D=U'.T*C*U) to yield p + 1 principal components. From those, only the first p are selected. """ __author__ = "Micha Kalfon" import numpy as np _ZERO_THRESHOLD = 1e-9 # Everything below this is zero class IPCA(object): """Incremental PCA calculation object. General Parameters: m - Number of variables per observation n - Number of observations p - Dimension to which the data should be reduced """ def __init__(self, m, p): """Creates an incremental PCA object for m-dimensional observations in order to reduce them to a p-dimensional subspace. @param m: Number of variables per observation. @param p: Number of principle components. @return: An IPCA object. """ self._m = float(m) self._n = 0.0 self._p = float(p) self._mean = np.matrix(np.zeros((m , 1), dtype=np.float64)) self._covariance = np.matrix(np.zeros((m, m), dtype=np.float64)) self._eigenvectors = np.matrix(np.zeros((m, p), dtype=np.float64)) self._eigenvalues = np.matrix(np.zeros((1, p), dtype=np.float64)) def update(self, x): """Updates with a new observation vector x. @param x: Next observation as a column vector (m x 1). """ m = self._m n = self._n p = self._p mean = self._mean C = self._covariance U = self._eigenvectors E = self._eigenvalues if type(x) is not np.matrix or x.shape != (m, 1): raise TypeError('Input is not a matrix (%d, 1)' % int(m)) # Update covariance matrix and mean vector and centralize input around # new mean oldmean = mean mean = (n*mean + x) / (n + 1.0) C = (n*C + x*x.T + n*oldmean*oldmean.T - (n+1)*mean*mean.T) / (n + 1.0) x -= mean # Project new input on current p-dimensional subspace and calculate # the normalized residual vector g = U.T*x r = x - (U*g) r = (r / np.linalg.norm(r)) if not _is_zero(r) else np.zeros_like(r) # Extend the transformation matrix with the residual vector and find # the rotation matrix by solving the eigenproblem DR=RE U = np.concatenate((U, r), 1) D = U.T*C*U (E, R) = np.linalg.eigh(D) # Sort eigenvalues and eigenvectors from largest to smallest to get the # rotation matrix R sorter = list(reversed(E.argsort(0))) E = E[sorter] R = R[:,sorter] # Apply the rotation matrix U = U*R # Select only p largest eigenvectors and values and update state self._n += 1.0 self._mean = mean self._covariance = C self._eigenvectors = U[:, 0:p] self._eigenvalues = E[0:p] @property def components(self): """Returns a matrix with the current principal components as columns. """ return self._eigenvectors @property def variances(self): """Returns a list with the appropriate variance along each principal component. """ return self._eigenvalues def _is_zero(x): """Return a boolean indicating whether the given vector is a zero vector up to a threshold. """ return np.fabs(x).min() < _ZERO_THRESHOLD if __name__ == '__main__': import sys def pca_svd(X): X = X - X.mean(0).repeat(X.shape[0], 0) [_, _, V] = np.linalg.svd(X) return V N = 1000 obs = np.matrix([np.random.normal(size=10) for _ in xrange(N)]) V = pca_svd(obs) print V[0:2] pca = IPCA(obs.shape[1], 2) for i in xrange(obs.shape[0]): x = obs[i,:].transpose() pca.update(x) U = pca.components print U

    Read the article

  • Sorting in Matlab

    - by smichak
    Hi, I would like to sort elements in a comma-separated list. The elements in the list are structs and I would like the list to be sorted according to one of the fields in the struct. For example, given the following code: L = {struct('obs', [1 2 3 4], 'n', 4), struct('obs', [6 7 5 3], 'n', 2)}; I would want to have a way to sort L by the field 'n'. Matlab's sort function only works on matrices or arrays and on lists of strings (not even lists of numbers). Any ideas on how that may be achieved? Thanks, Micha

    Read the article

1