Search Results

Search found 18 results on 1 pages for 'socketchannel'.

Page 1/1 | 1 

  • Java ServerSocketChannel SocketChannel (Callback)

    - by ikurtz
    I am trying to learn Java. I would like to implement a simple networked connect 4 game as well as a chat feature. I want my network logic to be non blocking so after much study I found that SocketChannel is what I am after regrading my needs. What has not made sense still is the lack of CallBack functions in SocketChannels.. Like one finds in C#. My query for this time is: How do I deliver the data received to the Chat or Game form (JFrame)? Some guidance is most welcome.

    Read the article

  • SocketChannel in Java sends data, but it doesn't get to destination application

    - by Peterson
    Hi Everybody, I'm suffering a lot to create a simple ChatServer in Java, using the NIO libraries. Wonder if someone could help me. I am doing that by using SocketChannel and Selector to handle multiple clients in a single thread. The problem is: I am able to accept new connections and get it's data, but when I try to send data back, the SocketChannel simply doesn't work. In the method write(), it returns a integer that is the same size of the data i'm passing to it, but the client never receives that data. Strangely, when I close the server application, the client receives the data. It's like the socketchannel maintains a buffer, and it only get flushed when I close the application. Here are some more details, to give you more information to help. I'm handling the events in this piece of code: private void run() throws IOException { ServerSocketChannel ssc = ServerSocketChannel.open(); // Set it to non-blocking, so we can use select ssc.configureBlocking( false ); // Get the Socket connected to this channel, and bind it // to the listening port this.serverSocket = ssc.socket(); InetSocketAddress isa = new InetSocketAddress( this.port ); serverSocket.bind( isa ); // Create a new Selector for selecting this.masterSelector = Selector.open(); // Register the ServerSocketChannel, so we can // listen for incoming connections ssc.register( masterSelector, SelectionKey.OP_ACCEPT ); while (true) { // See if we've had any activity -- either // an incoming connection, or incoming data on an // existing connection int num = masterSelector.select(); // If we don't have any activity, loop around and wait // again if (num == 0) { continue; } // Get the keys corresponding to the activity // that has been detected, and process them // one by one Set keys = masterSelector.selectedKeys(); Iterator it = keys.iterator(); while (it.hasNext()) { // Get a key representing one of bits of I/O // activity SelectionKey key = (SelectionKey)it.next(); // What kind of activity is it? if ((key.readyOps() & SelectionKey.OP_ACCEPT) == SelectionKey.OP_ACCEPT) { // Aceita a conexão Socket s = serverSocket.accept(); System.out.println( "LOG: Conexao TCP aceita de " + s.getInetAddress() + ":" + s.getPort() ); // Make sure to make it non-blocking, so we can // use a selector on it. SocketChannel sc = s.getChannel(); sc.configureBlocking( false ); // Registra a conexao no seletor, apenas para leitura sc.register( masterSelector, SelectionKey.OP_READ ); } else if ( key.isReadable() ) { SocketChannel sc = null; // It's incoming data on a connection, so // process it sc = (SocketChannel)key.channel(); // Verifica se a conexão corresponde a um cliente já existente if((clientsMap.getClient(key)) != null){ boolean closedConnection = !processIncomingClientData(key); if(closedConnection){ int id = clientsMap.getClient(key); closeClient(id); } } else { boolean clientAccepted = processIncomingDataFromNewClient(key); if(!clientAccepted){ // Se o cliente não foi aceito, sua conexão é simplesmente fechada sc.socket().close(); sc.close(); key.cancel(); } } } } // We remove the selected keys, because we've dealt // with them. keys.clear(); } } This piece of code is simply handles new clients that wants to connect to the chat. So, a client makes a TCP connection to the server, and once it gets accepted, it sends data to the server following a simply text protocol, informing his id and asking to get registrated to the server. I handle this in the method processIncomingDataFromNewClient(key). I'm also keeping a map of clients and its connections in a data structure similar to a hashtable. I? doing that because I need to recover a client Id from a connection and a connection from a client Id. This is can be shown in: clientsMap.getClient(key). But the problem itself resides in the method processIncomingDataFromNewClient(key). There, I simply read the data that the client sent to me, validate it, and if it's ok, I send a message back to the client to tell that it is connected to the chat server. Here is a similar piece of code: private boolean processIncomingDataFromNewClient(SelectionKey key){ SocketChannel sc = (SocketChannel) key.channel(); String connectionOrigin = sc.socket().getInetAddress() + ":" + sc.socket().getPort(); int id = 0; //id of the client buf.clear(); int bytesRead = 0; try { bytesRead = sc.read(buf); if(bytesRead<=0){ System.out.println("Conexão fechada pelo: " + connectionOrigin); return false; } System.out.println("LOG: " + bytesRead + " bytes lidos de " + connectionOrigin); String msg = new String(buf.array(),0,bytesRead); // Do validations with the client sent me here // gets the client id }catch (Exception e) { e.printStackTrace(); System.out.println("LOG: Oops. Cliente não conhece o protocolo. Fechando a conexão: " + connectionOrigin); System.out.println("LOG: Primeiros 10 caracteres enviados pelo cliente: " + msg); return false; } } } catch (IOException e) { System.out.println("LOG: Erro ao ler dados da conexao: " + connectionOrigin); System.out.println("LOG: "+ e.getLocalizedMessage()); System.out.println("LOG: Fechando a conexão..."); return false; } // If it gets to here, the protocol is ok and we can add the client boolean inserted = clientsMap.addClient(key, id); if(!inserted){ System.out.println("LOG: Não foi possível adicionar o cliente. Ou ele já está conectado ou já têm clientes demais. Id: " + id); System.out.println("LOG: Fechando a conexão: " + connectionOrigin); return false; } System.out.println("LOG: Novo cliente conectado! Enviando mesnsagem de confirmação. Id: " + id + " Conexao: " + connectionOrigin); /* Here is the error */ sendMessage(id, "Servidor pet: connection accepted"); System.out.println("LOG: Novo cliente conectado! Id: " + id + " Conexao: " + connectionOrigin); return true; } And finally, the method sendMessage(SelectionKey key) looks like this: private void sendMessage(int destId, String msg) { Charset charset = Charset.forName("ISO-8859-1"); CharBuffer charBuffer = CharBuffer.wrap(msg, 0, msg.length()); ByteBuffer bf = charset.encode(charBuffer); //bf.flip(); int bytesSent = 0; SelectionKey key = clientsMap.getClient(destId); SocketChannel sc = (SocketChannel) key.channel(); try { / int total_bytes_sent = 0; while(total_bytes_sent < msg.length()){ bytesSent = sc.write(bf); total_bytes_sent += bytesSent; } System.out.println("LOG: Bytes enviados para o cliente " + destId + ": "+ total_bytes_sent + " Tamanho da mensagem: " + msg.length()); } catch (IOException e) { System.out.println("LOG: Erro ao mandar mensagem para: " + destId); System.out.println("LOG: " + e.getLocalizedMessage()); } } So, what is happening is that the server, when send a message, prints something like this: LOG: Bytes sent to the client: 28 Size of the message: 28 So, it tells that it sent the data, but the chat client keeps blocking, waiting in the recv() method. So, the data never gets to it. When I close the server application, though, all the data appears in the client. I wonder why. It is important to say that the client is in C and the server JAVA, and I'm running both in the same machine, an Ubuntu Guest in virtualbox under windows. I also run both under windows host and under linuxes hosts, and keep getting the same strange problem. I'm sorry for the great lenght of this question, but I already searched a lot of places for an answer, found a lot of tutorials and questions, including here at StackOverflow, but coundn't find a reasonable explanation. I am really not liking this Java NIO, and i saw a lot of people complaining about it too. I am thinking that if I had done that in C it would have been a lot easier :-D So, if someone could help me and even discuss this behavor, it would be great! :-) Thanks everybody in advance, Péterson

    Read the article

  • Testing SocketChannel NIO

    - by hotzen
    Hello, I just wrote some NIO-code and wonder how to stress-test my implementation regarding SocketChannel.write(ByteBuffer) not able to write the whole byte-buffer SocketChannel.read(ByteBuffer) reading the data in chunks into ByteBuffer are there some simple linux-utilities like telnet to open a ServerSocket with some buffering-options?

    Read the article

  • Java NIO SocketChannel writing problem

    - by Nilesh
    I am using Java NIO's SocketChannel to write : int n = socketChannel.write(byteBuffer); Most of the times the data is sent in one or two parts; i.e. if the data could not be sent in one attemmpt, remaining data is retried. The issue here is, sometimes, the data is not being sent completely in one attempt, rest of the data when tried to send multiple times, it occurs that even after trying several times, not a single character is being written to channel, finally after some time the remaning data is sent. What could be the cause of such behaviour? Could external factors such as RAM, etc cause the hindarance? Please help me solve this issue. If any other information is required please let me know. Thanks

    Read the article

  • How Can I create different selectors for accepting new connection in java NIO

    - by Deepak
    I want to write java tcp socket programming using java NIO. Its working fine. But I am using the same selector for accepting reading from and writing to the clients. How Can I create different selectors for accepting new connection in java NIO, reading and writing. Is there any online help. Actually when I am busy in reading or writing my selector uses more iterator. So If more number of clients are connected then performance of accepting new coneection became slow. But I donot want the accepting clients to be slow // Create a selector and register two socket channels Selector selector = null; try { // Create the selector selector = Selector.open(); // Create two non-blocking sockets. This method is implemented in // e173 Creating a Non-Blocking Socket. SocketChannel sChannel1 = createSocketChannel("hostname.com", 80); SocketChannel sChannel2 = createSocketChannel("hostname.com", 80); // Register the channel with selector, listening for all events sChannel1.register(selector, sChannel1.validOps()); sChannel2.register(selector, sChannel1.validOps()); } catch (IOException e) { } // Wait for events while (true) { try { // Wait for an event selector.select(); } catch (IOException e) { // Handle error with selector break; } // Get list of selection keys with pending events Iterator it = selector.selectedKeys().iterator(); // Process each key at a time while (it.hasNext()) { // Get the selection key SelectionKey selKey = (SelectionKey)it.next(); // Remove it from the list to indicate that it is being processed it.remove(); try { processSelectionKey(selKey); } catch (IOException e) { // Handle error with channel and unregister selKey.cancel(); } } } public void processSelectionKey(SelectionKey selKey) throws IOException { // Since the ready operations are cumulative, // need to check readiness for each operation if (selKey.isValid() && selKey.isConnectable()) { // Get channel with connection request SocketChannel sChannel = (SocketChannel)selKey.channel(); boolean success = sChannel.finishConnect(); if (!success) { // An error occurred; handle it // Unregister the channel with this selector selKey.cancel(); } } if (selKey.isValid() && selKey.isReadable()) { // Get channel with bytes to read SocketChannel sChannel = (SocketChannel)selKey.channel(); // See e174 Reading from a SocketChannel } if (selKey.isValid() && selKey.isWritable()) { // Get channel that's ready for more bytes SocketChannel sChannel = (SocketChannel)selKey.channel(); } } Thanks Deepak

    Read the article

  • IOException during blocking network NIO in JDK 1.7

    - by Bass
    I'm just learning NIO, and here's the short example I've written to test how a blocking NIO can be interrupted: class TestBlockingNio { private static final boolean INTERRUPT_VIA_THREAD_INTERRUPT = true; /** * Prevent the socket from being GC'ed */ static Socket socket; private static SocketChannel connect(final int port) { while (true) { try { final SocketChannel channel = SocketChannel.open(new InetSocketAddress(port)); channel.configureBlocking(true); return channel; } catch (final IOException ioe) { try { Thread.sleep(1000); } catch (final InterruptedException ie) { } continue; } } } private static byte[] newBuffer(final int length) { final byte buffer[] = new byte[length]; for (int i = 0; i < length; i++) { buffer[i] = (byte) 'A'; } return buffer; } public static void main(final String args[]) throws IOException, InterruptedException { final int portNumber = 10000; new Thread("Reader") { public void run() { try { final ServerSocket serverSocket = new ServerSocket(portNumber); socket = serverSocket.accept(); /* * Fully ignore any input from the socket */ } catch (final IOException ioe) { ioe.printStackTrace(); } } }.start(); final SocketChannel channel = connect(portNumber); final Thread main = Thread.currentThread(); final Thread interruptor = new Thread("Inerruptor") { public void run() { System.out.println("Press Enter to interrupt I/O "); while (true) { try { System.in.read(); } catch (final IOException ioe) { ioe.printStackTrace(); } System.out.println("Interrupting..."); if (INTERRUPT_VIA_THREAD_INTERRUPT) { main.interrupt(); } else { try { channel.close(); } catch (final IOException ioe) { System.out.println(ioe.getMessage()); } } } } }; interruptor.setDaemon(true); interruptor.start(); final ByteBuffer buffer = ByteBuffer.allocate(32768); int i = 0; try { while (true) { buffer.clear(); buffer.put(newBuffer(buffer.capacity())); buffer.flip(); channel.write(buffer); System.out.print('X'); if (++i % 80 == 0) { System.out.println(); Thread.sleep(100); } } } catch (final ClosedByInterruptException cbie) { System.out.println("Closed via Thread.interrupt()"); } catch (final AsynchronousCloseException ace) { System.out.println("Closed via Channel.close()"); } } } In the above example, I'm writing to a SocketChannel, but noone is reading from the other side, so eventually the write operation hangs. This example works great when run by JDK-1.6, with the following output: Press Enter to interrupt I/O XXXX Interrupting... Closed via Thread.interrupt() — meaning that only 128k of data was written to the TCP socket's buffer. When run by JDK-1.7 (1.7.0_25-b15 and 1.7.0-u40-b37), however, the very same code bails out with an IOException: Press Enter to interrupt I/O XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX Exception in thread "main" java.io.IOException: Broken pipe at sun.nio.ch.FileDispatcherImpl.write0(Native Method) at sun.nio.ch.SocketDispatcher.write(SocketDispatcher.java:47) at sun.nio.ch.IOUtil.writeFromNativeBuffer(IOUtil.java:93) at sun.nio.ch.IOUtil.write(IOUtil.java:65) at sun.nio.ch.SocketChannelImpl.write(SocketChannelImpl.java:487) at com.example.TestBlockingNio.main(TestBlockingNio.java:109) Can anyone explain this different behaviour?

    Read the article

  • non blocking client server chat application in java using nio

    - by Amith
    I built a simple chat application using nio channels. I am very much new to networking as well as threads. This application is for communicating with server (Server / Client chat application). My problem is that multiple clients are not supported by the server. How do I solve this problem? What's the bug in my code? public class Clientcore extends Thread { SelectionKey selkey=null; Selector sckt_manager=null; public void coreClient() { System.out.println("please enter the text"); BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in)); SocketChannel sc = null; try { sc = SocketChannel.open(); sc.configureBlocking(false); sc.connect(new InetSocketAddress(8888)); int i=0; while (!sc.finishConnect()) { } for(int ii=0;ii>-22;ii++) { System.out.println("Enter the text"); String HELLO_REQUEST =stdin.readLine().toString(); if(HELLO_REQUEST.equalsIgnoreCase("end")) { break; } System.out.println("Sending a request to HelloServer"); ByteBuffer buffer = ByteBuffer.wrap(HELLO_REQUEST.getBytes()); sc.write(buffer); } } catch (IOException e) { e.printStackTrace(); } finally { if (sc != null) { try { sc.close(); } catch (Exception e) { e.printStackTrace(); } } } } public void run() { try { coreClient(); } catch(Exception ej) { ej.printStackTrace(); }}} public class ServerCore extends Thread { SelectionKey selkey=null; Selector sckt_manager=null; public void run() { try { coreServer(); } catch(Exception ej) { ej.printStackTrace(); } } private void coreServer() { try { ServerSocketChannel ssc = ServerSocketChannel.open(); try { ssc.socket().bind(new InetSocketAddress(8888)); while (true) { sckt_manager=SelectorProvider.provider().openSelector(); ssc.configureBlocking(false); SocketChannel sc = ssc.accept(); register_server(ssc,SelectionKey.OP_ACCEPT); if (sc == null) { } else { System.out.println("Received an incoming connection from " + sc.socket().getRemoteSocketAddress()); printRequest(sc); System.err.println("testing 1"); String HELLO_REPLY = "Sample Display"; ByteBuffer buffer = ByteBuffer.wrap(HELLO_REPLY.getBytes()); System.err.println("testing 2"); sc.write(buffer); System.err.println("testing 3"); sc.close(); }}} catch (IOException e) { e.printStackTrace(); } finally { if (ssc != null) { try { ssc.close(); } catch (IOException e) { e.printStackTrace(); } } } } catch(Exception E) { System.out.println("Ex in servCORE "+E); } } private static void printRequest(SocketChannel sc) throws IOException { ReadableByteChannel rbc = Channels.newChannel(sc.socket().getInputStream()); WritableByteChannel wbc = Channels.newChannel(System.out); ByteBuffer b = ByteBuffer.allocate(1024); // read 1024 bytes while (rbc.read(b) != -1) { b.flip(); while (b.hasRemaining()) { wbc.write(b); System.out.println(); } b.clear(); } } public void register_server(ServerSocketChannel ssc,int selectionkey_ops)throws Exception { ssc.register(sckt_manager,selectionkey_ops); }} public class HelloClient { public void coreClientChat() { Clientcore t=new Clientcore(); new Thread(t).start(); } public static void main(String[] args)throws Exception { HelloClient cl= new HelloClient(); cl.coreClientChat(); }} public class HelloServer { public void coreServerChat() { ServerCore t=new ServerCore(); new Thread(t).start(); } public static void main(String[] args) { HelloServer st= new HelloServer(); st.coreServerChat(); }}

    Read the article

  • Writing to a java socket channel which should be closed does not generate an exception

    - by Dan Serfaty
    Hi all, We have a java server that keeps a socket channel open with an Android client in order to provide push capabilities to our client application. However, after putting the Android in airplane mode, which I expected would sever the connection, the server can still write to the SocketChannel object associated with that Android client and no error is thrown. Calling SocketChannel.isConnected() before writing to it returns true. What are we missing? Is the handling of sockets different with mobile devices? Thanks in advance for your help.

    Read the article

  • why client can not receive message from server (java) [migrated]

    - by user1745931
    I have just started learning java. I modified the client side code for a server/client communication program, by creating two threads for the client side, main thread for receiving user's input, and inputThread for receiving server's response. I am sure that server has sent the response to client, however, no response message is obtain at client. Here is my code. Can anyone help me to figure it out? Thanks package clientnio; import java.net.*; import java.nio.*; import java.io.*; import java.nio.channels.*; import java.util.Scanner; public class ClientNIO { public static int bufferLen = 50; public static SocketChannel client; public static ByteBuffer writeBuffer; public static ByteBuffer readBuffer; public static void main(String[] args) { writeBuffer = ByteBuffer.allocate(bufferLen); readBuffer = ByteBuffer.allocate(bufferLen); try { SocketAddress address = new InetSocketAddress("localhost",5505); System.out.println("Local address: "+ address); client=SocketChannel.open(address); client.configureBlocking(false); //readBuffer.flip(); new inputThread(readBuffer); /* String a="asdasdasdasddffasfas"; writeBuffer.put(a.getBytes()); writeBuffer.clear(); int d=client.write(writeBuffer); writeBuffer.flip(); */ while (true) { InputStream inStream = System.in; Scanner scan = new Scanner(inStream); if (scan.hasNext()==true) { String inputLine = scan.nextLine(); writeBuffer.put(inputLine.getBytes()); //writeBuffer.clear(); System.out.println(writeBuffer.remaining()); client.write(writeBuffer); System.out.println("Sending data: "+new String(writeBuffer.array())); writeBuffer.flip(); Thread.sleep(300); } } } catch(Exception e) { System.out.println(e); } } } class inputThread extends Thread { private ByteBuffer readBuffer; public inputThread(ByteBuffer readBuffer1) { System.out.println("Receiving thread starts."); this.readBuffer = readBuffer1; start(); } @Override public void run() { try { while (true) { readBuffer.flip(); int i=ClientNIO.client.read(readBuffer); if(i>0) { byte[] b=readBuffer.array(); System.out.println("Receiving data: "+new String(b)); //client.close(); //System.out.println("Connection closed."); //break; } Thread.sleep(100); } } catch (Exception e) { System.out.println(e); } } }

    Read the article

  • Examples of bad variable names and reasons [on hold]

    - by user470184
    I'll start with a class in the jdk package : public final class Sdp { should be : public final class SocketsDirectProtocol { Sdp is class name, this is ambigious, should be : Class<?> cl = Class.forName("java.net.SdpSocketImpl", true, null); should be : Class<?> clazz = Class.forName("java.net.SdpSocketImpl", true, null); cl is ambiguous private static void setAccessible(final AccessibleObject o) { should be : private static void setAccessible(final AccessibleObject accessibleObject) { There are various other examples in this class, do you have similar and/or differing examples of variables that were named badly ? package com.oracle.net; public final class Sdp { private Sdp() { } /** * The package-privage ServerSocket(SocketImpl) constructor */ private static final Constructor<ServerSocket> serverSocketCtor; static { try { serverSocketCtor = (Constructor<ServerSocket>) ServerSocket.class.getDeclaredConstructor(SocketImpl.class); setAccessible(serverSocketCtor); } catch (NoSuchMethodException e) { throw new AssertionError(e); } } /** * The package-private SdpSocketImpl() constructor */ private static final Constructor<SocketImpl> socketImplCtor; static { try { Class<?> cl = Class.forName("java.net.SdpSocketImpl", true, null); socketImplCtor = (Constructor<SocketImpl>)cl.getDeclaredConstructor(); setAccessible(socketImplCtor); } catch (ClassNotFoundException e) { throw new AssertionError(e); } catch (NoSuchMethodException e) { throw new AssertionError(e); } } private static void setAccessible(final AccessibleObject o) { AccessController.doPrivileged(new PrivilegedAction<Void>() { public Void run() { o.setAccessible(true); return null; } }); } /** * SDP enabled Socket. */ private static class SdpSocket extends Socket { SdpSocket(SocketImpl impl) throws SocketException { super(impl); } } /** * Creates a SDP enabled SocketImpl */ private static SocketImpl createSocketImpl() { try { return socketImplCtor.newInstance(); } catch (InstantiationException x) { throw new AssertionError(x); } catch (IllegalAccessException x) { throw new AssertionError(x); } catch (InvocationTargetException x) { throw new AssertionError(x); } } /** * Creates an unconnected and unbound SDP socket. The {@code Socket} is * associated with a {@link java.net.SocketImpl} of the system-default type. * * @return a new Socket * * @throws UnsupportedOperationException * If SDP is not supported * @throws IOException * If an I/O error occurs */ public static Socket openSocket() throws IOException { SocketImpl impl = createSocketImpl(); return new SdpSocket(impl); } /** * Creates an unbound SDP server socket. The {@code ServerSocket} is * associated with a {@link java.net.SocketImpl} of the system-default type. * * @return a new ServerSocket * * @throws UnsupportedOperationException * If SDP is not supported * @throws IOException * If an I/O error occurs */ public static ServerSocket openServerSocket() throws IOException { // create ServerSocket via package-private constructor SocketImpl impl = createSocketImpl(); try { return serverSocketCtor.newInstance(impl); } catch (IllegalAccessException x) { throw new AssertionError(x); } catch (InstantiationException x) { throw new AssertionError(x); } catch (InvocationTargetException x) { Throwable cause = x.getCause(); if (cause instanceof IOException) throw (IOException)cause; if (cause instanceof RuntimeException) throw (RuntimeException)cause; throw new RuntimeException(x); } } /** * Opens a socket channel to a SDP socket. * * <p> The channel will be associated with the system-wide default * {@link java.nio.channels.spi.SelectorProvider SelectorProvider}. * * @return a new SocketChannel * * @throws UnsupportedOperationException * If SDP is not supported or not supported by the default selector * provider * @throws IOException * If an I/O error occurs. */ public static SocketChannel openSocketChannel() throws IOException { FileDescriptor fd = SdpSupport.createSocket(); return sun.nio.ch.Secrets.newSocketChannel(fd); } /** * Opens a socket channel to a SDP socket. * * <p> The channel will be associated with the system-wide default * {@link java.nio.channels.spi.SelectorProvider SelectorProvider}. * * @return a new ServerSocketChannel * * @throws UnsupportedOperationException * If SDP is not supported or not supported by the default selector * provider * @throws IOException * If an I/O error occurs */ public static ServerSocketChannel openServerSocketChannel() throws IOException { FileDescriptor fd = SdpSupport.createSocket(); return sun.nio.ch.Secrets.newServerSocketChannel(fd); } }

    Read the article

  • Why do IOExceptions occur in ReadableByteChannel.read()

    - by Steffen Heil
    Hi The specification of ReadableByteChannel.read() shows -1 as result value for end-of-stream. Moreover it specifies ClosedByInterruptExceptionas possible result if the thread is interrupted. Now I thought that would be all - and it is most of the time. However, now and then I get the following: java.io.IOException: Eine vorhandene Verbindung wurde vom Remotehost geschlossen at sun.nio.ch.SocketDispatcher.read0(Native Method) at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:25) at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:233) at sun.nio.ch.IOUtil.read(IOUtil.java:206) at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:236) at ... I do not unterstand why I don't get -1 in this case. Also this is not a clean exception, as I cannot catch it without catching any possible IOException. So here are my questions: Why is this exception thrown in the first place? Is it safe to assume that ANY exception thrown by read are about the socket being closed? Is all this the same for write()? And by the way: If I call SocketChannel.close() do I have to call SocketChannel.socket().close() as well or is this implied by the earlier? Thanks, Steffen

    Read the article

  • Specify connection timeout in java.nio

    - by miorel
    Using non-blocking I/O, the code for connecting to a remote address looks something like: SocketChannel channel = SelectorProvider.provider().openSocketChannel(); channel.configureBlocking(false); channel.connect(address); The connection process will then have to be finished by invoking finishConnect() on the channel when some selector says the corresponding key isConnectable(). Is there a way to specify the connection timeout when using this idiom?

    Read the article

  • Java blocking socket returning incomplete ByteBuffer

    - by evandro-carrenho
    I have a socketChannel configured as blocking, but when reading byte buffers of 5K from this socket, I get an incomplete buffer sometimes. ByteBuffer messageBody = ByteBuffer.allocate(5*1024); messageBody.mark(); messageBody.order(ByteOrder.BIG_ENDIAN); int msgByteCount = channel.read(messageBody); Ocasionally, messageBody is not completely filled and channel.read() does not return -1 or an exception, but the actual number of bytes read (which is less than 5k). Has anyone experienced a similar problem?

    Read the article

  • Mixing NIO with IO

    - by Steffen Heil
    Hi Usually you have a single bound tcp port and several connections on these. At least there are usually more connections as bound ports. My case is different: I want to bind a lot of ports and usually have no (or at least very few) connections. So I want to use NIO to accept the incoming connections. However, I need to pass the accepted connections to the existing jsch ssh library. That requires IO sockets instead of NIO sockets, it spawns one (or two) thread(s) per connection. But that's fine for me. Now, I thought that the following lines would deliver the very same result: Socket a = serverSocketChannel.accept().socket(); Socket b = serverSocketChannel.socket().accep(); SocketChannel channel = serverSocketChannel.accpet(); channel.configureBlocking( true ); Socket c = channel.socket(); Socket d = serverSocket.accept(); However the getInputStream() and getOutputStream() functions of the returned sockets seem to work different. Only if the socket was accepted using the last call, jsch can work with it. In the first three cases, it fails (and I am sorry: I don't know why). So is there a way to convert such a socket? Regards, Steffen

    Read the article

  • Parsing HTTP - Bytes.length != String.length

    - by hotzen
    Hello, I consume HTTP via nio.SocketChannel, so I get chunks of data as Array[Byte]. I want to put these chunks into a parser and continue parsing after each chunk has been put. HTTP itself seems to use an ISO8859-Charset but the Payload/Body itself may be arbitrarily encoded: If the HTTP Content-Length specifies X bytes, the UTF8-decoded Body may have much less Characters (1 Character may be represented in UTF8 by 2 bytes, etc). So what is a good parsing strategy to honor an explicitly specified Content-Length and/or a Transfer-Encoding: Chunked which specifies a chunk-length to be honored. append each data-chunk to an mutable.ArrayBuffer[Byte], search for CRLF in the bytes, decode everything from 0 until CRLF to String and match with Regular-Expressions like StatusRegex, HeaderRegex, etc? decode each data-chunk with the proper charset (e.g. iso8859, utf8, etc) and add to StringBuilder. With this solution I am not able to honor any Content-Length or Chunk-Size, but.. do I have to care for it? any other solution... ?

    Read the article

  • Problem with a blocking network task

    - by user326967
    Hello everyone. I'm new in Java so please forgive any obscene errors that I may make :) I'm developing a program in Java that among other things it should also handle clients that will connect to a server. The server has 3 threads running, and I have created them in the following way : DaemonForUI du; DaemonForPort da; DaemonForCheck dc; da = new DaemonForPort(3); dc = new DaemonForCheck(5); du = new DaemonForUI(7); Thread t_port = new Thread(da); Thread t_check = new Thread(dc); Thread t_ui = new Thread(du); t_port.setName("v1.9--PORTd"); t_check.setName("v1.9-CHECKd"); t_ui.setName("v1.9----UId"); t_port.start(); t_check.start(); t_ui.start(); Each thread handles a different aspect of the complete program. The thread t_ui is responsible to accept asynchronous incoming connections from clients, process the sent data and send other data back to the client. When I remove all the commands from the previous piece of code that has to with the t_ui thread, everything runs ok which in my case means that the other threads are printing their debug messages. If I set the t_ui thread to run too, then the whole program blocks at the "accept" of the t_ui thread. After reading at online manuals I saw that the accepted connections should be non-blocking, therefore use something like that : public ServerSocketChannel ssc = null; ssc = ServerSocketChannel.open(); ssc.socket().bind(new InetSocketAddress(port)); ssc.configureBlocking(false); SocketChannel sc = ssc.accept(); if (sc == null) { ; } else { System.out.println("The server and client are connected!"); System.out.println("Incoming connection from: " + sc.socket().getRemoteSocketAddress()); in = new DataInputStream(new BufferedInputStream(sc.socket().getInputStream())); out = new DataOutputStream(new BufferedOutputStream(sc.socket().getOutputStream())); //other magic things take place after that point... The thread for t_ui is created as follows : class DaemonForUI implements Runnable{ private int cnt; private int rr; public ListenerForUI serverListener; public DaemonForUI(int rr){ cnt = 0; this.rr = rr; serverListener = new ListenerForUI(); } public static String getCurrentTime() { final String DATE_FORMAT_NOW = "yyyy-MM-dd HH:mm:ss"; Calendar cal = Calendar.getInstance(); SimpleDateFormat sdf = new SimpleDateFormat(DATE_FORMAT_NOW); return (sdf.format(cal.getTime())); } public void run() { while(true) { System.out.println(Thread.currentThread().getName() + "\t (" + cnt + ")\t (every " + rr + " sec) @ " + getCurrentTime()); try{ Thread.sleep(rr * 1000); cnt++; } catch (InterruptedException e){ e.printStackTrace(); } } } } Obviously, I'm doing something wrong at the creation of the socket or at the use of the thread. Do you know what is causing the problem? Every help would be greatly appreciated.

    Read the article

  • Trying to packetize TCP with non-blocking IO is hard! Am I doing something wrong?

    - by Ricket
    Oh how I wish TCP was packet-based like UDP is! But alas, that's not the case, so I'm trying to implement my own packet layer. Here's the chain of events so far (ignoring writing packets) Oh, and my Packets are very simply structured: two unsigned bytes for length, and then byte[length] data. (I can't imagine if they were any more complex, I'd be up to my ears in if statements!) Server is in an infinite loop, accepting connections and adding them to a list of Connections. PacketGatherer (another thread) uses a Selector to figure out which Connection.SocketChannels are ready for reading. It loops over the results and tells each Connection to read(). Each Connection has a partial IncomingPacket and a list of Packets which have been fully read and are waiting to be processed. On read(): Tell the partial IncomingPacket to read more data. (IncomingPacket.readData below) If it's done reading (IncomingPacket.complete()), make a Packet from it and stick the Packet into the list waiting to be processed and then replace it with a new IncomingPacket. There are a couple problems with this. First, only one packet is being read at a time. If the IncomingPacket needs only one more byte, then only one byte is read this pass. This can of course be fixed with a loop but it starts to get sorta complicated and I wonder if there is a better overall way. Second, the logic in IncomingPacket is a little bit crazy, to be able to read the two bytes for the length and then read the actual data. Here is the code, boiled down for quick & easy reading: int readBytes; // number of total bytes read so far byte length1, length2; // each byte in an unsigned short int (see getLength()) public int getLength() { // will be inaccurate if readBytes < 2 return (int)(length1 << 8 | length2); } public void readData(SocketChannel c) { if (readBytes < 2) { // we don't yet know the length of the actual data ByteBuffer lengthBuffer = ByteBuffer.allocate(2 - readBytes); numBytesRead = c.read(lengthBuffer); if(readBytes == 0) { if(numBytesRead >= 1) length1 = lengthBuffer.get(); if(numBytesRead == 2) length2 = lengthBuffer.get(); } else if(readBytes == 1) { if(numBytesRead == 1) length2 = lengthBuffer.get(); } readBytes += numBytesRead; } if(readBytes >= 2) { // then we know we have the entire length variable // lazily-instantiate data buffers based on getLength() // read into data buffers, increment readBytes // (does not read more than the amount of this packet, so it does not // need to handle overflow into the next packet's data) } } public boolean complete() { return (readBytes > 2 && readBytes == getLength()+2); } Basically I need feedback on my code. Please suggest any improvements. Even overhauling my entire system would be okay, if you have suggestions for how better to implement the whole thing. Book recommendations are welcome too; I love books. I just get the feeling that something isn't quite right.

    Read the article

  • HDFS some datanodes of cluster are suddenly disconnected while reducers are running

    - by user1429825
    I have 8 slave computers and 1 master computer for running Hadoop (ver 0.21) some datanodes of cluster are suddenly disconnected while I was running MapReduce code on 10GB data After all mappers finished and around 80% of reducers was processed, randomly one or more datanode disconned from network. and then the other datanodes start to disappear from network even if I killed the MapReduce job when I found some datanode was disconnected. I've tried to change dfs.datanode.max.xcievers to 4096, turned off fire-walls of all computing node, disabled selinux and increased the number of file open limit to 20000 but they didn't work at all... anyone have a idea to solve this problem? followings are error log from mapreduce 12/06/01 12:31:29 INFO mapreduce.Job: Task Id : attempt_201206011227_0001_r_000006_0, Status : FAILED java.io.IOException: Bad connect ack with firstBadLink as ***.***.***.148:20010 at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.createBlockOutputStream(DFSOutputStream.java:889) at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.nextBlockOutputStream(DFSOutputStream.java:820) at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:427) and followings are logs from datanode 2012-06-01 13:01:01,118 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: Receiving block blk_-5549263231281364844_3453 src: /*.*.*.147:56205 dest: /*.*.*.142:20010 2012-06-01 13:01:01,136 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: DatanodeRegistration(*.*.*.142:20010, storageID=DS-1534489105-*.*.*.142-20010-1337757934836, infoPort=20075, ipcPort=20020) Starting thread to transfer block blk_-3849519151985279385_5906 to *.*.*.147:20010 2012-06-01 13:01:19,135 WARN org.apache.hadoop.hdfs.server.datanode.DataNode: DatanodeRegistration(*.*.*.142:20010, storageID=DS-1534489105-*.*.*.142-20010-1337757934836, infoPort=20075, ipcPort=20020):Failed to transfer blk_-5797481564121417802_3453 to *.*.*.146:20010 got java.net.ConnectException: > Connection timed out at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method) at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:701) at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206) at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:373) at org.apache.hadoop.hdfs.server.datanode.DataNode$DataTransfer.run(DataNode.java:1257) at java.lang.Thread.run(Thread.java:722) 2012-06-01 13:06:20,342 INFO org.apache.hadoop.hdfs.server.datanode.DataBlockScanner: Verification succeeded for blk_6674438989226364081_3453 2012-06-01 13:09:01,781 WARN org.apache.hadoop.hdfs.server.datanode.DataNode: DatanodeRegistration(*.*.*.142:20010, storageID=DS-1534489105-*.*.*.142-20010-1337757934836, infoPort=20075, ipcPort=20020):Failed to transfer blk_-3849519151985279385_5906 to *.*.*.147:20010 got java.net.SocketTimeoutException: 480000 millis timeout while waiting for channel to be ready for write. ch : java.nio.channels.SocketChannel[connected local=/*.*.*.142:60057 remote=/*.*.*.147:20010] at org.apache.hadoop.net.SocketIOWithTimeout.waitForIO(SocketIOWithTimeout.java:246) at org.apache.hadoop.net.SocketOutputStream.waitForWritable(SocketOutputStream.java:164) at org.apache.hadoop.net.SocketOutputStream.transferToFully(SocketOutputStream.java:203) at org.apache.hadoop.hdfs.server.datanode.BlockSender.sendChunks(BlockSender.java:388) at org.apache.hadoop.hdfs.server.datanode.BlockSender.sendBlock(BlockSender.java:476) at org.apache.hadoop.hdfs.server.datanode.DataNode$DataTransfer.run(DataNode.java:1284) at java.lang.Thread.run(Thread.java:722) hdfs-site.xml <configuration> <property> <name>dfs.name.dir</name> <value>/home/hadoop/data/name</value> </property> <property> <name>dfs.data.dir</name> <value>/home/hadoop/data/hdfs1,/home/hadoop/data/hdfs2,/home/hadoop/data/hdfs3,/home/hadoop/data/hdfs4,/home/hadoop/data/hdfs5</value> </property> <property> <name>dfs.replication</name> <value>3</value> </property> <property> <name>dfs.datanode.max.xcievers</name> <value>4096</value> </property> <property> <name>dfs.http.address</name> <value>0.0.0.0:20070</value> <description>50070 The address and the base port where the dfs namenode web ui will listen on. If the port is 0 then the server will start on a free port. </description> </property> <property> <name>dfs.datanode.http.address</name> <value>0.0.0.0:20075</value> <description>50075 The datanode http server address and port. If the port is 0 then the server will start on a free port. </description> </property> <property> <name>dfs.secondary.http.address</name> <value>0.0.0.0:20090</value> <description>50090 The secondary namenode http server address and port. If the port is 0 then the server will start on a free port. </description> </property> <property> <name>dfs.datanode.address</name> <value>0.0.0.0:20010</value> <description>50010 The address where the datanode server will listen to. If the port is 0 then the server will start on a free port. </description> <property> <name>dfs.datanode.ipc.address</name> <value>0.0.0.0:20020</value> <description>50020 The datanode ipc server address and port. If the port is 0 then the server will start on a free port. </description> </property> <property> <name>dfs.datanode.https.address</name> <value>0.0.0.0:20475</value> </property> <property> <name>dfs.https.address</name> <value>0.0.0.0:20470</value> </property> </configuration> mapred-site.xml <configuration> <property> <name>mapred.job.tracker</name> <value>masternode:29001</value> </property> <property> <name>mapred.system.dir</name> <value>/home/hadoop/data/mapreduce/system</value> </property> <property> <name>mapred.local.dir</name> <value>/home/hadoop/data/mapreduce/local</value> </property> <property> <name>mapred.map.tasks</name> <value>32</value> <description> default number of map tasks per job.</description> </property> <property> <name>mapred.tasktracker.map.tasks.maximum</name> <value>4</value> </property> <property> <name>mapred.reduce.tasks</name> <value>8</value> <description> default number of reduce tasks per job.</description> </property> <property> <name>mapred.map.child.java.opts</name> <value>-Xmx2048M</value> </property> <property> <name>io.sort.mb</name> <value>500</value> </property> <property> <name>mapred.task.timeout</name> <value>1800000</value> <!-- 30 minutes --> </property> <property> <name>mapred.job.tracker.http.address</name> <value>0.0.0.0:20030</value> <description> 50030 The job tracker http server address and port the server will listen on. If the port is 0 then the server will start on a free port. </description> </property> <property> <name>mapred.task.tracker.http.address</name> <value>0.0.0.0:20060</value> <description> 50060 </property> </configuration>

    Read the article

1