Search Results

Search found 3295 results on 132 pages for 'solaris cluster'.

Page 1/132 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Solaris 11 Launch Blog Carnival Roundup

    - by constant
    Solaris 11 is here! And together with the official launch activities, a lot of Oracle and non-Oracle bloggers contributed helpful and informative blog articles to help your datacenter go to eleven. Here are some notable blog postings, sorted by category for your Solaris 11 blog-reading pleasure: Getting Started/Overview A lot of people speculated that the official launch of Solaris 11 would be on 11/11 (whatever way you want to turn it), but it actually happened two days earlier. Larry Wake himself offers 11 Reasons Why Oracle Solaris 11 11/11 Isn't Being Released on 11/11/11. Then, Larry goes on with a summary: Oracle Solaris 11: The First Cloud OS gives you a short and sweet rundown of what the major new features of Solaris 11 are. Jeff Victor has his own list of What's New in Oracle Solaris 11. A popular Solaris 11 meme is to write a blog post about 11 favourite features: Jim Laurent's 11 Reasons to Love Solaris 11, Darren Moffat's 11 Favourite Solaris 11 Features, Mike Gerdt's 11 of My Favourite Things! are just three examples of "11 Favourite Things..." type blog posts, I'm sure many more will follow... More official overview content for Solaris 11 is available from the Oracle Tech Network Solaris 11 Portal. Also, check out Rick Ramsey's blog post Solaris 11 Resources for System Administrators on the OTN Blog and his secret 5 Commands That Make Solaris Administration Easier post from the OTN Garage. (Automatic) Installation and the Image Packaging System (IPS) The brand new Image Packaging System (IPS) and the Automatic Installer (IPS), together with numerous other install/packaging/boot/patching features are among the most significant improvements in Solaris 11. But before installing, you may wonder whether Solaris 11 will support your particular set of hardware devices. Again, the OTN Garage comes to the rescue with Rick Ramsey's post How to Find Out Which Devices Are Supported By Solaris 11. Included is a useful guide to all the first steps to get your Solaris 11 system up and running. Tim Foster had a whole handful of blog posts lined up for the launch, teaching you everything you need to know about IPS but didn't dare to ask: The IPS System Repository, IPS Self-assembly - Part 1: Overlays and Part 2: Multiple Packages Delivering Configuration. Watch out for more IPS posts from Tim! If installing packages or upgrading your system from the net makes you uneasy, then you're not alone: Jim Laurent will tech you how Building a Solaris 11 Repository Without Network Connection will make your life easier. Many of you have already peeked into the future by installing Solaris 11 Express. If you're now wondering whether you can upgrade or whether a fresh install is necessary, then check out Alan Hargreaves's post Upgrading Solaris 11 Express b151a with support to Solaris 11. The trick is in upgrading your pkg(1M) first. Networking One of the first things to do after installing Solaris 11 (or any operating system for that matter), is to set it up for networking. Solaris 11 comes with the brand new "Network Auto-Magic" feature which can figure out everything by itself. For those cases where you want to exercise a little more control, Solaris 11 left a few people scratching their heads. Fortunately, Tschokko wrote up this cool blog post: Solaris 11 manual IPv4 & IPv6 configuration right after the launch ceremony. Thanks, Tschokko! And Milek points out a long awaited networking feature in Solaris 11 called Solaris 11 - hostmodel, which I know for a fact that many customers have looked forward to: How to "bind" a Solaris 11 system to a specific gateway for specific IP address it is using. Steffen Weiberle teaches us how to tune the Solaris 11 networking stack the proper way: ipadm(1M). No more fiddling with ndd(1M)! Check out his tutorial on Solaris 11 Network Tunables. And if you want to get even deeper into the networking stack, there's nothing better than DTrace. Alan Maguire teaches you in: DTracing TCP Congestion Control how to probe deeply into the Solaris 11 TCP/IP stack, the TCP congestion control part in particular. Don't miss his other DTrace and TCP related blog posts! DTrace And there we are: DTrace, the king of all observability tools. Long time DTrace veteran and co-author of The DTrace book*, Brendan Gregg blogged about Solaris 11 DTrace syscall provider changes. BTW, after you install Solaris 11, check out the DTrace toolkit which is installed by default in /usr/dtrace/DTT. It is chock full of handy DTrace scripts, many of which contributed by Brendan himself! Security Another big theme in Solaris 11, and one that is crucial for the success of any operating system in the Cloud is Security. Here are some notable posts in this category: Darren Moffat starts by showing us how to completely get rid of root: Completely Disabling Root Logins on Solaris 11. With no root user, there's one major entry point less to worry about. But that's only the start. In Immutable Zones on Encrypted ZFS, Darren shows us how to double the security of your services: First by locking them into the new Immutable Zones feature, then by encrypting their data using the new ZFS encryption feature. And if you're still missing sudo from your Linux days, Darren again has a solution: Password (PAM) caching for Solaris su - "a la sudo". If you're wondering how much compute power all this encryption will cost you, you're in luck: The Solaris X86 AESNI OpenSSL Engine will make sure you'll use your Intel's embedded crypto support to its fullest. And if you own a brand new SPARC T4 machine you're even luckier: It comes with its own SPARC T4 OpenSSL Engine. Dan Anderson's posts show how there really is now excuse not to encrypt any more... Developers Solaris 11 has a lot to offer to developers as well. Ali Bahrami has a series of blog posts that cover diverse developer topics: elffile: ELF Specific File Identification Utility, Using Stub Objects and The Stub Proto: Not Just For Stub Objects Anymore to name a few. BTW, if you're a developer and want to shape the future of Solaris 11, then Vijay Tatkar has a hint for you: Oracle (Sun Systems Group) is hiring! Desktop and Graphics Yes, Solaris 11 is a 100% server OS, but it can also offer a decent desktop environment, especially if you are a developer. Alan Coopersmith starts by discussing S11 X11: ye olde window system in today's new operating system, then Calum Benson shows us around What's new on the Solaris 11 Desktop. Even accessibility is a first-class citizen in the Solaris 11 user interface. Peter Korn celebrates: Accessible Oracle Solaris 11 - released! Performance Gone are the days of "Slowaris", when Solaris was among the few OSes that "did the right thing" while others cut corners just to win benchmarks. Today, Solaris continues doing the right thing, and it delivers the right performance at the same time. Need proof? Check out Brian's BestPerf blog with continuous updates from the benchmarking lab, including Recent Benchmarks Using Oracle Solaris 11! Send Me More Solaris 11 Launch Articles! These are just a few of the more interesting blog articles that came out around the Solaris 11 launch, I'm sure there are many more! Feel free to post a comment below if you find a particularly interesting blog post that hasn't been listed so far and share your enthusiasm for Solaris 11! *Affiliate link: Buy cool stuff and support this blog at no extra cost. We both win! var flattr_uid = '26528'; var flattr_tle = 'Solaris 11 Launch Blog Carnival Roundup'; var flattr_dsc = '<strong>Solaris 11 is here!</strong>And together with the official launch activities, a lot of Oracle and non-Oracle bloggers contributed helpful and informative blog articles to help your datacenter <a href="http://en.wikipedia.org/wiki/Up_to_eleven">go to eleven</a>.Here are some notable blog postings, sorted by category for your Solaris 11 blog-reading pleasure:'; var flattr_tag = 'blogging,digest,Oracle,Solaris,solaris,solaris 11'; var flattr_cat = 'text'; var flattr_url = 'http://constantin.glez.de/blog/2011/11/solaris-11-launch-blog-carnival-roundup'; var flattr_lng = 'en_GB'

    Read the article

  • How to configure a zone cluster on Solaris Cluster 4.0

    - by JuergenS
    This is a short overview on how to configure a zone cluster on Solaris Cluster 4.0. This is a little bit different as in Solaris Cluster 3.2/3.3 because Solaris Cluster 4.0 is only running on Solaris 11. The name of the zone cluster must be unique throughout the global Solaris Cluster and must be configured on a global Solaris Cluster. Please read all the requirements for zone cluster in Solaris Cluster Software Installation Guide for SC4.0. For Solaris Cluster 3.2/3.3 please refer to my previous blog Configuration steps to create a zone cluster in Solaris Cluster 3.2/3.3. A. Configure the zone cluster into the already running global clusterCheck if zone cluster can be created # cluster show-netprops to change number of zone clusters use # cluster set-netprops -p num_zoneclusters=12 Note: 12 zone clusters is the default, values can be customized! Create config file (zc1config) for zone cluster setup e.g: Configure zone cluster # clzc configure -f zc1config zc1 Note: If not using the config file the configuration can also be done manually # clzc configure zc1 Check zone configuration # clzc export zc1 Verify zone cluster # clzc verify zc1 Note: The following message is a notice and comes up on several clzc commands Waiting for zone verify commands to complete on all the nodes of the zone cluster "zc1"... Install the zone cluster # clzc install zc1 Note: Monitor the consoles of the global zone to see how the install proceed! (The output is different on the nodes) It's very important that all global cluster nodes have installed the same set of ha-cluster packages! Boot the zone cluster # clzc boot zc1 Login into non-global-zones of zone cluster zc1 on all nodes and finish Solaris installation. # zlogin -C zc1 Check status of zone cluster # clzc status zc1 Login into non-global-zones of zone cluster zc1 and configure the shell environment for root (for PATH: /usr/cluster/bin, for MANPATH: /usr/cluster/man) # zlogin -C zc1 If using additional name service configure /etc/nsswitch.conf of zone cluster non-global zones. hosts: cluster files netmasks: cluster files Configure /etc/inet/hosts of the zone cluster zones Enter all the logical hosts of non-global zones B. Add resource groups and resources to zone cluster Create a resource group in zone cluster # clrg create -n <zone-hostname-node1>,<zone-hostname-node2> app-rg Note1: Use command # cluster status for zone cluster resource group overview. Note2: You can also run all commands for zone cluster in global cluster by adding the option -Z to the command. e.g: # clrg create -Z zc1 -n <zone-hostname-node1>,<zone-hostname-node2> app-rg Set up the logical host resource for zone cluster In the global zone do: # clzc configure zc1 clzc:zc1 add net clzc:zc1:net set address=<zone-logicalhost-ip> clzc:zc1:net end clzc:zc1 commit clzc:zc1 exit Note: Check that logical host is in /etc/hosts file In zone cluster do: # clrslh create -g app-rg -h <zone-logicalhost> <zone-logicalhost>-rs Set up storage resource for zone cluster Register HAStoragePlus # clrt register SUNW.HAStoragePlus Example1) ZFS storage pool In the global zone do: Configure zpool eg: # zpool create <zdata> mirror cXtXdX cXtXdX and # clzc configure zc1 clzc:zc1 add dataset clzc:zc1:dataset set name=zdata clzc:zc1:dataset end clzc:zc1 verify clzc:zc1 commit clzc:zc1 exit Check setup with # clzc show -v zc1 In the zone cluster do: # clrs create -g app-rg -t SUNW.HAStoragePlus -p zpools=zdata app-hasp-rs Example2) HA filesystem In the global zone do: Configure SVM diskset and SVM devices. and # clzc configure zc1 clzc:zc1 add fs clzc:zc1:fs set dir=/data clzc:zc1:fs set special=/dev/md/datads/dsk/d0 clzc:zc1:fs set raw=/dev/md/datads/rdsk/d0 clzc:zc1:fs set type=ufs clzc:zc1:fs add options [logging] clzc:zc1:fs end clzc:zc1 verify clzc:zc1 commit clzc:zc1 exit Check setup with # clzc show -v zc1 In the zone cluster do: # clrs create -g app-rg -t SUNW.HAStoragePlus -p FilesystemMountPoints=/data app-hasp-rs Example3) Global filesystem as loopback file system In the global zone configure global filesystem and it to /etc/vfstab on all global nodes e.g.: /dev/md/datads/dsk/d0 /dev/md/datads/dsk/d0 /global/fs ufs 2 yes global,logging and # clzc configure zc1 clzc:zc1 add fs clzc:zc1:fs set dir=/zone/fs (zc-lofs-mountpoint) clzc:zc1:fs set special=/global/fs (globalcluster-mountpoint) clzc:zc1:fs set type=lofs clzc:zc1:fs end clzc:zc1 verify clzc:zc1 commit clzc:zc1 exit Check setup with # clzc show -v zc1 In the zone cluster do: (Create scalable rg if not already done) # clrg create -p desired_primaries=2 -p maximum_primaries=2 app-scal-rg # clrs create -g app-scal-rg -t SUNW.HAStoragePlus -p FilesystemMountPoints=/zone/fs hasp-rs More details of adding storage available in the Installation Guide for zone cluster Switch resource group and resources online in the zone cluster # clrg online -eM app-rg # clrg online -eM app-scal-rg Test: Switch of the resource group in the zone cluster # clrg switch -n zonehost2 app-rg # clrg switch -n zonehost2 app-scal-rg Add supported dataservice to zone cluster Documentation for SC4.0 is available here Example output: Appendix: To delete a zone cluster do: # clrg delete -Z zc1 -F + Note: Zone cluster uninstall can only be done if all resource groups are removed in the zone cluster. The command 'clrg delete -F +' can be used in zone cluster to delete the resource groups recursively. # clzc halt zc1 # clzc uninstall zc1 Note: If clzc command is not successful to uninstall the zone, then run 'zoneadm -z zc1 uninstall -F' on the nodes where zc1 is configured # clzc delete zc1

    Read the article

  • Solaris 11 ???! Oracle Solaris Cluster 4.0

    - by user12798668
    2011 ? 11 ? 9 ??????? Oracle Solaris 11 ????2011 ? 12 ? 6 ??Oracle Solaris 11 ????? Oracle Solaris Cluster 4.0 ??????????? Oracle Solaris Cluster ? Solaris ?????????????????????Sun ??? Sun Cluster ???????????? ????????Oracle Solaris Cluster ????????????????????? Oracle ?????????????????????????Oracle Solaris Cluster ?????????????????????????????????????????Oracle Solaris Cluster ???????????????????????????·??????? Geographic Edition ??????????????????? Solaris 10 ???????? Oracle Solaris Cluster ? 3.3 5/11 (Update 1) ????Solaris 11 ??????????? 4.0 ???????????Oracle Solaris Cluster 4.0 ??????????????? Solaris 11 IPS / AI ????? Solaris ????? (Solaris Zones, Oracle VM Server for SPARC) ????? Oracle Solaris Cluster Geographic Edition ????????·??????????? Oracle Solaris Cluster ??????????????????????????????Oracle Solaris Cluster ???????? Solaris ??????????????????Solaris ???????? Solaris Cluster ????????????????????????? Solaris 11 ???Solaris ???????? IPS ? ????????????? Solaris 11 ?????Oracle OpenWorld Tokyo 2012 ?????? 4/6(?) ????????????49 ????? Oracle Develop ?????????????? 4/6(?) D3-03 ?Oracle Solaris 11??????????????????(13:00 - 13:45) 4/6(?) D3-13 ??????????????????? Oracle Database?SPARC/Solaris???????????????????????? (14:00 - 14:45) 4/6(?) S2-53 ?Oracle Solaris 11 ??????????????-IPS ????????(16:00 - 17:30) ???????????!! (Oracle Develop ? Solaris ??????????????????????????????????) Oracle OpenWorld Tokyo 2012 ???? URL http://www.oracle.com/openworld/jp-ja/index.html ?????? 7264 ???????????????

    Read the article

  • Solaris OS?????????? (??????·SIer????!??????)

    - by OTN-J Master
    Solaris11???????????????2011?11??????OS????????11.1??????????2012?11???????????????OTN?Solaris11?????????????????????????????????????OTN?????????????????????????????????????????????????????????????????????IT?????????Solaris??????????????????????????????????????????Solaris???????Solaris 11?????????5???????????Solaris 11??????????????????????????????????????????????????????????????????????????????????????????????????????????????????OS????????????????????????????????????????????????OS???????????????Sun???????Solaris???????????????????????Solaris????????????????SPARC?????????????????????????????????????????????Solaris??????????????????????????????????????????Solaris???????????????????????????Oracle Database?????????????Oracle Database??????????????????????????????????????????????????????????????DB???????????Solaris??????????????????????????????????????(Solaris11.1??????????????????)???????????????????????????????????????????? ??????????????OS???????????????????? Solaris ?????????????????????????????? ?????????????????????????????????????????? Solaris????????????????????????? ???Solaris????????????Solaris???????????????????? ???????OS??????????????Solaris???????????????????1???????????????????10??????????????????????????????????????????????(??????????????????????????????????)Oracle Solaris 11: ????????·????????????????????????????·???????Oracle Solaris 11?????·?????????????????????????????????????Oracle Solaris 11????????????IT??????????????????????????????????????????????????????????????????????????????Solaris??????????????Solaris 11????????????????????????????????????Solaris 11????????????Oracle Solaris 11 ??????·????????10???????????????????????????????????????????????OTN???????????????Solaris 11?????????????????????????????????????????????????????(??????"????”??!)IBM AIX?Oracle Solaris???????·?????·???HP-UX/Oracle Solaris???????????HP-UX?Oracle Solaris 11????HP-UX ?? Oracle Solaris ???????Red Hat Enterprise Linux?Oracle Solaris 11???Red Hat Enterprise Linux??Oracle Solaris??????? ??????????????????????Oracle Solaris????????????????Solaris????????????????????????????????????????????????????????????????????”?????????????????”?????????????????????????????????????????????????????????????Solaris 11.1??? ???????????????????????????????????Solaris 11???????????????????????????????????????Solaris 11.1?????????????????????????????????????????????????·?????????x86??SPARC?????????????????x86?????????????????????????Solaris 11??????????????????????????????????????OTN?????????????????????????????????????????????????????????????????????DVD??????????????????????????????????????????????????????????(??????????????) ?????????11?14?(?)?????????????????????Oracle DBA & Developer Day??????????????Oracle Solaris?Oracle Hardware???????????????????Oracle Solaris 11????????????????Solaris 11???????????????????????????11?14?(?)?? 15:50-16:50 ?? 17:00-18:00??????????: ?????Oracle Solaris 11!Solaris???????????????????????100?????????????????????Solaris Zones?DTrace?ZFS????????????Solaris 11?100?????????????????>> ????????????

    Read the article

  • Solaris 11 Resources

    - by user12618891
    .. Oracle Solaris 11 (November, 2011) Oracle Solaris 11 Landing Page Download Oracle Solaris 11 Oracle Solaris 11 Documentation Solaris 11 End-of-Life Notices What's New in Oracle Solaris 11 (blog) Oracle Solaris 11 Feature Demo Videos (blog) Solaris 11 Developer Resources (November, 2011) Oracle Solaris 11 ISV Adoption Guide Oracle Solaris 11 Preflight Checker The IPS System Repository (blog) Packaging and Delivering Software with the Image Packaging System - A Developer's Guide How to Create and Publish packages to an IPS Repository on Solaris 11 Solaris 10 Branded zone VM Templates for Solaris 11 (blog) Oracle Solaris 11 Security: What's New For Developers Optimizing Application with Oracle Solaris Studio Tools and CompilersOther Solaris 11 Technology Spotlights (Landing Page)

    Read the article

  • Virtualization in Solaris 11 Express

    - by lynn.rohrer(at)oracle.com
    In Oracle Solaris 10 we introduced Oracle Solaris Containers -- lightweight virtual application environments that allow you to consolidate your Oracle Solaris applications onto a single Oracle Solaris server and make the most of your system resources.The majority of our customers are now using Oracle Solaris Containers on their enterprise systems for applications ranging from web servers to Oracle Database installations. We can also make these Containers highly available with Oracle Solaris Cluster, the industry's first virtualization-aware enterprise cluster product. Using Oracle Solaris Cluster you can failover applications in a Container to another Container on a single system or across systems for additional availability.We've added significant features in Oracle Solaris 11 Express to improve and extend the Oracle Solaris Zone model:Integration of Zones with our new Solaris 11 packaging system (aka Image Packaging System) to provide easy software updates within a zoneSupport for Oracle Solaris 10 Zones to run your Solaris 10 applications unaltered on an Oracle Solaris 11 Express systemIntegration with the new Oracle Solaris 11 network stack architecture (more on this in a future blog post)Improved observability with the zonestat management interface and commandsDelegated administration rights for owners of individual non-global zonesTight integration with Oracle Solaris ZFS to allow dedicated datasets per zoneWith ZFS as the default file system we can now provide easy to manage Boot Environments for zonesThis quick summary is just to whet your appetite to learn more about Oracle Solaris 11 Express Zones enhancements. Fortunately we can serve a full meal at the Oracle Solaris 11 Express Technology Spotlight on Virtualization page on the Oracle Technical Network.

    Read the article

  • New MySQL Cluster 7.3 Previews: Foreign Keys, NoSQL Node.js API and Auto-Tuned Clusters

    - by Mat Keep
    At this weeks MySQL Connect conference, Oracle previewed an exciting new wave of developments for MySQL Cluster, further extending its simplicity and flexibility by expanding the range of use-cases, adding new NoSQL options, and automating configuration. What’s new: Development Release 1: MySQL Cluster 7.3 with Foreign Keys Early Access “Labs” Preview: MySQL Cluster NoSQL API for Node.js Early Access “Labs” Preview: MySQL Cluster GUI-Based Auto-Installer In this blog, I'll introduce you to the features being previewed. Review the blogs listed below for more detail on each of the specific features discussed. Save the date!: A live webinar is scheduled for Thursday 25th October at 0900 Pacific Time / 1600UTC where we will discuss each of these enhancements in more detail. Registration will be open soon and published to the MySQL webinars page MySQL Cluster 7.3: Development Release 1 The first MySQL Cluster 7.3 Development Milestone Release (DMR) previews Foreign Keys, bringing powerful new functionality to MySQL Cluster while eliminating development complexity. Foreign Key support has been one of the most requested enhancements to MySQL Cluster – enabling users to simplify their data models and application logic – while extending the range of use-cases for both custom projects requiring referential integrity and packaged applications, such as eCommerce, CRM, CMS, etc. Implementation The Foreign Key functionality is implemented directly within the MySQL Cluster data nodes, allowing any client API accessing the cluster to benefit from them – whether they are SQL or one of the NoSQL interfaces (Memcached, C++, Java, JPA, HTTP/REST or the new Node.js API - discussed later.) The core referential actions defined in the SQL:2003 standard are implemented: CASCADE RESTRICT NO ACTION SET NULL In addition, the MySQL Cluster implementation supports the online adding and dropping of Foreign Keys, ensuring the Cluster continues to serve both read and write requests during the operation.  This represents a further enhancement to MySQL Cluster's support for on0line schema changes, ie adding and dropping indexes, adding columns, etc.  Read this blog for a demonstration of using Foreign Keys with MySQL Cluster.  Getting Started with MySQL Cluster 7.3 DMR1: Users can download either the source or binary and evaluate the MySQL Cluster 7.3 DMR with Foreign Keys now! (Select the Development Release tab). MySQL Cluster NoSQL API for Node.js Node.js is hot! In a little over 3 years, it has become one of the most popular environments for developing next generation web, cloud, mobile and social applications. Bringing JavaScript from the browser to the server, the design goal of Node.js is to build new real-time applications supporting millions of client connections, serviced by a single CPU core. Making it simple to further extend the flexibility and power of Node.js to the database layer, we are previewing the Node.js Javascript API for MySQL Cluster as an Early Access release, available for download now from http://labs.mysql.com/. Select the following build: MySQL-Cluster-NoSQL-Connector-for-Node-js Alternatively, you can clone the project at the MySQL GitHub page.  Implemented as a module for the V8 engine, the new API provides Node.js with a native, asynchronous JavaScript interface that can be used to both query and receive results sets directly from MySQL Cluster, without transformations to SQL. Figure 1: MySQL Cluster NoSQL API for Node.js enables end-to-end JavaScript development Rather than just presenting a simple interface to the database, the Node.js module integrates the MySQL Cluster native API library directly within the web application itself, enabling developers to seamlessly couple their high performance, distributed applications with a high performance, distributed, persistence layer delivering 99.999% availability. The new Node.js API joins a rich array of NoSQL interfaces available for MySQL Cluster. Whichever API is chosen for an application, SQL and NoSQL can be used concurrently across the same data set, providing the ultimate in developer flexibility.  Get started with MySQL Cluster NoSQL API for Node.js tutorial MySQL Cluster GUI-Based Auto-Installer Compatible with both MySQL Cluster 7.2 and 7.3, the Auto-Installer makes it simple for DevOps teams to quickly configure and provision highly optimized MySQL Cluster deployments – whether on-premise or in the cloud. Implemented with a standard HTML GUI and Python-based web server back-end, the Auto-Installer intelligently configures MySQL Cluster based on application requirements and auto-discovered hardware resources Figure 2: Automated Tuning and Configuration of MySQL Cluster Developed by the same engineering team responsible for the MySQL Cluster database, the installer provides standardized configurations that make it simple, quick and easy to build stable and high performance clustered environments. The auto-installer is previewed as an Early Access release, available for download now from http://labs.mysql.com/, by selecting the MySQL-Cluster-Auto-Installer build. You can read more about getting started with the MySQL Cluster auto-installer here. Watch the YouTube video for a demonstration of using the MySQL Cluster auto-installer Getting Started with MySQL Cluster If you are new to MySQL Cluster, the Getting Started guide will walk you through installing an evaluation cluster on a singe host (these guides reflect MySQL Cluster 7.2, but apply equally well to 7.3 and the Early Access previews). Or use the new MySQL Cluster Auto-Installer! Download the Guide to Scaling Web Databases with MySQL Cluster (to learn more about its architecture, design and ideal use-cases). Post any questions to the MySQL Cluster forum where our Engineering team and the MySQL Cluster community will attempt to assist you. Post any bugs you find to the MySQL bug tracking system (select MySQL Cluster from the Category drop-down menu) And if you have any feedback, please post them to the Comments section here or in the blogs referenced in this article. Summary MySQL Cluster 7.2 is the GA, production-ready release of MySQL Cluster. The first Development Release of MySQL Cluster 7.3 and the Early Access previews give you the opportunity to preview and evaluate future developments in the MySQL Cluster database, and we are very excited to be able to share that with you. Let us know how you get along with MySQL Cluster 7.3, and other features that you want to see in future releases, by using the comments of this blog.

    Read the article

  • ????????????????? Oracle Solaris ??? - Solaris 11 ????(??)

    - by kazun
    ???????????????? OS ????????????????????? 20 ??????????????????? Solaris?????????????????????? OS????????????????????????Solaris ???????????????????? ??????Oracle Solaris ??????????????6??????????????????Oracle Solaris ?????????????????????? [????????????] ?????(????????????? ???)?????(??????????????)?????(??????????????)?????(????????)???? ?(?????????????????)?????(???????????)(50??) Solaris????? ??: Solaris ??????????????????????????????????????Solaris ??Solaris ???????????????????????????? 10 ??? Solaris ?????????????????????? OS ?????????????????????????????????????????????????????????????? OS ???? Solaris ?????? ??: Solaris ????????????????????????????OS?????????????????????????????????????????????????????????????????????????????????? ???: ??????????????????????? 15 ??????????????????????????????????????????? Solaris ???????????????????????????????????????????????????????????5 ???10 ??????????????????????????? Solaris ???????????? ??: ??? Solaris ????????????????????????????????????????????????????????????????????????????????????????????? OS ?????????????????????????????????????????????????????????????????????????????????????????????? ??: ??????? OS ?????????????????????????????????????????????????????????????????????????DTrace ????????????????????????????? Solaris ???????? ???: 1980 ?????Sun ???????OS???????????????????????????????????????????????????????????????????????????????? ?Solaris ????1988?????Sun ? AT&T ? System V Release 4.0 ?????????????Sun ????????? System V Release 4.0 ?????????? Unix OS ??? SunOS 5.0(?? 1992 ????????? Solaris 2.0)???????????????????? SMP ?????????????????????????????????????????????????????Solaris 2.0 ?????????????? OS ????????(?)???????????????????????????????? 2.1, 2.2, 2.3 ??????????? 2.0 ????????????????? ??: Solaris ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????OS?????????? ??: ????????????????????????? ???: ????????????????? OS ??????????? x86 ? SPARC ? 2 ???????????????????????????????????????????????????????????????????????????????????????????????? CPU ????????????????????????????????????????????????????????????????????????????????? Solaris ??? ????? ?? Solaris 2.0 - 2.1 AT&T ? UNIX System V Release 4 ??????????????SMP/?????????????????API ????? SunOS 5.0 ????????Solaris 2.0 ????x86 ?? SPARC ?? Solaris 2.1 ?????????????????????????????? Solaris 2.2 - 2.4 - ???????? (SVR4 ??) - ???????????(2.5.1 ?? PowerPC ?????????) - 2.4 ?? x86 ?????????????????? Solaris 2.6?Solaris 7(2.7 ??????) 64 bit ??(Itanium ?????) Solaris 8 - 9 ?????????? Solaris 10 - 11 ??????????????????(OS ????????????????) Solaris??????? ??: ?????????????????????????????????????????Solaris ?????????????????????????????????????????????????????????????????? ??: ?????????????????? OS ???????????Solaris 2.3 ???????????????????????????????????????????????????????????????????????????????????????????????????? ???: ???????????????????????????????????????????????????????????????????????????????????? OS ????????????? Solaris ??????? ??: ??????????????????????????????????????????????????????????????????????????????????????????????????? ??: ??????????????????????????????????????????????????????????????????????????DTrace ?????????????????????????????????? ??: ????Solaris ? UNIX ????????????????????????????????????? OS ??????????????????????????????????????????????????????????????????????????????????????????????????????????????? Solaris ????????????????????????????????????????????????? OS ??????????????????? Solaris ???????? ??: ??????????????????????????1?? OS ?????????????? OS ??????????????????????????????????????Solaris ????? 1 ?? Solaris ??????????????????OS????????????????? ???: Legacy Container ????????????? Solaris(Solaris 8?Solaris 9) ???????????? ??: Solaris 10 ?????? SMF(Service Management Facility) ??????????????????????????????????????????????????????????????????????????????????????? ??: SMF?FMA (Fault Management Architecture)?????????????????????????????? Solaris ?????????????????????????? ???: ????????????????????????? ??: ?????????????????????1???????????????????????????????????????? Sun ??????????The Network Is The Computer???? ??: ??????Solaris 10 ?????????????????????????????????????????????????????????????????????????????? Solaris?????? ??: Solaris ?????????????????????Sun ?????????????(? 20 ??)??????????????????????????????????????????????????????????????????????????????????????????????????????????????????Sun ????????????????????????????????????????????????????????Sun ?????????????????????????????????????????????????????????????????????????? ???: Solaris ????? SunOS ????????????????????????? OS ??????? ??: ??????????????????????????????Sun ???????????????????????????????????????????????????????????? ??: 1990 ??????????????????? Solaris ???????? ???: ?????X Windows ???? Sun ??????????NeWS??????????????????????????????X Windows ??????????????????????????????????????? Sun ? Solaris ???????????????????????? ??: ???????Solaris ??????????????? OS ??????????????????????????????????????????????????????????????????????????????????????? ??: ????????????????????? Solaris ????????????ZFS ???????????????????????????????? ??: ????? OS ??????? Solaris ??????(???)??????????????? ???: Solaris ???????????????????? Solaris??????Solaris 2.0 ???? 2 ??? 1 ??????????????(?????????)??????Solaris ? 2 ??????????????????????????????????????? 2 ????????????????????????????2 ??? 1 ????????????????????????????????????????????????????????????? ????OS???????????? ???: Solaris ?????? Solaris ????????????OS ??????????????????????????????????????????????????????????????????????????????? ??: ??????????????????????????????????????????????(?)?????????????????????????????????????????????15 ?????????????????????????????????????????????????????????????????????????? ??: Solaris ??????? Solaris ????????????????????????????????????????????????????????? ??: ????????????????????????????????????????????????Solaris ??????????????????????????? ???: ??????????????Solaris ????????????????????????????????????????????????????????????????????????????????????? Solaris ?????????? ??: Solaris ???????????????????????????????????????????????????? ??: ????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ???: 1994 ?????????????????????????????????????? ??: ??????????????????????????Solaris ????????????????????????????????????? ???: ???????????????? ??: ???Solaris ?????? 2 ?????????????????????????????????????? Solaris ?????????????????????????????????????????????????????????????????????????????????????????????OS?????????????????????????????????????????????????????Solaris ???????????? ??????Oracle Solaris ????????????6??????????????????Oracle Solaris ??????????????????????

    Read the article

  • ????????????????? Oracle Solaris ??? - Solaris 11 ????

    - by kazun
    ???????????????? OS ????????????????????? 20 ??????????????????? Solaris?????????????????????? OS????????????????????????Solaris ???????????????????? ??????Solaris ?????????????? 4 ????????????????????? Oracle Solaris 11 ??????????????? [????????????]???? ?(????????????? ???)???? ?(??????????????)???? ?(????????)???? ?(?????????????????)(50??) Oracle Solaris 11 ??????? ???:Oracle Solaris 11??????? Solaris ??????????????????????????????????????????????Oracle Solaris 10 ?????????????????Oracle Solaris 11 ???Oracle Solaris ???????????????????????????????????????????????????????????????????????????????????Oracle Solaris ??????????????????????????Oracle Solaris ????????????????????????????????????????? ??:??????????????????????????????????????????????????????????????????????????????????Oracle Solaris 11 ????????????????????????????????????????????????????????????????????????????????????????????????Oracle Solaris 11 ????????????? ???:Oracle Solaris 11 ????????????????????????????????????????????????????????????Oracle Solaris ??????????????????????Solaris ????????????????????????Oracle Solaris 11 ?????????????????????????????????????????????????????????????????????? Oracle Solaris 11 ??????????????? ??:???????????????????ZFS?????????????Oracle Solaris ???????????????????????????????????????IPS???????????????????????? ??:?????????????????????? OS ??????????????????????????????????????????????????????????????????? OS ????? Oracle Solaris 11 ??? ??:????????????????????????????????????????????????? Oracle Solaris 11 ???????????????????????????????????????????????????????? ??:????????????????????Solaris Trusted Extensions ? Solaris ????????????Privilege ????????????????????????????????Solaris 10 ???????????????????? ??:UNIX ?????????????????????????????????????Oracle Solaris 11 ??????????????????????????????????????????????????ZFS ??????????????????????????????????????????????????Oracle Solaris ?????????????????????????????????? ???:Oracle Solaris ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Oracle Solaris 11 ??????????????????????????????????????????????????? ?????????????Oracle Solaris 11 ??:Oracle Solaris ?????????????????????????????????????????????????????????????????? ZFS ?????????????????????????????????????????????? ??:?????????????????????????????????????????????????????????????????????Oracle Solaris ??????????????????????? ??:DTrace ????????????????????????????????????????????????????????????? ??:???????????????????????????????????????????????????????????????????????????????????????? ???:?????????????????????????????????????????????????????????????????????????Solaris ???????????????????????????????????????????????????????????????????????????? ??:?????????????????? Solaris 10 ?????????????????????????????????????? ???:ISV ??????????????????????????????? ????????????????? T4 ??????????????? T ?????? 5 ???????????????????????????????????? CPU ?????????????????? OS ? Solaris ??????????????????????????????????????????????? ??:???????????????? OS ???? Solaris ???????????????????????????????????????????????????? Oracle Solaris ????????? ??:???????????????????????????????????????????????????????????????????????????????????????? ZFS ?????????????????????????ZFS ??????????????????????????????????????? ???:Linux ??????????????????????????Solaris 11 ?????????????????????? GNU ????????????????????????????Solaris ?????????(Oracle Solaris Studio)????????????? Oracle Solaris Studio ?Linux??????????????Linux ??????????? Solaris ????????????????Linux ? Oracle Solaris Studio ?????????????????????????? Solaris ??????????????????? ??:??????????????????????????????????????????????????????????????????????????????????????????????????????????????????BCP(??????)??????????????????? ??:???????? Solaris 11 ?????? IA Server ?????????????????????????????????????????????…???????????Windows ????????????????????? Oracle Virtual Box ????????? Oracle Solaris 11 ??????????? ??:???Oracle Solaris ????????(?)??????????????ZFS???DTrace?????????????????????????????????????Solaris ?????????????????????????????????????????????????????????????????????????????Solaris ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ??:??? 3 ??????????????????????????????????????Oracle Solaris 11 ???????????? ??:???????????????????? OS ??????????????????????????Oracle Solaris 11 ???????????????????????????????????????????????????????????????? ???:???????????? Solaris ???????????????Solaris 10 ???? 6 ??????????????????????????????????Oracle Solaris ?????????????????????????????? ?????? Oracle Solaris 10 Oracle Solaris 11

    Read the article

  • Oracle Solaris Cluster 4.2 Event and its SNMP Interface

    - by user12609115
    Background The cluster event SNMP interface was first introduced in Oracle Solaris Cluster 3.2 release. The details of the SNMP interface are described in the Oracle Solaris Cluster System Administration Guide and the Cluster 3.2 SNMP blog. Prior to the Oracle Solaris Cluster 4.2 release, when the event SNMP interface was enabled, it would take effect on WARNING or higher severity events. The events with WARNING or higher severity are usually for the status change of a cluster component from ONLINE to OFFLINE. The interface worked like an alert/alarm interface when some components in the cluster were out of service (changed to OFFLINE). The consumers of this interface could not get notification for all status changes and configuration changes in the cluster. Cluster Event and its SNMP Interface in Oracle Solaris Cluster 4.2 The user model of the cluster event SNMP interface is the same as what was provided in the previous releases. The cluster event SNMP interface is not enabled by default on a freshly installed cluster; you can enable it by using the cluster event SNMP administration commands on any cluster nodes. Usually, you only need to enable it on one of the cluster nodes or a subset of the cluster nodes because all cluster nodes get the same cluster events. When it is enabled, it is responsible for two basic tasks. • Logs up to 100 most recent NOTICE or higher severity events to the MIB. • Sends SNMP traps to the hosts that are configured to receive the above events. The changes in the Oracle Solaris Cluster 4.2 release are1) Introduction of the NOTICE severity for the cluster configuration and status change events.The NOTICE severity is introduced for the cluster event in the 4.2 release. It is the severity between the INFO and WARNING severity. Now all severities for the cluster events are (from low to high) • INFO (not exposed to the SNMP interface) • NOTICE (newly introduced in the 4.2 release) • WARNING • ERROR • CRITICAL • FATAL In the 4.2 release, the cluster event system is enhanced to make sure at least one event with the NOTICE or a higher severity will be generated when there is a configuration or status change from a cluster component instance. In other words, the cluster events from a cluster with the NOTICE or higher severities will cover all status and configuration changes in the cluster (include all component instances). The cluster component instance here refers to an instance of the following cluster componentsnode, quorum, resource group, resource, network interface, device group, disk, zone cluster and geo cluster heartbeat. For example, pnode1 is an instance of the cluster node component, and oracleRG is an instance of the cluster resource group. With the introduction of the NOTICE severity event, when the cluster event SNMP interface is enabled, the consumers of the SNMP interface will get notification for all status and configuration changes in the cluster. A thrid-party system management platform with the cluster SNMP interface integration can generate alarms and clear alarms programmatically, because it can get notifications for the status change from ONLINE to OFFLINE and also from OFFLINE to ONLINE. 2) Customization for the cluster event SNMP interface • The number of events logged to the MIB is 100. When the number of events stored in the MIB reaches 100 and a new qualified event arrives, the oldest event will be removed before storing the new event to the MIB (FIFO, first in, first out). The 100 is the default and minimum value for the number of events stored in the MIB. It can be changed by setting the log_number property value using the clsnmpmib command. The maximum number that can be set for the property is 500. • The cluster event SNMP interface takes effect on the NOTICE or high severity events. The NOTICE severity is also the default and lowest event severity for the SNMP interface. The SNMP interface can be configured to take effect on other higher severity events, such as WARNING or higher severity events by setting the min_severity property to the WARNING. When the min_severity property is set to the WARNING, the cluster event SNMP interface would behave the same as the previous releases (prior to the 4.2 release). Examples, • Set the number of events stored in the MIB to 200 # clsnmpmib set -p log_number=200 event • Set the interface to take effect on WARNING or higher severity events. # clsnmpmib set -p min_severity=WARNING event Administering the Cluster Event SNMP Interface Oracle Solaris Cluster provides the following three commands to administer the SNMP interface. • clsnmpmib: administer the SNMP interface, and the MIB configuration. • clsnmphost: administer hosts for the SNMP traps • clsnmpuser: administer SNMP users (specific for SNMP v3 protocol) Only clsnmpmib is changed in the 4.2 release to support the aforementioned customization of the SNMP interface. Here are some simple examples using the commands. Examples: 1. Enable the cluster event SNMP interface on the local node # clsnmpmib enable event 2. Display the status of the cluster event SNMP interface on the local node # clsnmpmib show -v 3. Configure my_host to receive the cluster event SNMP traps. # clsnmphost add my_host Cluster Event SNMP Interface uses the common agent container SNMP adaptor, which is based on the JDMK SNMP implementation as its SNMP agent infrastructure. By default, the port number for the SNMP MIB is 11161, and the port number for the SNMP traps is 11162. The port numbers can be changed by using the cacaoadm. For example, # cacaoadm list-params Print all changeable parameters. The output includes the snmp-adaptor-port and snmp-adaptor-trap-port properties. # cacaoadm set-param snmp-adaptor-port=1161 Set the SNMP MIB port number to 1161. # cacaoadm set-param snmp-adaptor-trap-port=1162 Set the SNMP trap port number to 1162. The cluster event SNMP MIB is defined in sun-cluster-event-mib.mib, which is located in the /usr/cluster/lib/mibdirectory. Its OID is 1.3.6.1.4.1.42.2.80, that can be used to walk through the MIB data. Again, for more detail information about the cluster event SNMP interface, please see the Oracle Solaris Cluster 4.2 System Administration Guide. - Leland Chen 

    Read the article

  • MySQL Cluster 7.2: Over 8x Higher Performance than Cluster 7.1

    - by Mat Keep
    0 0 1 893 5092 Homework 42 11 5974 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Summary The scalability enhancements delivered by extensions to multi-threaded data nodes enables MySQL Cluster 7.2 to deliver over 8x higher performance than the previous MySQL Cluster 7.1 release on a recent benchmark What’s New in MySQL Cluster 7.2 MySQL Cluster 7.2 was released as GA (Generally Available) in February 2012, delivering many enhancements to performance on complex queries, new NoSQL Key / Value API, cross-data center replication and ease-of-use. These enhancements are summarized in the Figure below, and detailed in the MySQL Cluster New Features whitepaper Figure 1: Next Generation Web Services, Cross Data Center Replication and Ease-of-Use Once of the key enhancements delivered in MySQL Cluster 7.2 is extensions made to the multi-threading processes of the data nodes. Multi-Threaded Data Node Extensions The MySQL Cluster 7.2 data node is now functionally divided into seven thread types: 1) Local Data Manager threads (ldm). Note – these are sometimes also called LQH threads. 2) Transaction Coordinator threads (tc) 3) Asynchronous Replication threads (rep) 4) Schema Management threads (main) 5) Network receiver threads (recv) 6) Network send threads (send) 7) IO threads Each of these thread types are discussed in more detail below. MySQL Cluster 7.2 increases the maximum number of LDM threads from 4 to 16. The LDM contains the actual data, which means that when using 16 threads the data is more heavily partitioned (this is automatic in MySQL Cluster). Each LDM thread maintains its own set of data partitions, index partitions and REDO log. The number of LDM partitions per data node is not dynamically configurable, but it is possible, however, to map more than one partition onto each LDM thread, providing flexibility in modifying the number of LDM threads. The TC domain stores the state of in-flight transactions. This means that every new transaction can easily be assigned to a new TC thread. Testing has shown that in most cases 1 TC thread per 2 LDM threads is sufficient, and in many cases even 1 TC thread per 4 LDM threads is also acceptable. Testing also demonstrated that in some instances where the workload needed to sustain very high update loads it is necessary to configure 3 to 4 TC threads per 4 LDM threads. In the previous MySQL Cluster 7.1 release, only one TC thread was available. This limit has been increased to 16 TC threads in MySQL Cluster 7.2. The TC domain also manages the Adaptive Query Localization functionality introduced in MySQL Cluster 7.2 that significantly enhanced complex query performance by pushing JOIN operations down to the data nodes. Asynchronous Replication was separated into its own thread with the release of MySQL Cluster 7.1, and has not been modified in the latest 7.2 release. To scale the number of TC threads, it was necessary to separate the Schema Management domain from the TC domain. The schema management thread has little load, so is implemented with a single thread. The Network receiver domain was bound to 1 thread in MySQL Cluster 7.1. With the increase of threads in MySQL Cluster 7.2 it is also necessary to increase the number of recv threads to 8. This enables each receive thread to service one or more sockets used to communicate with other nodes the Cluster. The Network send thread is a new thread type introduced in MySQL Cluster 7.2. Previously other threads handled the sending operations themselves, which can provide for lower latency. To achieve highest throughput however, it has been necessary to create dedicated send threads, of which 8 can be configured. It is still possible to configure MySQL Cluster 7.2 to a legacy mode that does not use any of the send threads – useful for those workloads that are most sensitive to latency. The IO Thread is the final thread type and there have been no changes to this domain in MySQL Cluster 7.2. Multiple IO threads were already available, which could be configured to either one thread per open file, or to a fixed number of IO threads that handle the IO traffic. Except when using compression on disk, the IO threads typically have a very light load. Benchmarking the Scalability Enhancements The scalability enhancements discussed above have made it possible to scale CPU usage of each data node to more than 5x of that possible in MySQL Cluster 7.1. In addition, a number of bottlenecks have been removed, making it possible to scale data node performance by even more than 5x. Figure 2: MySQL Cluster 7.2 Delivers 8.4x Higher Performance than 7.1 The flexAsynch benchmark was used to compare MySQL Cluster 7.2 performance to 7.1 across an 8-node Intel Xeon x5670-based cluster of dual socket commodity servers (6 cores each). As the results demonstrate, MySQL Cluster 7.2 delivers over 8x higher performance per data nodes than MySQL Cluster 7.1. More details of this and other benchmarks will be published in a new whitepaper – coming soon, so stay tuned! In a following blog post, I’ll provide recommendations on optimum thread configurations for different types of server processor. You can also learn more from the Best Practices Guide to Optimizing Performance of MySQL Cluster Conclusion MySQL Cluster has achieved a range of impressive benchmark results, and set in context with the previous 7.1 release, is able to deliver over 8x higher performance per node. As a result, the multi-threaded data node extensions not only serve to increase performance of MySQL Cluster, they also enable users to achieve significantly improved levels of utilization from current and future generations of massively multi-core, multi-thread processor designs.

    Read the article

  • MySQL at Mobile World Congress (on Valentine's Day...)

    - by mat.keep(at)oracle.com
    It is that time of year again when the mobile communications industry converges on Barcelona for what many regard as the premier telecommunications show of the year.Starting on February 14th, what better way for a Brit like me to spend Valentines Day with 50,000 mobile industry leaders (my wife doesn't tend to read this blog, so I'm reasonably safe with that statement).As ever, Oracle has an extensive presence at the show, and part of that presence this year includes MySQL.We will be running a live demonstration of the MySQL Cluster database on Booth 7C18 in the App Planet.The demonstration will show how the MySQL Cluster Connector for Java is implemented to provide native connectivity to the carrier grade MySQL Cluster database from Java ME clients via Java SE virtual machines and Java EE servers.  The demonstration will show how end-to-end Java services remain continuously available during both catastrophic failures and scheduled maintenance activities.The MySQL Cluster Connector for Java provides both a native Java API and JPA plug-in that directly maps Java objects to relational tables stored in the MySQL Cluster database, without the overhead and complexity of having to transform objects to JDBC, and then SQL  The result is 10x higher throughput, and a simpler development model for Java engineers.Stop by the stand for a demonstration, and an opportunity to speak with the MySQL telecoms team who will share experiences on how MySQL is being used to bring the innovation of the web to the carrier network.Of course, if you can't make it to Barcelona, you can still learn more about the MySQL Cluster Connector for Java from this whitepaper and are free to download it as part of MySQL Cluster Community Edition  Let us know via the comments if you have Java applications that you think will benefit from the MySQL Cluster Connector for JavaI can't promise that Valentines Day at MWC will be the time you fall in love with MySQL Cluster...but I'm confident you will at least develop a healthy respect for it  

    Read the article

  • ??????????·????????????Oracle Solaris Cluster 4.0?

    - by kazun
    ??????OS?Oracle Solaris 11???????????????·????????????Oracle Solaris Cluster 4.0???2011?12?6????????????Oracle Solaris 11 ???????????????????????????Oracle Solaris Cluster 4.0 ???????????????????????? Oracle Solaris Cluster 4.0 ?3?????? - Oracle Solaris Cluster ???????????????????????????????????????????????? - Oracle Solaris 11 ?????? - Oracle Solaris Cluster 4.0?????????????????????????????????????? Oracle Solaris Cluster 4.0?? Oracle Solaris Cluster? Oracle Solaris ??????????????????????????????????????(HA)??????·????(DR)????????? Oracle Solaris 11 ??????????????? Oracle Solaris 11 Image Packaging System (IPS)???????????????????????????????????????????????????????? Oracle Solaris 11 ?????????(Automated Installer)????Oracle Solaris???Oracle Solaris Cluster????????????????????????? Oracle Solaris 11??????? Oracle Solaris 11 Zone Cluster ?????????????????????????????Solaris 11 native ??????????????????????????????????????????????????? ?????????????????????????????????????????Solaris 10 ???? Solaris 11 native ????????? Oracle VM Server for SPARC 2.1????????? ?:Zone Cluster (?)?Failover Zone(?)???? ?????·?????? Oracle Solaris Cluster Geographic Edition ?????????????????????·????????????? ?????????????????????????????????/?????????????????????? Oracle Data Guard(Oracle ?????? 11.2.0.3 ?????)?Availability Suite Feature of Oracle Solaris(Oracle Solaris 11 SRU1 ?????)?Oracle Solaris Cluster Geographic Edition script-based plug-ins?????????·??????????????????? ?:?????·???? ?????????????? Oracle Solaris Cluster 4.0??Apache?Apache Tomcat?DHCP?DNS?NFS???Oracle Solaris 11?????????Oracle Database 11g(?????????????Oracle Real Application Clusters)?Oracle WebLogic Server???????·???????????????·????????????????????????????????????????????????API??????????????????? Oracle Solaris Cluster 4.0??????????????????????????????????????????????????? ??????????? IPS ?????(???????? 30 ??????) Oracle Software Delivery Cloud (IPS?????????) (???? (??????????) ???? 30 ??????) OTN (IPS?????????)(?????????? ) ?????? ??????????????????? ???? Oracle Solaris Cluster Oracle Solaris Oracle's Sun Server and Storage Systems ???? Oracle Solaris Cluste Oracle Solaris ?Oracle Solaris Cluster Oasis?Blog

    Read the article

  • Virtually the fastest way to try Solaris 11 (and Solaris 10 zones)

    - by dminer
    If you're looking to try out Solaris 11, there are the standard ISO and USB image downloads on the main page.  Those are great if you're looking to install Solaris 11 on hardware, and we hope you will.  But if you take the time to look down the page, you'll find a link off to the Oracle Solaris 11 Virtual Machine downloads.  There are two downloads there:A pre-built Solaris 10 zoneA pre-built Solaris 11 VM for use with VirtualBoxIf you're looking to try Solaris 11 on x86, the second one is what you want.  Of course, this assumes you have VirtualBox already (and if you don't, now's the time to try it, it's a terrific free desktop virtualization product).  Once you complete the 1.8 GB download, it's a simple matter of unzipping the archive and a few quick clicks in VirtualBox to get a Solaris 11 desktop booted.  While it's booting, you'll get to run through the new system configuration tool (that'll be the subject of a future posting here) to configure networking, a user account, and so on.So what about that pre-built Solaris 10 zone download?  It's a really simple way to get yourself acquainted with the Solaris 10 zones feature, which you may well find indispensible in transitioning an existing Solaris 10 infrastructure to Solaris 11.  Once you've downloaded the file, it's a self-extracting executable that'll configure the zone for you, all you have to supply is an IP address for the zone.  It's really quite slick!I expect we'll do a lot more pre-built VM's and zones going forward, as that's a big part of being a cloud OS; if there's one that would be really useful for you, let us know.

    Read the article

  • Solaris 10 branded zone VM Templates for Solaris 11 on OTN

    - by jsavit
    Early this year I wrote the article Ours Goes To 11 which describes the ability to import Solaris 10 systems into a "Solaris 10 branded zone" under Oracle Solaris 11. I did this using Solaris 11 Express, and the capability remains in Solaris 11 with only slight changes. This important tool lets you painlessly inhaling a Solaris Container from Solaris 10 or entire Solaris 10 systems ("the global zone") into virtualized environments on a Solaris 11 OS. Just recently, Oracle provided Oracle VM Templates for Oracle Solaris 10 Zones to let you create Solaris 10 branded zones for Solaris 11 even if you don't currently have access to install media or a running Solaris 10 system. To use this, just download the Oracle VM Template for Oracle Solaris Zone 10 from OTN at http://www.oracle.com/technetwork/server-storage/solaris11/downloads/virtual-machines-1355605.html. This page contains images of Oracle Solaris 10 8/11 (the recent update to Solaris 10) in SPARC and x86 formats suitable for creating branded zones. The same page also has a VirtualBox image you can download for a complete Solaris 10 install in a guest virtual machine you can run on any host OS that supports VirtualBox. Both sets of downloads provide a quick - and extremely easy - way to set up a virtual Solaris 10 environment. In the case of the Oracle VM Templates, they illustrate several advanced features of Solaris 11. To start, just go to the above link, download the template for the hardware platform (SPARC or x86) you want, and download the README file also linked from that page. Install prerequisites The README file tells you to install the prerequisite Solaris 11 package that implements the Solaris 10 brand. Then you can install instances of zones with that brand. # pkg install pkg:/system/zones/brand/brand-solaris10 Packages to install: 1 Create boot environment: No Create backup boot environment: Yes DOWNLOAD PKGS FILES XFER (MB) Completed 1/1 44/44 0.4/0.4 PHASE ACTIONS Install Phase 74/74 PHASE ITEMS Package State Update Phase 1/1 Image State Update Phase 2/2 That took only a few minutes, and didn't require a reboot. Install the Solaris 10 zone Now it's time to run the downloaded template file. First make it executable via the chmod command, of course. I found that (unlike stated in the README) there was no need to rename the downloaded file to remove the .bin. When you run it you provide several parameters to describe the zone configuration: -a IP address - the IP address and optional netmask for the zone. This is the only mandatory parameter. -z zonename - the name of the zone you would like to create. -i interface - the package will create an exclusive-IP zone using a virtual NIC (vnic) based on this physical interface. In my case, I have a NIC called rge0. -p PATH - specifies the path in which you want the zoneroot to be placed. In my case, I have a ZFS dataset mounted at /zones, and this will create a zoneroot at /zones/s10u10. Kicking it off, you will see a copyright message, and then messages showing progress building the zone, which only takes a few minutes. # ./solaris-10u10-x86.bin -p /zones -a 192.168.1.100 -i rge0 -z s10u10 ... ... Checking disk-space for extraction Ok Extracting in /export/home/CDimages/s10zone/bootimage.ihaqvh ... 100% [===============================] Checking data integrity Ok Checking platform compatibility The host and the image do not have the same Solaris release: host Solaris release: 5.11 image Solaris release: 5.10 Will create a Solaris 10 branded zone. Warning: could not find a defaultrouter Zone won't have any defaultrouter configured IMAGE: ./solaris-10u10-x86.bin ZONE: s10u10 ZONEPATH: /zones/s10u10 INTERFACE: rge0 VNIC: vnicZBI13379 MAC ADDR: 2:8:20:5c:1a:cc IP ADDR: 192.168.1.100 NETMASK: 255.255.255.0 DEFROUTER: NONE TIMEZONE: US/Arizona Checking disk-space for installation Ok Installing in /zones/s10u10 ... 100% [===============================] Using a static exclusive-IP Attaching s10u10 Booting s10u10 Waiting for boot to complete booting... booting... booting... Zone s10u10 booted The zone's root password has been set using the root password of the local host. You can change the zone's root password to further harden the security of the zone: being root, log into the zone from the local host with the command 'zlogin s10u10'. Once logged in, change the root password with the command 'passwd'. The nifty part in my opinion (besides being so easy), is that the zone was created as an exclusive-IP zone on a virtual NIC. This network configuration lets you enforce traffic isolation from other zones, enforce network Quality of Service, and even let the zone set its own characteristics like IP address and packet size. Independence of the zone's network characteristics from the global zone is one of the enhancements in Solaris 10 that make it easier to consolidate zones while preserving their autonomy, yet provide control in a consolidated environment. Let's see what the virtual network environment looks like by issuing commands from the Solaris 11 global zone. First I'll use Old School ifconfig, and then I'll use the new ipadm and dladm commands. # ifconfig -a4 lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 rge0: flags=1004943<UP,BROADCAST,RUNNING,PROMISC,MULTICAST,DHCP,IPv4> mtu 1500 index 2 inet 192.168.1.3 netmask ffffff00 broadcast 192.168.1.255 ether 0:14:d1:18:ac:bc vboxnet0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 3 inet 192.168.56.1 netmask ffffff00 broadcast 192.168.56.255 ether 8:0:27:f8:62:1c # dladm show-phys LINK MEDIA STATE SPEED DUPLEX DEVICE yge0 Ethernet unknown 0 unknown yge0 yge1 Ethernet unknown 0 unknown yge1 rge0 Ethernet up 1000 full rge0 vboxnet0 Ethernet up 1000 full vboxnet0 # dladm show-link LINK CLASS MTU STATE OVER yge0 phys 1500 unknown -- yge1 phys 1500 unknown -- rge0 phys 1500 up -- vboxnet0 phys 1500 up -- vnicZBI13379 vnic 1500 up rge0 s10u10/vnicZBI13379 vnic 1500 up rge0 s10u10/net0 vnic 1500 up rge0 # dladm show-vnic LINK OVER SPEED MACADDRESS MACADDRTYPE VID vnicZBI13379 rge0 1000 2:8:20:5c:1a:cc random 0 s10u10/vnicZBI13379 rge0 1000 2:8:20:5c:1a:cc random 0 s10u10/net0 rge0 1000 2:8:20:9d:d0:79 random 0 # ipadm show-addr ADDROBJ TYPE STATE ADDR lo0/v4 static ok 127.0.0.1/8 rge0/_a dhcp ok 192.168.1.3/24 vboxnet0/_a static ok 192.168.56.1/24 lo0/v6 static ok ::1/128 Log into the zone The install step already booted the zone, so lets log into it. Notice how you have to be appropriately privileged to log into a zone. This is my home system so I'm being a bit cavalier, but in a production environment you can give granular control of who can login to which zones. Voila! a Solaris 10 environment under a Solaris 11 kernel. Notice the output from the uname -a and ifconfig commands, and output from a ping to a nearby host. $ zlogin s10u10 zlogin: You lack sufficient privilege to run this command (all privs required) savit@home:~$ sudo zlogin s10u10 Password: [Connected to zone 's10u10' pts/5] Oracle Corporation SunOS 5.10 Generic Patch January 2005 # uname -a SunOS s10u10 5.10 Generic_Virtual i86pc i386 i86pc # ifconfig -a4 lo0: flags=2001000849 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 vnicZBI13379: flags=1000843 mtu 1500 index 2 inet 192.168.1.100 netmask ffffff00 broadcast 192.168.1.255 ether 2:8:20:5c:1a:cc # bash bash-3.2# ifconfig -a lo0: flags=2001000849 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 vnicZBI13379: flags=1000843 mtu 1500 index 2 inet 192.168.1.100 netmask ffffff00 broadcast 192.168.1.255 ether 2:8:20:5c:1a:cc bash-3.2# ping 192.168.1.2 192.168.1.2 is alive For fun, I configured Apache (setting its configuration file in /etc/apache2) and brought it up. Easy - took just a few minutes. bash-3.2# svcs apache2 STATE STIME FMRI disabled 12:38:46 svc:/network/http:apache2 bash-3.2# svcadm enable apache2 Summary In just a few minutes, I built a functioning virtual Solaris 10 environment under by Solaris 11 system. It was... easy! While I can still do it the manual way (creating and using a system archive), this is a low-effort way to create a Solaris 10 zone on Solaris 11.

    Read the article

  • ?!Solaris ??20??? ????Solaris 11.1????????!

    - by OTN-J Master
    Solaris 11.1 ??????????? US OTN???????????????????????????????Solaris 11.1??????????? (OTN Japan???????????????????????????????) ???????Oracle Solaris ?????????????????????????????????????????????????????????????????????????????Solaris 11??????????????300???????????????10?4??Oracle OpenWorld?????Solaris 11.1?????????(??????????)?????????????Solaris?????20????????20??????????????????? ???????????????????????OS??????????????????????????Solaris 11.1????? ?????????????2012?11?7???8:00????Oracle Solaris 11.1?????Oracle Solaris Cluster???????·????·???????????????????????Solaris??20??????????????Solaris??????????????Oracle Solaris 11.1??Oracle Solarus Cluster???????????????????????11?8???1?????????????????????????????????Solaris?????????????????·???????????????????

    Read the article

  • Using Oracle Enterprise Manager Ops Center to Update Solaris via Live Upgrade

    - by LeonShaner
    Introduction: This Oracle Enterprise Manager Ops Center blog entry provides tips for using Ops Center to update Solaris using Live Upgrade on Solaris 10 and Boot Environments on Solaris 11. Why use Live Upgrade? Live Upgrade (LU) can significantly reduce downtime associated with patching Live Upgrade avoids dropping to single-user mode for long periods of time during patching Live Upgrade relies on an Alternate Boot Environment (ABE)/(BE), which is patched while in multi-user mode; thereby allowing normal system operations to continue with the active BE, while the alternate BE is being patched Activating an newly patched (A)BE is essentially a reboot; therefore the downtime is ~= reboot Admins can easily revert to the prior Boot Environment (BE) as a safeguard / fallback. Why use Ops Center to patch via Live Upgrade, Alternate Boot Environments, and Solaris 11 equivalents? All the benefits of Ops Center's extensive patch and package knowledge base can be leveraged on top of Live Upgrade Ops Center can orchestrate patching based on Live Upgrade and Solaris 11 features, which all works together to minimize downtime Ops Centers advanced inventory and reporting features assurance that each OS is updated to a verifiable, consistent standard, rather than relying on ad-hoc (error prone) procedures and scripts Ops Center gives admins control over the boot environment specifications or they can let Ops Center decide when a BE is necessary, thereby reducing complexity and lowering the opportunity for user error Preparing to use Live Upgrade-like features in Solaris 11 Requirements and information you should know: Global Zone Root file-systems must be separate from Solaris Container / Zone filesystems Solaris 11 has features which are similar in concept to Live Upgrade on Solaris 10, but differ greatly in implementationImportant distinctions: Solaris 11 assumes ZFS root Solaris 11 adds Boot Environments (BE's) as an integrated feature (see beadm) Solaris 11 BE's avoid single-user patching (vs. Solaris 10 w/ ZFS snapshot=ABE). Solaris 11 Image Packaging System (IPS) has hooks for BE creation, as needed Solaris 11 allows pkgs to be installed + upgraded in alternate BE (e.g. instead of the live system) but it is controlled on a per-pkg basis Boot Environments are activated across a reboot; instead of spending long periods installing + upgrading packages in single user mode. Fallback to a prior BE is a function of the BE infrastructure (a la beadm). (Generally) Reboot + BE activation can be much much faster on Solaris 11 Preparing to use Live Upgrade on Solaris 10 Requirements and information you should know: Global Zone Root file-systems must be separate from Solaris Container / Zone filesystems Live Upgrade Pre-requisite patches must be applied before the first Live Upgrade Alternate Boot Environments are created (see "Pre-requisite Patches" section, below...) Solaris 10 Update 6 or newer on ZFS root is the practical starting point for Live Upgrade Live Upgrade with ZFS root is far more straight-forward than any scheme based on Alternative Boot Environments in slices or temporarily breaking mirrors Use Solaris best practices to upgrade the OS to at least Solaris 10 Update 4 (outside of Ops Center) UFS root can (technically) be used, but it is significantly more involved (e.g. discouraged) -- there are many reasons to move to ZFS while going through the process to update to Solaris 10 Update 6 or newer (out side of Ops Center) Recommendation: Start with Solaris 10 Update 6 or newer on ZFS root Recommendation: Start with Ops Center 12c or newer Ops Center 12c can automatically create your ABE's for you, without the need for custom scripts Ops Center 12c Update 2 avoids kernel panic on unpatched Solaris 10 update 9 (and older) -- unrelated to Live Upgrade, but more on the issue, below. NOTE: There is no magic!  If you have systems running Solaris 10 Update 5 or older on UFS root, and you don't know how to get them updated to Solaris 10 on ZFS root, then there are services available from Oracle Advanced Customer Support (ACS), which specialize in this area. Live Upgrade Pre-requisite Patches (Solaris 10) Certain Live Upgrade related patches must be present before the first Live Upgrade ABE's are created on Solaris 10.Use the following MOS Search String to find the “living document” that outlines the required patch minimums, which are necessary before using any Live Upgrade features: Solaris Live Upgrade Software Patch Requirements(Click above – the link is valid as of this writing, but search in MOS for the same "Solaris Live Upgrade Software Patch Requirements" string if necessary) It is a very good idea to check the document periodically and adapt to its contents, accordingly.IMPORTANT:  In case it wasn't clear in the above document, some direct patching of the active OS, including a reboot, may be required before Live Upgrade can be successfully used the first time.HINT: You can use Ops Center to determine what to expect for a given system, and to schedule the “pre-patching” during a maintenance window if necessary. Preparing to use Ops Center Discover + Manage (Install + Configure the Ops Center agent in) each Global Zone Recommendation:  Begin by using OCDoctor --agent-prereq to determine whether OS meets OC prerequisites (resolve any issues) See prior requirements and recommendations w.r.t. starting with Solaris 10 Update 6 or newer on ZFS (or at least Solaris 10 Update 4 on UFS, with caveats) WARNING: Systems running unpatched Solaris 10 update 9 (or older) should run the Ops Center 12c Update 2 agent to avoid a potential kernel panic The 12c Update 2 agent will check patch minimums and disable certain process accounting features if the kernel is not sufficiently patched to avoid the panic SPARC: 142900-05 Obsoleted by: 142900-06 SunOS 5.10: kernel patch 10 Oracle Solaris on SPARC (32-bit) X64: 142901-05 Obsoleted by: 142901-06 SunOS 5.10_x86: kernel patch 10 Oracle Solaris on x86 (32-bit) OR SPARC: 142909-17 SunOS 5.10: kernel patch 10 Oracle Solaris on SPARC (32-bit) X64: 142910-17 SunOS 5.10_x86: kernel patch 10 Oracle Solaris on x86 (32-bit) Ops Center 12c (initial release) and 12c Update 1 agent can also be safely used with a workaround (to be performed BEFORE installing the agent): # mkdir -p /etc/opt/sun/oc # echo "zstat_exacct_allowed=false" > /etc/opt/sun/oc/zstat.conf # chmod 755 /etc/opt/sun /etc/opt/sun/oc # chmod 644 /etc/opt/sun/oc/zstat.conf # chown -Rh root:sys /etc/opt/sun/oc NOTE: Remove the above after patching the OS sufficiently, or after upgrading to the 12c Update 2 agent Using Ops Center to apply Live Upgrade-related Pre-Patches (Solaris 10)Overview: Create an OS Update Profile containing the minimum LU-related pre-patches, based on the Solaris Live Upgrade Software Patch Requirements, previously mentioned. SIMULATE the deployment of the LU-related pre-patches Observe whether any of the LU-related pre-patches will require a reboot The job details for each Global Zone will advise whether a reboot step will be required ACTUALLY deploy the LU-related pre-patches, according to your change control process (e.g. if no reboot, maybe okay to do now; vs. must do later because of the reboot). You can schedule the job to occur later, during a maintenance window Check the job status for each node, resolving any issues found Once the LU-related pre-patches are applied, you can Ops Center to patch using Live Upgrade on Solaris 10 Using Ops Center to patch Solaris 10 with LU/ABE's -- the GOODS!(this is the heart of the tip): Create an OS Update Profile containing the patches that make up your standard build Use Solaris Baselines when possible Add other individual patches as needed ACTUALLY deploy the OS Update Profile Specify the appropriate Live Upgrade options, e.g. Synchronize the active BE to the alternate BE before patching Do not activate the BE after patching Check the job status for each node, resolving any issues found Activate the newly patched BE according to your change control process Activate = Reboot to the ABE, making the ABE the new active BE Ops Center does not separate LU activate from reboot, so expect a reboot! Check the job status for each node, resolving any issues found Examples (w/Screenshots) Solaris 10 and Live Upgrade: Auto-Create the Alternate Boot Environment (ZFS root only) ABE to be created on ZFS with name S10_12_07REC (Example) Uses built in feature to call “lucreate -n S10_12_07REC” behind scenes if not already present NOTE: Leave “lucreate” params blank (if you do specify options, the will be appended after -n $ABEName) Solaris 10 and Live Upgrade: Alternate Boot Environment Creation via Operational Profile (script) The Alternate Boot Environment is to be created via custom, user-supplied script, which does whatever is needed for the system where Live Upgrade will be used. Operational Profile, which provides the script to create an ABE: Very similar to the automatic case, but with a Script (Operational Profile), which is used to create the ABE Relies on user-supplied script in the form of an Operational Profile Could be used to prepare an ABE based on a UFS root in a slice, or on a separate device (e.g. by breaking a mirror first) – it is up to the script author to do the right thing! EXAMPLE: Same result as the ZFS case, but illustrating the Operational Profile (e.g. script) approach to call: # lucreate -n S10_1207REC NOTE: OC special variable is $ABEName Boot Environment Profile, which references the Operational Profile Script = Operational Profile on this screen Refers to Operational Profile shown in the previous section The user-supplied S10_Create_BE Operational Profile will be run The Operational Profile must send a non-zero exit code if there is a problem (so that the OS Update job will not proceed) Solaris 10 OS Update Profile (to provide the actual patch specifications) Solaris 10 Baseline “Recommended” chosen for “Install” Solaris 10 OS Update Plan (two-steps in this case) “Create a Boot Environment” + “Update OS” are chosen. Using Ops Center to patch Solaris 11 with Boot Environments (as needed) Create a Solaris 11 OS Update Profile containing the packages that make up your standard build ACTUALLY deploy the Solaris 11 OS Update Profile BE will be created if needed (or you can stipulate no BE) BE name will be auto-generated (if needed), or you may specify a BE name Check the job status for each node, resolving any issues found Check if a BE was created; if so, activate the new BE Activate = Reboot to the BE, making the new BE the active BE Ops Center does not separate BE activate from reboot NOTE: Not every Solaris 11 OS Update will require a new BE, so a reboot may not be necessary. Solaris 11: Auto BE Create (as Needed -- let Ops Center decide) BE to be created as needed BE to be named automatically Reboot (if necessary) deferred to separate step Solaris 11: OS Profile Solaris 11 “entire” chosen for a particular SRU Solaris 11: OS Update Plan (w/BE)  “Create a Boot Environment” + “Update OS” are chosen. Summary: Solaris 10 Live Upgrade, Alternate Boot Environments, and their equivalents on Solaris 11 can be very powerful tools to help minimize the downtime associated with updating your servers.  For very old Solaris, there are some important prerequisites to adhere to, but once the initial preparation is complete, Live Upgrade can be used going forward.  For Solaris 11, the built-in Boot Environment handling is leveraged directly by the Image Packaging System, and the result is a much more straight forward way to patch, and far fewer prerequisites to satisfy in getting there.  Ops Center simplifies using either approach, and helps you improve consistency from system to system, which ultimately helps you improve the overall up-time across all the Solaris systems in your environment. Please let us know what you think?  Until next time...\Leon-- Leon Shaner | Senior IT/Product ArchitectSystems Management | Ops Center Engineering @ Oracle The views expressed on this [blog; Web site] are my own and do not necessarily reflect the views of Oracle. For more information, please go to Oracle Enterprise Manager  web page or  follow us at :  Twitter | Facebook | YouTube | Linkedin | Newsletter

    Read the article

  • Documentation Changes in Solaris 11.1

    - by alanc
    One of the first places you can see Solaris 11.1 changes are in the docs, which have now been posted in the Solaris 11.1 Library on docs.oracle.com. I spent a good deal of time reviewing documentation for this release, and thought some would be interesting to blog about, but didn't review all the changes (not by a long shot), and am not going to cover all the changes here, so there's plenty left for you to discover on your own. Just comparing the Solaris 11.1 Library list of docs against the Solaris 11 list will show a lot of reorganization and refactoring of the doc set, especially in the system administration guides. Hopefully the new break down will make it easier to get straight to the sections you need when a task is at hand. Packaging System Unfortunately, the excellent in-depth guide for how to build packages for the new Image Packaging System (IPS) in Solaris 11 wasn't done in time to make the initial Solaris 11 doc set. An interim version was published shortly after release, in PDF form on the OTN IPS page. For Solaris 11.1 it was included in the doc set, as Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1, so should be easier to find, and easier to share links to specific pages the HTML version. Beyond just how to build a package, it includes details on how Solaris is packaged, and how package updates work, which may be useful to all system administrators who deal with Solaris 11 upgrades & installations. The Adding and Updating Oracle Solaris 11.1 Software Packages was also extended, including new sections on Relaxing Version Constraints Specified by Incorporations and Locking Packages to a Specified Version that may be of interest to those who want to keep the Solaris 11 versions of certain packages when they upgrade, such as the couple of packages that had functionality removed by an (unusual for an update release) End of Feature process in the 11.1 release. Also added in this release is a document containing the lists of all the packages in each of the major package groups in Solaris 11.1 (solaris-desktop, solaris-large-server, and solaris-small-server). While you can simply get the contents of those groups from the package repository, either via the web interface or the pkg command line, the documentation puts them in handy tables for easier side-by-side comparison, or viewing the lists before you've installed the system to pick which one you want to initially install. X Window System We've not had good X11 coverage in the online Solaris docs in a while, mostly relying on the man pages, and upstream X.Org docs. In this release, we've integrated some X coverage into the Solaris 11.1 Desktop Adminstrator's Guide, including sections on installing fonts for fontconfig or legacy X11 clients, X server configuration, and setting up remote access via X11 or VNC. Of course we continue to work on improving the docs, including a lot of contributions to the upstream docs all OS'es share (more about that another time). Security One of the things Oracle likes to do for its products is to publish security guides for administrators & developers to know how to build systems that meet their security needs. For Solaris, we started this with Solaris 11, providing a guide for sysadmins to find where the security relevant configuration options were documented. The Solaris 11.1 Security Guidelines extend this to cover new security features, such as Address Space Layout Randomization (ASLR) and Read-Only Zones, as well as adding additional guidelines for existing features, such as how to limit the size of tmpfs filesystems, to avoid users driving the system into swap thrashing situations. For developers, the corresponding document is the Developer's Guide to Oracle Solaris 11 Security, which has been the source for years for documentation of security-relevant Solaris API's such as PAM, GSS-API, and the Solaris Cryptographic Framework. For Solaris 11.1, a new appendix was added to start providing Secure Coding Guidelines for Developers, leveraging the CERT Secure Coding Standards and OWASP guidelines to provide the base recommendations for common programming languages and their standard API's. Solaris specific secure programming guidance was added via links to other documentation in the product doc set. In parallel, we updated the Solaris C Libary Functions security considerations list with details of Solaris 11 enhancements such as FD_CLOEXEC flags, additional *at() functions, and new stdio functions such as asprintf() and getline(). A number of code examples throughout the Solaris 11.1 doc set were updated to follow these recommendations, changing unbounded strcpy() calls to strlcpy(), sprintf() to snprintf(), etc. so that developers following our examples start out with safer code. The Writing Device Drivers guide even had the appendix updated to list which of these utility functions, like snprintf() and strlcpy(), are now available via the Kernel DDI. Little Things Of course all the big new features got documented, and some major efforts were put into refactoring and renovation, but there were also a lot of smaller things that got fixed as well in the nearly a year between the Solaris 11 and 11.1 doc releases - again too many to list here, but a random sampling of the ones I know about & found interesting or useful: The Privileges section of the DTrace Guide now gives users a pointer to find out how to set up DTrace privileges for non-global zones and what limitations are in place there. A new section on Recommended iSCSI Configuration Practices was added to the iSCSI configuration section when it moved into the SAN Configuration and Multipathing administration guide. The Managing System Power Services section contains an expanded explanation of the various tunables for power management in Solaris 11.1. The sample dcmd sources in /usr/demo/mdb were updated to include ::help output, so that developers like myself who follow the examples don't forget to include it (until a helpful code reviewer pointed it out while reviewing the mdb module changes for Xorg 1.12). The README file in that directory was updated to show the correct paths for installing both kernel & userspace modules, including the 64-bit variants.

    Read the article

  • Manic Monday - More OpenWorld Solaris Sessions: Developers, Cloud, Customer Insights, Hardware Optimization

    - by Larry Wake
    We're overflowing with Monday sessions; literally more than one person can take in. Learn more about what's new in Oracle Solaris Studio, hear about the latest x86 and SPARC hardware optimizations, get some insights on cloud deployment strategies, and find out from your peers what they're doing with Oracle Solaris. If you're an OpenWorld attendee, go to to Schedule Builder to guarantee your space in any session or lab. See yesterday's blog post and the "Focus on Oracle Solaris" guide for even more sessions. Monday, October 1st: 10:45 AM - Maximizing Your SPARC T4 Oracle Solaris Application Performance(CON6382,  Marriott Marquis - Golden Gate C3) Hear how customers and commercial software partners have reached peak performance on SPARC T4 servers and engineered systems with Oracle Solaris Studio and its latest tools for analyzing, reporting, and improving runtime performance: Autoparallelizing, high-performance compilers Performance Analyzer (used to find performance hotspots) Thread Analyzer (to expose data races and deadlocks) Code Analyzer (used to discover latent memory corruption issues) 10:45 Cloud Formation: Implementing IaaS in Practice with Oracle Solaris(CON8787, Moscone South 302) Decisions, decisions--at the same time, we've got a session that covers why Oracle Solaris is the ideal OS for public or private clouds, IaaS or PaaS, with built-in features for elastic infrastructure, unrivaled security, superfast installation and deployment, nonstop availability, and crystal-clear observability. This session will include a customer study on how Oracle Solaris is used in the cloud today to implement the Oracle stack. 12:15 PM - Customer Insight: Oracle Solaris on Oracle Exadata, Oracle Exalogic, and SPARC SuperCluster(CON8760, Moscone South 270) Hear from customers what benefits they have realized from using the Oracle stack on Oracle Exadata and Oracle’s SPARC SuperCluster and from using Oracle Solaris on those engineered systems, taking advantage of built-in lightweight OS virtualization (Zones), enterprise reliability and scale, and other key features. 1:45 PM - Case Study: Mobile Tornado Uses Oracle Technology for Better RAS and TCO?(CON4281, Moscone West 2005) Mobile Tornado develops and markets instant communication platforms, replacing traditional radio networks with cellular networks. Its critical concern is uptime. Find out how they've used Oracle Solaris, Netra SPARC T4, and Oracle Solaris Cluster, including Oracle Solaris ZFS and Zones, for their Oracle Database deployments to improve reliability and drive down cost. 3:15 PM - Technical Panel: Developing High Performance Applications on Oracle Solaris(CON7196, Marriott Marquis - Golden Gate C2) Engineers from the Oracle Solaris, Oracle Database, and Oracle Tuxedo development teams, and Oracle ISV Engineering discuss how they develop high-performance enterprise applications that take advantage of Oracle's SPARC and x86 servers, with Oracle Solaris Studio and new Oracle Solaris 11 features. Topics will include developer tools, parallel frameworks, best practices, and methodologies, as well as insights and case studies on parallelizing and optimizing application performance on Oracle Solaris. Bring your best questions! 3:15 PM -  x86 Power Management with Oracle Solaris: Current State, Opportunities, and Future(CON6271, Moscone West 2012) Another option for this time slot: learn about how Intel Xeon and Oracle Solaris work together to reduce server power consumption. This presentation addresses some of the recent power management improvements in Oracle Solaris, opportunities to further improve energy efficiency, and some future directions for Oracle Solaris power management.

    Read the article

  • Managing Database Clusters - A Whole Lot Simpler

    - by mat.keep(at)oracle.com
    Clustered computing brings with it many benefits: high performance, high availability, scalable infrastructure, etc.  But it also brings with it more complexity.Why ?  Well, by its very nature, there are more "moving parts" to monitor and manage (from physical, virtual and logical hosts) to fault detection and failover software to redundant networking components - the list goes on.  And a cluster that isn't effectively provisioned and managed will cause more downtime than the standalone systems it is designed to improve upon.  Not so great....When it comes to the database industry, analysts already estimate that 50% of a typical database's Total Cost of Ownership is attributable to staffing and downtime costs.  These costs will only increase if a database cluster is to hard to properly administer.Over the past 9 months, monitoring and management has been a major focus in the development of the MySQL Cluster database, and on Tuesday 12th January, the product team will be presenting the output of that development in a new webinar.Even if you can't make the date, it is still worth registering so you will receive automatic notification when the on-demand replay is availableIn the webinar, the team will cover:    * NDBINFO: released with MySQL Cluster 7.1, NDBINFO presents real-time status and usage statistics, providing developers and DBAs with a simple means of pro-actively monitoring and optimizing database performance and availability.    * MySQL Cluster Manager (MCM): available as part of the commercial MySQL Cluster Carrier Grade Edition, MCM simplifies the creation and management of MySQL Cluster by automating common management tasks, delivering higher administration productivity and enhancing cluster agility. Tasks that used to take 46 commands can be reduced to just one!    * MySQL Cluster Advisors & Graphs: part of the MySQL Enterprise Monitor and available in the commercial MySQL Cluster Carrier Grade Edition, the Enterprise Advisor includes automated best practice rules that alert on key performance and availability metrics from MySQL Cluster data nodes.You'll also learn how you can get started evaluating and using all of these tools to simplify MySQL Cluster management.This session will last round an hour and will include interactive Q&A throughout. You can learn more about MySQL Cluster Manager from this whitepaper and on-line demonstration.  You can also download the packages from eDelivery (just select "MySQL Database" as the product pack, select your platform, click "Go" and then scroll down to get the software).While managing clusters will never be easy, the webinar will show hou how it just got a whole lot simpler !

    Read the article

  • Cluster Node Recovery Using Second Node in Solaris Cluster

    - by Onur Bingul
    Assumptions:Node 0a is the cluster node that has crashed and could not boot anymore.Node 0b is the node in cluster and in production with services active.Both nodes have their boot disk mirrored via SDS/SVM.We have many options to clone the boot disk from node 0b:- make a copy via network using the ufsdump command and pipe to ufsrestore - make a copy inserting the disk locally on node 0b and creating the third mirror with SDS- make a copy inserting the disk locally on node 0b using dd commandIn this procedure we are going to use dd command (from my experience this is the best option).Bare in mind that in the examples provided we work on Sun Fire V240 systems which have SCSI internal disks. In the case of Fibre Channel (FC) internal disks you must pay attention to the unique identifier, or World Wide Name (WWN), associated with each FC disk (in this case take a look at infodoc #40133 in order to recreate the device tree correctly).Procedure:On node 0b the boot disk is c1t0d0 (c1t1d0 mirror) and this is the VTOC:* Partition  Tag  Flags    Sector     Count    Sector  Mount Directory      0      2    00          0   2106432   2106431      1      3    01    2106432  74630784  76737215      2      5    00          0 143349312 143349311      4      7    00   76737216  50340672 127077887      5      4    00  127077888  14683968 141761855      6      0    00  141761856   1058304 142820159      7      0    00  142820160    529152 143349311We will insert the new disk on node 0b and it will be seen as c1t2d0.1) On node 0b we make a copy via dd from disk c1t0d0s2 to disk c1t2d0s2# dd if=/dev/rdsk/c1t0d0s2 of=/dev/rdsk/c1t2d0s2 bs=8192kA copy of a 72GB disk will take approximately about 45 minutes.Note: as an alternative to make identical copy of root over network follow Document ID: 47498Title: Sun[TM] Cluster 3.0: How to Rebuild a node with Veritas Volume Manager2) Perform an fsck on disk c1t2d0 data slices:   1.  fsck -o f /dev/rdsk/c1t2d0s0 (root)   2.  fsck -o f /dev/rdsk/c1t2d0s4 (/var)   3.  fsck -o f /dev/rdsk/c1t2d0s5 (/usr)   4.  fsck -o f /dev/rdsk/c1t2d0s6 (/globaldevices)3) Mount the root file system in order to edit following files for changing the node name:# mount /dev/dsk/c1t2d0s0 /mntChange the hostname from 0b to 0a:# cd /mnt/etc# vi hosts # vi hostname.bge0 # vi hostname.bge2 # vi nodename 4) Change the /mnt/etc/vfstab from the actual:/dev/md/dsk/d201        -       -       swap    -       no      -/dev/md/dsk/d200        /dev/md/rdsk/d200       /       ufs     1       no      -/dev/md/dsk/d205        /dev/md/rdsk/d205       /usr    ufs     1       no      logging/dev/md/dsk/d204        /dev/md/rdsk/d204       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d206        /dev/md/rdsk/d206       /global/.devices/node@2 ufs     2       noglobalto this (unencapsulate disk from SDS/SVM):/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/dsk/c1t0d0s0       /dev/rdsk/c1t0d0s0       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs     2       no globalIt is important that global device partition (slice 6) in the new vfstab will point to the physical partition of the disk (in our case slice 6).Be careful with the name you use for the new disk. In this case we define it as c1t0d0 because we will insert it as target 0 in node 0a.But this could be different based on the configuration you are working on.5) Remove following entry from /mnt/etc/system (part of unencapsulation procedure):rootdev:/pseudo/md@0:0,200,blk6) Correct the link shared -> ../../global/.devices/node@2/dev/md/shared in order to point to the nodeid of node 0a (in our case nodeid 1):# cd /mnt/dev/mdhow it is now.... node 0b has nodeid 2lrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@2/dev/md/shared# rm shared# ln -s ../../global/.devices/node@1/dev/md/shared sharedhow is going to be... with nodeid 1 for node 0alrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@1/dev/md/shared7) Change nodeid (in our case from 2 to 1):# cd /mnt/etc/cluster# vi nodeid8) Change the file /mnt/etc/path_to_inst in order to reflect the correct nodeid for node 0a:# cd /mnt/etc# vi path_to_instChange entries from node@2 to node@1 with the vi command ":%s/node@2/node@1/g"9) Write the bootblock to the disk... just in case:# /usr/sbin/installboot /usr/platform/sun4u/lib/fs/ufs/bootblk /dev/rdsk/c1t2d0s0Now the disk is ready to be inserted in node 0a in order to bootup the node.10) Bootup node 0a with command "boot -sx"... this is becasue we need to make some changes in ccr files in order to recreate did environment.11) Modify cluster ccr:# cd /etc/cluster/ccr# rm did_instances# rm did_instances.bak# vi directory - remove the did_instances line.# /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/directory # grep ccr_gennum /etc/cluster/ccr/directory ccr_gennum -1 # /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/infrastructure # grep ccr_gennum /etc/cluster/ccr/infrastructure ccr_gennum -112) Bring the node 0a down again to the ok prompt and then issue the command "boot -r"Now the node will join the cluster and from scstat and metaset command you can verify functionality. Next step is to encapsulate the boot disk in SDS/SVM and create the mirrors.In our case node 0b has metadevice name starting from d200. For this reason on node 0a we need to create metadevice starting from d100. This is just an example, you can have different names.The important thing to remember is that metadevice boot disks have different names on each node.13) Remove metadevice pointing to the boot and mirror disks (inherit from node 0b):# metaclear -r -f d200# metaclear -r -f d201# metaclear -r -f d204# metaclear -r -f d205# metaclear -r -f d206verify from metastat that no metadevices are set for boot and mirror disks.14) Encapsulate the boot disk:# metainit -f d110 1 1 c1t0d0s0# metainit d100 -m d110# metaroot d10015) Reboot node 0a.16) Create all the metadevice for slices remaining on boot disk# metainit -f d111 1 1 c1t0d0s1# metainit d101 -m d111# metainit -f d114 1 1 c1t0d0s4# metainit d104 -m d114# metainit -f d115 1 1 c1t0d0s5# metainit d105 -m d115# metainit -f d116 1 1 c1t0d0s6# metainit d106 -m d11617) Edit the vfstab in order to specifiy metadevices created:old:/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs      2       no  globalnew:/dev/md/dsk/d101        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/md/dsk/d105        /dev/md/rdsk/d105       /usr    ufs     1       no      logging/dev/md/dsk/d104        /dev/md/rdsk/d104       /var    ufs     1       no      logging#/dev/md/dsk/106       /dev/md/rdsk/d106       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d106        /dev/md/rdsk/d106       /global/.devices/node@1 ufs     2       noglobal18) Reboot node 0a in order to check new SDS/SVM boot configuration.19) Label the mirror disk c1t1d0 with the VTOC of boot disk c1t0d0:# prtvtoc /dev/dsk/c1t0d0s2 > /var/tmp/VTOC_c1t0d0 # fmthard -s /var/tmp/VTOC_c1t0d0 /dev/rdsk/c1t1d0s220) Put DB replica on slice 7 of disk c1t1d0:# metadb -a -c 3 /dev/dsk/c1t1d0s721) Create metadevice for mirror disk c1t1d0 and attach the new mirror side:# metainit d120 1 1 c1t1d0s0# metattach d100 d120# metainit d121 1 1 c1t1d0s1# metattach d101 d121# metainit d124 1 1 c1t1d0s4# metattach d104 d124# metainit d125 1 1 c1t1d0s5# metattach d105 d125# metainit d126 1 1 c1t1d0s6# metattach d106 d126

    Read the article

  • Oracle Solaris 11 ZFS Lab for Openworld 2012

    - by user12626122
    Preface This is the content from the Oracle Openworld 2012 ZFS lab. It was well attended - the feedback was that it was a little short - thats probably because in writing it I bacame very time-concious after the ASM/ACFS on Solaris extravaganza I ran last year which was almost too long for mortal man to finish in the 1 hour session. Enjoy. Table of Contents Exercise Z.1: ZFS Pools Exercise Z.2: ZFS File Systems Exercise Z.3: ZFS Compression Exercise Z.4: ZFS Deduplication Exercise Z.5: ZFS Encryption Exercise Z.6: Solaris 11 Shadow Migration Introduction This set of exercises is designed to briefly demonstrate new features in Solaris 11 ZFS file system: Deduplication, Encryption and Shadow Migration. Also included is the creation of zpools and zfs file systems - the basic building blocks of the technology, and also Compression which is the compliment of Deduplication. The exercises are just introductions - you are referred to the ZFS Adminstration Manual for further information. From Solaris 11 onward the online manual pages consist of zpool(1M) and zfs(1M) with further feature-specific information in zfs_allow(1M), zfs_encrypt(1M) and zfs_share(1M). The lab is easily carried out in a VirtualBox running Solaris 11 with 6 virtual 3 Gb disks to play with. Exercise Z.1: ZFS Pools Task: You have several disks to use for your new file system. Create a new zpool and a file system within it. Lab: You will check the status of existing zpools, create your own pool and expand it. Your Solaris 11 installation already has a root ZFS pool. It contains the root file system. Check this: root@solaris:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 15.9G 6.62G 9.25G 41% 1.00x ONLINE - root@solaris:~# zpool status pool: rpool state: ONLINE scan: none requested config: NAME STATE READ WRITE CKSUM rpool ONLINE 0 0 0 c3t0d0s0 ONLINE 0 0 0 errors: No known data errors Note the disk device the root pool is on - c3t0d0s0 Now you will create your own ZFS pool. First you will check what disks are available: root@solaris:~# echo | format Searching for disks...done AVAILABLE DISK SELECTIONS: 0. c3t0d0 <ATA-VBOX HARDDISK-1.0 cyl 2085 alt 2 hd 255 sec 63> /pci@0,0/pci8086,2829@d/disk@0,0 1. c3t2d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@2,0 2. c3t3d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@3,0 3. c3t4d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@4,0 4. c3t5d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@5,0 5. c3t6d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@6,0 6. c3t7d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@7,0 Specify disk (enter its number): Specify disk (enter its number): The root disk is numbered 0. The others are free for use. Try creating a simple pool and observe the error message: root@solaris:~# zpool create mypool c3t2d0 c3t3d0 'mypool' successfully created, but with no redundancy; failure of one device will cause loss of the pool So destroy that pool and create a mirrored pool instead: root@solaris:~# zpool destroy mypool root@solaris:~# zpool create mypool mirror c3t2d0 c3t3d0 root@solaris:~# zpool status mypool pool: mypool state: ONLINE scan: none requested config: NAME STATE READ WRITE CKSUM mypool ONLINE 0 0 0 mirror-0 ONLINE 0 0 0 c3t2d0 ONLINE 0 0 0 c3t3d0 ONLINE 0 0 0 errors: No known data errors Back to topExercise Z.2: ZFS File Systems Task: You have to create file systems for later exercises. You can see that when a pool is created, a file system of the same name is created: root@solaris:~# zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 86.5K 2.94G 31K /mypool Create your filesystems and mountpoints as follows: root@solaris:~# zfs create -o mountpoint=/data1 mypool/mydata1 The -o option sets the mount point and automatically creates the necessary directory. root@solaris:~# zfs list mypool/mydata1 NAME USED AVAIL REFER MOUNTPOINT mypool/mydata1 31K 2.94G 31K /data1 Back to top Exercise Z.3: ZFS Compression Task:Try out different forms of compression available in ZFS Lab:Create 2nd filesystem with compression, fill both file systems with the same data, observe results You can see from the zfs(1) manual page that there are several types of compression available to you, set with the property=value syntax: compression=on | off | lzjb | gzip | gzip-N | zle Controls the compression algorithm used for this dataset. The lzjb compression algorithm is optimized for performance while providing decent data compression. Setting compression to on uses the lzjb compression algorithm. The gzip compression algorithm uses the same compression as the gzip(1) command. You can specify the gzip level by using the value gzip-N where N is an integer from 1 (fastest) to 9 (best compression ratio). Currently, gzip is equivalent to gzip-6 (which is also the default for gzip(1)). Create a second filesystem with compression turned on. Note how you set and get your values separately: root@solaris:~# zfs create -o mountpoint=/data2 mypool/mydata2 root@solaris:~# zfs set compression=gzip-9 mypool/mydata2 root@solaris:~# zfs get compression mypool/mydata1 NAME PROPERTY VALUE SOURCE mypool/mydata1 compression off default root@solaris:~# zfs get compression mypool/mydata2 NAME PROPERTY VALUE SOURCE mypool/mydata2 compression gzip-9 local Now you can copy the contents of /usr/lib into both your normal and compressing filesystem and observe the results. Don't forget the dot or period (".") in the find(1) command below: root@solaris:~# cd /usr/lib root@solaris:/usr/lib# find . -print | cpio -pdv /data1 root@solaris:/usr/lib# find . -print | cpio -pdv /data2 The copy into the compressing file system takes longer - as it has to perform the compression but the results show the effect: root@solaris:/usr/lib# zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 1.35G 1.59G 31K /mypool mypool/mydata1 1.01G 1.59G 1.01G /data1 mypool/mydata2 341M 1.59G 341M /data2 Note that the available space in the pool is shared amongst the file systems. This behavior can be modified using quotas and reservations which are not covered in this lab but are covered extensively in the ZFS Administrators Guide. Back to top Exercise Z.4: ZFS Deduplication The deduplication property is used to remove redundant data from a ZFS file system. With the property enabled duplicate data blocks are removed synchronously. The result is that only unique data is stored and common componenents are shared. Task:See how to implement deduplication and its effects Lab: You will create a ZFS file system with deduplication turned on and see if it reduces the amount of physical storage needed when we again fill it with a copy of /usr/lib. root@solaris:/usr/lib# zfs destroy mypool/mydata2 root@solaris:/usr/lib# zfs set dedup=on mypool/mydata1 root@solaris:/usr/lib# rm -rf /data1/* root@solaris:/usr/lib# mkdir /data1/2nd-copy root@solaris:/usr/lib# zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 1.02M 2.94G 31K /mypool mypool/mydata1 43K 2.94G 43K /data1 root@solaris:/usr/lib# find . -print | cpio -pd /data1 2142768 blocks root@solaris:/usr/lib# zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 1.02G 1.99G 31K /mypool mypool/mydata1 1.01G 1.99G 1.01G /data1 root@solaris:/usr/lib# find . -print | cpio -pd /data1/2nd-copy 2142768 blocks root@solaris:/usr/lib#zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 1.99G 1.96G 31K /mypool mypool/mydata1 1.98G 1.96G 1.98G /data1 You could go on creating copies for quite a while...but you get the idea. Note that deduplication and compression can be combined: the compression acts on metadata. Deduplication works across file systems in a pool and there is a zpool-wide property dedupratio: root@solaris:/usr/lib# zpool get dedupratio mypool NAME PROPERTY VALUE SOURCE mypool dedupratio 4.30x - Deduplication can also be checked using "zpool list": root@solaris:/usr/lib# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT mypool 2.98G 1001M 2.01G 32% 4.30x ONLINE - rpool 15.9G 6.66G 9.21G 41% 1.00x ONLINE - Before moving on to the next topic, destroy that dataset and free up some space: root@solaris:~# zfs destroy mypool/mydata1 Back to top Exercise Z.5: ZFS Encryption Task: Encrypt sensitive data. Lab: Explore basic ZFS encryption. This lab only covers the basics of ZFS Encryption. In particular it does not cover various aspects of key management. Please see the ZFS Adminastrion Manual and the zfs_encrypt(1M) manual page for more detail on this functionality. Back to top root@solaris:~# zfs create -o encryption=on mypool/data2 Enter passphrase for 'mypool/data2': ******** Enter again: ******** root@solaris:~# Creation of a descendent dataset shows that encryption is inherited from the parent: root@solaris:~# zfs create mypool/data2/data3 root@solaris:~# zfs get -r encryption,keysource,keystatus,checksum mypool/data2 NAME PROPERTY VALUE SOURCE mypool/data2 encryption on local mypool/data2 keysource passphrase,prompt local mypool/data2 keystatus available - mypool/data2 checksum sha256-mac local mypool/data2/data3 encryption on inherited from mypool/data2 mypool/data2/data3 keysource passphrase,prompt inherited from mypool/data2 mypool/data2/data3 keystatus available - mypool/data2/data3 checksum sha256-mac inherited from mypool/data2 You will find the online manual page zfs_encrypt(1M) contains examples. In particular, if time permits during this lab session you may wish to explore the changing of a key using "zfs key -c mypool/data2". Exercise Z.6: Shadow Migration Shadow Migration allows you to migrate data from an old file system to a new file system while simultaneously allowing access and modification to the new file system during the process. You can use Shadow Migration to migrate a local or remote UFS or ZFS file system to a local file system. Task: You wish to migrate data from one file system (UFS, ZFS, VxFS) to ZFS while mainaining access to it. Lab: Create the infrastructure for shadow migration and transfer one file system into another. First create the file system you want to migrate root@solaris:~# zpool create oldstuff c3t4d0 root@solaris:~# zfs create oldstuff/forgotten Then populate it with some files: root@solaris:~# cd /var/adm root@solaris:/var/adm# find . -print | cpio -pdv /oldstuff/forgotten You need the shadow-migration package installed: root@solaris:~# pkg install shadow-migration Packages to install: 1 Create boot environment: No Create backup boot environment: No Services to change: 1 DOWNLOAD PKGS FILES XFER (MB) Completed 1/1 14/14 0.2/0.2 PHASE ACTIONS Install Phase 39/39 PHASE ITEMS Package State Update Phase 1/1 Image State Update Phase 2/2 You then enable the shadowd service: root@solaris:~# svcadm enable shadowd root@solaris:~# svcs shadowd STATE STIME FMRI online 7:16:09 svc:/system/filesystem/shadowd:default Set the filesystem to be migrated to read-only root@solaris:~# zfs set readonly=on oldstuff/forgotten Create a new zfs file system with the shadow property set to the file system to be migrated: root@solaris:~# zfs create -o shadow=file:///oldstuff/forgotten mypool/remembered Use the shadowstat(1M) command to see the progress of the migration: root@solaris:~# shadowstat EST BYTES BYTES ELAPSED DATASET XFRD LEFT ERRORS TIME mypool/remembered 92.5M - - 00:00:59 mypool/remembered 99.1M 302M - 00:01:09 mypool/remembered 109M 260M - 00:01:19 mypool/remembered 133M 304M - 00:01:29 mypool/remembered 149M 339M - 00:01:39 mypool/remembered 156M 86.4M - 00:01:49 mypool/remembered 156M 8E 29 (completed) Note that if you had created /mypool/remembered as encrypted, this would be the preferred method of encrypting existing data. Similarly for compressing or deduplicating existing data. The procedure for migrating a file system over NFS is similar - see the ZFS Administration manual. That concludes this lab session.

    Read the article

  • Oracle Solaris: Zones on Shared Storage

    - by Jeff Victor
    Oracle Solaris 11.1 has several new features. At oracle.com you can find a detailed list. One of the significant new features, and the most significant new feature releated to Oracle Solaris Zones, is casually called "Zones on Shared Storage" or simply ZOSS (rhymes with "moss"). ZOSS offers much more flexibility because you can store Solaris Zones on shared storage (surprise!) so that you can perform quick and easy migration of a zone from one system to another. This blog entry describes and demonstrates the use of ZOSS. ZOSS provides complete support for a Solaris Zone that is stored on "shared storage." In this case, "shared storage" refers to fiber channel (FC) or iSCSI devices, although there is one lone exception that I will demonstrate soon. The primary intent is to enable you to store a zone on FC or iSCSI storage so that it can be migrated from one host computer to another much more easily and safely than in the past. With this blog entry, I wanted to make it easy for you to try this yourself. I couldn't assume that you have a SAN available - which is a good thing, because neither do I! What could I use, instead? [There he goes, foreshadowing again... -Ed.] Developing this entry reinforced the lesson that the solution to every lab problem is VirtualBox. Oracle VM VirtualBox (its formal name) helps here in a couple of important ways. It offers the ability to easily install multiple copies of Solaris as guests on top of any popular system (Microsoft Windows, MacOS, Solaris, Oracle Linux (and other Linuxes) etc.). It also offers the ability to create a separate virtual disk drive (VDI) that appears as a local hard disk to a guest. This virtual disk can be moved very easily from one guest to another. In other words, you can follow the steps below on a laptop or larger x86 system. Please note that the ability to use ZOSS to store a zone on a local disk is very useful for a lab environment, but not so useful for production. I do not suggest regularly moving disk drives among computers. In the method I describe below, that virtual hard disk will contain the zone that will be migrated among the (virtual) hosts. In production, you would use FC or iSCSI LUNs instead. The zonecfg(1M) man page details the syntax for each of the three types of devices. Why Migrate? Why is the migration of virtual servers important? Some of the most common reasons are: Moving a workload to a different computer so that the original computer can be turned off for extensive maintenance. Moving a workload to a larger system because the workload has outgrown its original system. If the workload runs in an environment (such as a Solaris Zone) that is stored on shared storage, you can restore the service of the workload on an alternate computer if the original computer has failed and will not reboot. You can simplify lifecycle management of a workload by developing it on a laptop, migrating it to a test platform when it's ready, and finally moving it to a production system. Concepts For ZOSS, the important new concept is named "rootzpool". You can read about it in the zonecfg(1M) man page, but here's the short version: it's the backing store (hard disk(s), or LUN(s)) that will be used to make a ZFS zpool - the zpool that will hold the zone. This zpool: contains the zone's Solaris content, i.e. the root file system does not contain any content not related to the zone can only be mounted by one Solaris instance at a time Method Overview Here is a brief list of the steps to create a zone on shared storage and migrate it. The next section shows the commands and output. You will need a host system with an x86 CPU (hopefully at least a couple of CPU cores), at least 2GB of RAM, and at least 25GB of free disk space. (The steps below will not actually use 25GB of disk space, but I don't want to lead you down a path that ends in a big sign that says "Your HDD is full. Good luck!") Configure the zone on both systems, specifying the rootzpool that both will use. The best way is to configure it on one system and then copy the output of "zonecfg export" to the other system to be used as input to zonecfg. This method reduces the chances of pilot error. (It is not necessary to configure the zone on both systems before creating it. You can configure this zone in multiple places, whenever you want, and migrate it to one of those places at any time - as long as those systems all have access to the shared storage.) Install the zone on one system, onto shared storage. Boot the zone. Provide system configuration information to the zone. (In the Real World(tm) you will usually automate this step.) Shutdown the zone. Detach the zone from the original system. Attach the zone to its new "home" system. Boot the zone. The zone can be used normally, and even migrated back, or to a different system. Details The rest of this shows the commands and output. The two hostnames are "sysA" and "sysB". Note that each Solaris guest might use a different device name for the VDI that they share. I used the device names shown below, but you must discover the device name(s) after booting each guest. In a production environment you would also discover the device name first and then configure the zone with that name. Fortunately, you can use the command "zpool import" or "format" to discover the device on the "new" host for the zone. The first steps create the VirtualBox guests and the shared disk drive. I describe the steps here without demonstrating them. Download VirtualBox and install it using a method normal for your host OS. You can read the complete instructions. Create two VirtualBox guests, each to run Solaris 11.1. Each will use its own VDI as its root disk. Install Solaris 11.1 in each guest.Install Solaris 11.1 in each guest. To install a Solaris 11.1 guest, you can either download a pre-built VirtualBox guest, and import it, or install Solaris 11.1 from the "text install" media. If you use the latter method, after booting you will not see a windowing system. To install the GUI and other important things, login and run "pkg install solaris-desktop" and take a break while it installs those important things. Life is usually easier if you install the VirtualBox Guest Additions because then you can copy and paste between the host and guests, etc. You can find the guest additions in the folder matching the version of VirtualBox you are using. You can also read the instructions for installing the guest additions. To create the zone's shared VDI in VirtualBox, you can open the storage configuration for one of the two guests, select the SATA controller, and click on the "Add Hard Disk" icon nearby. Choose "Create New Disk" and specify an appropriate path name for the file that will contain the VDI. The shared VDI must be at least 1.5 GB. Note that the guest must be stopped to do this. Add that VDI to the other guest - using its Storage configuration - so that each can access it while running. The steps start out the same, except that you choose "Choose Existing Disk" instead of "Create New Disk." Because the disk is configured on both of them, VirtualBox prevents you from running both guests at the same time. Identify device names of that VDI, in each of the guests. Solaris chooses the name based on existing devices. The names may be the same, or may be different from each other. This step is shown below as "Step 1." Assumptions In the example shown below, I make these assumptions. The guest that will own the zone at the beginning is named sysA. The guest that will own the zone after the first migration is named sysB. On sysA, the shared disk is named /dev/dsk/c7t2d0 On sysB, the shared disk is named /dev/dsk/c7t3d0 (Finally!) The Steps Step 1) Determine the name of the disk that will move back and forth between the systems. root@sysA:~# format Searching for disks...done AVAILABLE DISK SELECTIONS: 0. c7t0d0 /pci@0,0/pci8086,2829@d/disk@0,0 1. c7t2d0 /pci@0,0/pci8086,2829@d/disk@2,0 Specify disk (enter its number): ^D Step 2) The first thing to do is partition and label the disk. The magic needed to write an EFI label is not overly complicated. root@sysA:~# format -e c7t2d0 selecting c7t2d0 [disk formatted] FORMAT MENU: ... format fdisk No fdisk table exists. The default partition for the disk is: a 100% "SOLARIS System" partition Type "y" to accept the default partition, otherwise type "n" to edit the partition table. n SELECT ONE OF THE FOLLOWING: ... Enter Selection: 1 ... G=EFI_SYS 0=Exit? f SELECT ONE... ... 6 format label ... Specify Label type[1]: 1 Ready to label disk, continue? y format quit root@sysA:~# ls /dev/dsk/c7t2d0 /dev/dsk/c7t2d0 Step 3) Configure zone1 on sysA. root@sysA:~# zonecfg -z zone1 Use 'create' to begin configuring a new zone. zonecfg:zone1 create create: Using system default template 'SYSdefault' zonecfg:zone1 set zonename=zone1 zonecfg:zone1 set zonepath=/zones/zone1 zonecfg:zone1 add rootzpool zonecfg:zone1:rootzpool add storage dev:dsk/c7t2d0 zonecfg:zone1:rootzpool end zonecfg:zone1 exit root@sysA:~# oot@sysA:~# zonecfg -z zone1 info zonename: zone1 zonepath: /zones/zone1 brand: solaris autoboot: false bootargs: file-mac-profile: pool: limitpriv: scheduling-class: ip-type: exclusive hostid: fs-allowed: anet: ... rootzpool: storage: dev:dsk/c7t2d0 Step 4) Install the zone. This step takes the most time, but you can wander off for a snack or a few laps around the gym - or both! (Just not at the same time...) root@sysA:~# zoneadm -z zone1 install Created zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T163634Z.zone1.install Image: Preparing at /zones/zone1/root. AI Manifest: /tmp/manifest.xml.RXaycg SC Profile: /usr/share/auto_install/sc_profiles/enable_sci.xml Zonename: zone1 Installation: Starting ... Creating IPS image Startup linked: 1/1 done Installing packages from: solaris origin: http://pkg.us.oracle.com/support/ DOWNLOAD PKGS FILES XFER (MB) SPEED Completed 183/183 33556/33556 222.2/222.2 2.8M/s PHASE ITEMS Installing new actions 46825/46825 Updating package state database Done Updating image state Done Creating fast lookup database Done Installation: Succeeded Note: Man pages can be obtained by installing pkg:/system/manual done. Done: Installation completed in 1696.847 seconds. Next Steps: Boot the zone, then log into the zone console (zlogin -C) to complete the configuration process. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T163634Z.zone1.install Step 5) Boot the Zone. root@sysA:~# zoneadm -z zone1 boot Step 6) Login to zone's console to complete the specification of system information. root@sysA:~# zlogin -C zone1 Answer the usual questions and wait for a login prompt. Then you can end the console session with the usual "~." incantation. Step 7) Shutdown the zone so it can be "moved." root@sysA:~# zoneadm -z zone1 shutdown Step 8) Detach the zone so that the original global zone can't use it. root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 installed /zones/zone1 solaris excl root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - zone1_rpool 1.98G 484M 1.51G 23% 1.00x ONLINE - root@sysA:~# zoneadm -z zone1 detach Exported zone zpool: zone1_rpool Step 9) Review the result and shutdown sysA so that sysB can use the shared disk. root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysA:~# init 0 Step 10) Now boot sysB and configure a zone with the parameters shown above in Step 1. (Again, the safest method is to use "zonecfg ... export" on sysA as described in section "Method Overview" above.) The one difference is the name of the rootzpool storage device, which was shown in the list of assumptions, and which you must determine by booting sysB and using the "format" or "zpool import" command. When that is done, you should see the output shown next. (I used the same zonename - "zone1" - in this example, but you can choose any valid zonename you want.) root@sysB:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysB:~# zonecfg -z zone1 info zonename: zone1 zonepath: /zones/zone1 brand: solaris autoboot: false bootargs: file-mac-profile: pool: limitpriv: scheduling-class: ip-type: exclusive hostid: fs-allowed: anet: linkname: net0 ... rootzpool: storage: dev:dsk/c7t3d0 Step 11) Attaching the zone automatically imports the zpool. root@sysB:~# zoneadm -z zone1 attach Imported zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T184034Z.zone1.attach Installing: Using existing zone boot environment Zone BE root dataset: zone1_rpool/rpool/ROOT/solaris Cache: Using /var/pkg/publisher. Updating non-global zone: Linking to image /. Processing linked: 1/1 done Updating non-global zone: Auditing packages. No updates necessary for this image. Updating non-global zone: Zone updated. Result: Attach Succeeded. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T184034Z.zone1.attach root@sysB:~# zoneadm -z zone1 boot root@sysB:~# zlogin zone1 [Connected to zone 'zone1' pts/2] Oracle Corporation SunOS 5.11 11.1 September 2012 Step 12) Now let's migrate the zone back to sysA. Create a file in zone1 so we can verify it exists after we migrate the zone back, then begin migrating it back. root@zone1:~# ls /opt root@zone1:~# touch /opt/fileA root@zone1:~# ls -l /opt/fileA -rw-r--r-- 1 root root 0 Oct 22 14:47 /opt/fileA root@zone1:~# exit logout [Connection to zone 'zone1' pts/2 closed] root@sysB:~# zoneadm -z zone1 shutdown root@sysB:~# zoneadm -z zone1 detach Exported zone zpool: zone1_rpool root@sysB:~# init 0 Step 13) Back on sysA, check the status. Oracle Corporation SunOS 5.11 11.1 September 2012 root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - Step 14) Re-attach the zone back to sysA. root@sysA:~# zoneadm -z zone1 attach Imported zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T190441Z.zone1.attach Installing: Using existing zone boot environment Zone BE root dataset: zone1_rpool/rpool/ROOT/solaris Cache: Using /var/pkg/publisher. Updating non-global zone: Linking to image /. Processing linked: 1/1 done Updating non-global zone: Auditing packages. No updates necessary for this image. Updating non-global zone: Zone updated. Result: Attach Succeeded. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T190441Z.zone1.attach root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - zone1_rpool 1.98G 491M 1.51G 24% 1.00x ONLINE - root@sysA:~# zoneadm -z zone1 boot root@sysA:~# zlogin zone1 [Connected to zone 'zone1' pts/2] Oracle Corporation SunOS 5.11 11.1 September 2012 root@zone1:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 1.98G 538M 1.46G 26% 1.00x ONLINE - Step 15) Check for the file created on sysB, earlier. root@zone1:~# ls -l /opt total 1 -rw-r--r-- 1 root root 0 Oct 22 14:47 fileA Next Steps Here is a brief list of some of the fun things you can try next. Add space to the zone by adding a second storage device to the rootzpool. Make sure that you add it to the configurations of both zones! Create a new zone, specifying two disks in the rootzpool when you first configure the zone. When you install that zone, or clone it from another zone, zoneadm uses those two disks to create a mirrored pool. (Three disks will result in a three-way mirror, etc.) Conclusion Hopefully you have seen the ease with which you can now move Solaris Zones from one system to another.

    Read the article

  • UAT Testing for SOA 10G Clusters

    - by [email protected]
    A lot of customers ask how to verify their SOA clusters and make them production ready. Here is a list that I recommend using for 10G SOA Clusters. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-CA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:12.0pt; font-family:"Calibri","sans-serif"; mso-fareast-language:EN-US;} Test cases for each component - Oracle Application Server 10G General Application Server test cases This section is going to cover very General test cases to make sure that the Application Server cluster has been set up correctly and if you can start and stop all the components in the server via opmnct and AS Console. Test Case 1 Check if you can see AS instances in the console Implementation 1. Log on to the AS Console --> check to see if you can see all the nodes in your AS cluster. You should be able to see all the Oracle AS instances that are part of the cluster. This means that the OPMN clustering worked and the AS instances successfully joined the AS cluster. Result You should be able to see if all the instances in the AS cluster are listed in the EM console. If the instances are not listed here are the files to check to see if OPMN joined the cluster properly: $ORACLE_HOME\opmn\logs{*}opmn.log*$ORACLE_HOME\opmn\logs{*}opmn.dbg* If OPMN did not join the cluster properly, please check the opmn.xml file to make sure the discovery multicast address and port are correct (see this link  for opmn documentation). Restart the whole instance using opmnctl stopall followed by opmnctl startall. Log on to AS console to see if instance is listed as part of the cluster. Test Case 2 Check to see if you can start/stop each component Implementation Check each OC4J component on each AS instanceStart each and every component through the AS console to see if they will start and stop.Do that for each and every instance. Result Each component should start and stop through the AS console. You can also verify if the component started by checking opmnctl status by logging onto each box associated with the cluster Test Case 3 Add/modify a datasource entry through AS console on a remote AS instance (not on the instance where EM is physically running) Implementation Pick an OC4J instanceCreate a new data-source through the AS consoleModify an existing data-source or connection pool (optional) Result Open $ORACLE_HOME\j2ee\<oc4j_name>\config\data-sources.xml to see if the new (and or the modified) connection details and data-source exist. If they do then the AS console has successfully updated a remote file and MBeans are communicating correctly. Test Case 4 Start and stop AS instances using opmnctl @cluster command Implementation 1. Go to $ORACLE_HOME\opmn\bin and use the opmnctl @cluster to start and stop the AS instances Result Use opmnctl @cluster status to check for start and stop statuses.  HTTP server test cases This section will deal with use cases to test HTTP server failover scenarios. In these examples the HTTP server will be talking to the BPEL console (or any other web application that the client wants), so the URL will be _http://hostname:port\BPELConsole Test Case 1  Shut down one of the HTTP servers while accessing the BPEL console and see the requested routed to the second HTTP server in the cluster Implementation Access the BPELConsoleCheck $ORACLE_HOME\Apache\Apache\logs\access_log --> check for the timestamp and the URL that was accessed by the user. Timestamp and URL would look like this 1xx.2x.2xx.xxx [24/Mar/2009:16:04:38 -0500] "GET /BPELConsole=System HTTP/1.1" 200 15 After you have figured out which HTTP server this is running on, shut down this HTTP server by using opmnctl stopproc --> this is a graceful shutdown.Access the BPELConsole again (please note that you should have a LoadBalancer in front of the HTTP server and configured the Apache Virtual Host, see EDG for steps)Check $ORACLE_HOME\Apache\Apache\logs\access_log --> check for the timestamp and the URL that was accessed by the user. Timestamp and URL would look like above Result Even though you are shutting down the HTTP server the request is routed to the surviving HTTP server, which is then able to route the request to the BPEL Console and you are able to access the console. By checking the access log file you can confirm that the request is being picked up by the surviving node. Test Case 2 Repeat the same test as above but instead of calling opmnctl stopproc, pull the network cord of one of the HTTP servers, so that the LBR routes the request to the surviving HTTP node --> this is simulating a network failure. Test Case 3 In test case 1 we have simulated a graceful shutdown, in this case we will simulate an Apache crash Implementation Use opmnctl status -l to get the PID of the HTTP server that you would like forcefully bring downOn Linux use kill -9 <PID> to kill the HTTP serverAccess the BPEL console Result As you shut down the HTTP server, OPMN will restart the HTTP server. The restart may be so quick that the LBR may still route the request to the same server. One way to check if the HTTP server restared is to check the new PID and the timestamp in the access log for the BPEL console. BPEL test cases This section is going to cover scenarios dealing with BPEL clustering using jGroups, BPEL deployment and testing related to BPEL failover. Test Case 1 Verify that jGroups has initialized correctly. There is no real testing in this use case just a visual verification by looking at log files that jGroups has initialized correctly. Check the opmn log for the BPEL container for all nodes at $ORACLE_HOME/opmn/logs/<group name><container name><group name>~1.log. This logfile will contain jGroups related information during startup and steady-state operation. Soon after startup you should find log entries for UDP or TCP.Example jGroups Log Entries for UDPApr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.UDP createSockets ·         INFO: sockets will use interface 144.25.142.172·          ·         Apr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.UDP createSockets·          ·         INFO: socket information:·          ·         local_addr=144.25.142.172:1127, mcast_addr=228.8.15.75:45788, bind_addr=/144.25.142.172, ttl=32·         sock: bound to 144.25.142.172:1127, receive buffer size=64000, send buffer size=32000·         mcast_recv_sock: bound to 144.25.142.172:45788, send buffer size=32000, receive buffer size=64000·         mcast_send_sock: bound to 144.25.142.172:1128, send buffer size=32000, receive buffer size=64000·         Apr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         -------------------------------------------------------·          ·         GMS: address is 144.25.142.172:1127·          ------------------------------------------------------- Example jGroups Log Entries for TCPApr 3, 2008 6:23:39 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable start ·         INFO: server socket created on 144.25.142.172:7900·          ·         Apr 3, 2008 6:23:39 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         -------------------------------------------------------·         GMS: address is 144.25.142.172:7900------------------------------------------------------- In the log below the "socket created on" indicates that the TCP socket is established on the own node at that IP address and port the "created socket to" shows that the second node has connected to the first node, matching the logfile above with the IP address and port.Apr 3, 2008 6:25:40 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable start ·         INFO: server socket created on 144.25.142.173:7901·          ·         Apr 3, 2008 6:25:40 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         ------------------------------------------------------·         GMS: address is 144.25.142.173:7901·         -------------------------------------------------------·         Apr 3, 2008 6:25:41 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable getConnectionINFO: created socket to 144.25.142.172:7900  Result By reviewing the log files, you can confirm if BPEL clustering at the jGroups level is working and that the jGroup channel is communicating. Test Case 2  Test connectivity between BPEL Nodes Implementation Test connections between different cluster nodes using ping, telnet, and traceroute. The presence of firewalls and number of hops between cluster nodes can affect performance as they have a tendency to take down connections after some time or simply block them.Also reference Metalink Note 413783.1: "How to Test Whether Multicast is Enabled on the Network." Result Using the above tools you can confirm if Multicast is working  and whether BPEL nodes are commnunicating. Test Case3 Test deployment of BPEL suitcase to one BPEL node.  Implementation Deploy a HelloWorrld BPEL suitcase (or any other client specific BPEL suitcase) to only one BPEL instance using ant, or JDeveloper or via the BPEL consoleLog on to the second BPEL console to check if the BPEL suitcase has been deployed Result If jGroups has been configured and communicating correctly, BPEL clustering will allow you to deploy a suitcase to a single node, and jGroups will notify the second instance of the deployment. The second BPEL instance will go to the DB and pick up the new deployment after receiving notification. The result is that the new deployment will be "deployed" to each node, by only deploying to a single BPEL instance in the BPEL cluster. Test Case 4  Test to see if the BPEL server failsover and if all asynch processes are picked up by the secondary BPEL instance Implementation Deploy a 2 Asynch process: A ParentAsynch Process which calls a ChildAsynchProcess with a variable telling it how many times to loop or how many seconds to sleepA ChildAsynchProcess that loops or sleeps or has an onAlarmMake sure that the processes are deployed to both serversShut down one BPEL serverOn the active BPEL server call ParentAsynch a few times (use the load generation page)When you have enough ParentAsynch instances shut down this BPEL instance and start the other one. Please wait till this BPEL instance shuts down fully before starting up the second one.Log on to the BPEL console and see that the instance were picked up by the second BPEL node and completed Result The BPEL instance will failover to the secondary node and complete the flow ESB test cases This section covers the use cases involved with testing an ESB cluster. For this section please Normal 0 false false false EN-CA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:12.0pt; font-family:"Calibri","sans-serif"; mso-fareast-language:EN-US;} follow Metalink Note 470267.1 which covers the basic tests to verify your ESB cluster.

    Read the article

  • Solaris 11.1: Changes to included FOSS packages

    - by alanc
    Besides the documentation changes I mentioned last time, another place you can see Solaris 11.1 changes before upgrading is in the online package repository, now that the 11.1 packages have been published to http://pkg.oracle.com/solaris/release/, as the “0.175.1.0.0.24.2” branch. (Oracle Solaris Package Versioning explains what each field in that version string means.) When you’re ready to upgrade to the packages from either this repo, or the support repository, you’ll want to first read How to Update to Oracle Solaris 11.1 Using the Image Packaging System by Pete Dennis, as there are a couple issues you will need to be aware of to do that upgrade, several of which are due to changes in the Free and Open Source Software (FOSS) packages included with Solaris, as I’ll explain in a bit. Solaris 11 can update more readily than Solaris 10 In the Solaris 10 and older update models, the way the updates were built constrained what changes we could make in those releases. To change an existing SVR4 package in those releases, we created a Solaris Patch, which applied to a given version of the SVR4 package and replaced, added or deleted files in it. These patches were released via the support websites (originally SunSolve, now My Oracle Support) for applying to existing Solaris 10 installations, and were also merged into the install images for the next Solaris 10 update release. (This Solaris Patches blog post from Gerry Haskins dives deeper into that subject.) Some of the restrictions of this model were that package refactoring, changes to package dependencies, and even just changing the package version number, were difficult to do in this hybrid patch/OS update model. For instance, when Solaris 10 first shipped, it had the Xorg server from X11R6.8. Over the first couple years of update releases we were able to keep it up to date by replacing, adding, & removing files as necessary, taking it all the way up to Xorg server release 1.3 (new version numbering begun after the X11R7 split of the X11 tree into separate modules gave each module its own version). But if you run pkginfo on the SUNWxorg-server package, you’ll see it still displayed a version number of 6.8, confusing users as to which version was actually included. We stopped upgrading the Xorg server releases in Solaris 10 after 1.3, as later versions added new dependencies, such as HAL, D-Bus, and libpciaccess, which were very difficult to manage in this patching model. (We later got libpciaccess to work, but HAL & D-Bus would have been much harder due to the greater dependency tree underneath those.) Similarly, every time the GNOME team looked into upgrading Solaris 10 past GNOME 2.6, they found these constraints made it so difficult it wasn’t worthwhile, and eventually GNOME’s dependencies had changed enough it was completely infeasible. Fortunately, this worked out for both the X11 & GNOME teams, with our management making the business decision to concentrate on the “Nevada” branch for desktop users - first as Solaris Express Desktop Edition, and later as OpenSolaris, so we didn’t have to fight to try to make the package updates fit into these tight constraints. Meanwhile, the team designing the new packaging system for Solaris 11 was seeing us struggle with these problems, and making this much easier to manage for both the development teams and our users was one of their big goals for the IPS design they were working on. Now that we’ve reached the first update release to Solaris 11, we can start to see the fruits of their labors, with more FOSS updates in 11.1 than we had in many Solaris 10 update releases, keeping software more up to date with the upstream communities. Of course, just because we can more easily update now, doesn’t always mean we should or will do so, it just removes the package system limitations from forcing the decision for us. So while we’ve upgraded the X Window System in the 11.1 release from X11R7.6 to 7.7, the Solaris GNOME team decided it was not the right time to try to make the jump from GNOME 2 to GNOME 3, though they did update some individual components of the desktop, especially those with security fixes like Firefox. In other parts of the system, decisions as to what to update were prioritized based on how they affected other projects, or what customer requests we’d gotten for them. So with all that background in place, what packages did we actually update or add between Solaris 11.0 and 11.1? Core OS Functionality One of the FOSS changes with the biggest impact in this release is the upgrade from Grub Legacy (0.97) to Grub 2 (1.99) for the x64 platform boot loader. This is the cause of one of the upgrade quirks, since to go from Solaris 11.0 to 11.1 on x64 systems, you first need to update the Boot Environment tools (such as beadm) to a new version that can handle boot environments that use the Grub2 boot loader. System administrators can find the details they need to know about the new Grub in the Administering the GRand Unified Bootloader chapter of the Booting and Shutting Down Oracle Solaris 11.1 Systems guide. This change was necessary to be able to support new hardware coming into the x64 marketplace, including systems using UEFI firmware or booting off disk drives larger than 2 terabytes. For both platforms, Solaris 11.1 adds rsyslog as an optional alternative to the traditional syslogd, and OpenSCAP for checking security configuration settings are compliant with site policies. Note that the support repo actually has newer versions of BIND & fetchmail than the 11.1 release, as some late breaking critical fixes came through from the community upstream releases after the Solaris 11.1 release was frozen, and made their way to the support repository. These are responsible for the other big upgrade quirk in this release, in which to upgrade a system which already installed those versions from the support repo, you need to either wait for those packages to make their way to the 11.1 branch of the support repo, or follow the steps in the aforementioned upgrade walkthrough to let the package system know it's okay to temporarily downgrade those. Developer Stack While Solaris 11.0 included Python 2.7, many of the bundled python modules weren’t packaged for it yet, limiting its usability. For 11.1, many more of the python modules include 2.7 versions (enough that I filtered them out of the below table, but you can always search on the package repository server for them. For other language runtimes and development tools, 11.1 expands the use of IPS mediated links to choose which version of a package is the default when the packages are designed to allow multiple versions to install side by side. For instance, in Solaris 11.0, GNU automake 1.9 and 1.10 were provided, and developers had to run them as either automake-1.9 or automake-1.10. In Solaris 11.1, when automake 1.11 was added, also added was a /usr/bin/automake mediated link, which points to the automake-1.11 program by default, but can be changed to another version by running the pkg set-mediator command. Mediated links were also used for the Java runtime & development kits in 11.1, changing the default versions to the Java 7 releases (the 1.7.0.x package versions), while allowing admins to switch links such as /usr/bin/javac back to Java 6 if they need to for their site, to deal with Java 7 compatibility or other issues, without having to update each usage to use the full versioned /usr/jdk/jdk1.6.0_35/bin/javac paths for every invocation. Desktop Stack As I mentioned before, we upgraded from X11R7.6 to X11R7.7, since a pleasant coincidence made the X.Org release dates line up nicely with our feature & code freeze dates for this release. (Or perhaps it wasn’t so coincidental, after all, one of the benefits of being the person making the release is being able to decide what schedule is most convenient for you, and this one worked well for me.) For the table below, I’ve skipped listing the packages in which we use the X11 “katamari” version for the Solaris package version (mainly packages combining elements of multiple upstream modules with independent version numbers), since they just all changed from 7.6 to 7.7. In the graphics drivers, we worked with Intel to update the Intel Integrated Graphics Processor support to support 3D graphics and kernel mode setting on the Ivy Bridge chipsets, and updated Nvidia’s non-FOSS graphics driver from 280.13 to 295.20. Higher up in the desktop stack, PulseAudio was added for audio support, and liblouis for Braille support, and the GNOME applications were built to use them. The Mozilla applications, Firefox & Thunderbird moved to the current Extended Support Release (ESR) versions, 10.x for each, to bring up-to-date security fixes without having to be on Mozilla’s agressive 6 week feature cycle release train. Detailed list of changes This table shows most of the changes to the FOSS packages between Solaris 11.0 and 11.1. As noted above, some were excluded for clarity, or to reduce noise and duplication. All the FOSS packages which didn't change the version number in their packaging info are not included, even if they had updates to fix bugs, security holes, or add support for new hardware or new features of Solaris. Package11.011.1 archiver/unrar 3.8.5 4.1.4 audio/sox 14.3.0 14.3.2 backup/rdiff-backup 1.2.1 1.3.3 communication/im/pidgin 2.10.0 2.10.5 compress/gzip 1.3.5 1.4 compress/xz not included 5.0.1 database/sqlite-3 3.7.6.3 3.7.11 desktop/remote-desktop/tigervnc 1.0.90 1.1.0 desktop/window-manager/xcompmgr 1.1.5 1.1.6 desktop/xscreensaver 5.12 5.15 developer/build/autoconf 2.63 2.68 developer/build/autoconf/xorg-macros 1.15.0 1.17 developer/build/automake-111 not included 1.11.2 developer/build/cmake 2.6.2 2.8.6 developer/build/gnu-make 3.81 3.82 developer/build/imake 1.0.4 1.0.5 developer/build/libtool 1.5.22 2.4.2 developer/build/makedepend 1.0.3 1.0.4 developer/documentation-tool/doxygen 1.5.7.1 1.7.6.1 developer/gnu-binutils 2.19 2.21.1 developer/java/jdepend not included 2.9 developer/java/jdk-6 1.6.0.26 1.6.0.35 developer/java/jdk-7 1.7.0.0 1.7.0.7 developer/java/jpackage-utils not included 1.7.5 developer/java/junit 4.5 4.10 developer/lexer/jflex not included 1.4.1 developer/parser/byaccj not included 1.14 developer/parser/java_cup not included 0.10 developer/quilt 0.47 0.60 developer/versioning/git 1.7.3.2 1.7.9.2 developer/versioning/mercurial 1.8.4 2.2.1 developer/versioning/subversion 1.6.16 1.7.5 diagnostic/constype 1.0.3 1.0.4 diagnostic/nmap 5.21 5.51 diagnostic/scanpci 0.12.1 0.13.1 diagnostic/wireshark 1.4.8 1.8.2 diagnostic/xload 1.1.0 1.1.1 editor/gnu-emacs 23.1 23.4 editor/vim 7.3.254 7.3.600 file/lndir 1.0.2 1.0.3 image/editor/bitmap 1.0.5 1.0.6 image/gnuplot 4.4.0 4.6.0 image/library/libexif 0.6.19 0.6.21 image/library/libpng 1.4.8 1.4.11 image/library/librsvg 2.26.3 2.34.1 image/xcursorgen 1.0.4 1.0.5 library/audio/pulseaudio not included 1.1 library/cacao 2.3.0.0 2.3.1.0 library/expat 2.0.1 2.1.0 library/gc 7.1 7.2 library/graphics/pixman 0.22.0 0.24.4 library/guile 1.8.4 1.8.6 library/java/javadb 10.5.3.0 10.6.2.1 library/java/subversion 1.6.16 1.7.5 library/json-c not included 0.9 library/libedit not included 3.0 library/libee not included 0.3.2 library/libestr not included 0.1.2 library/libevent 1.3.5 1.4.14.2 library/liblouis not included 2.1.1 library/liblouisxml not included 2.1.0 library/libtecla 1.6.0 1.6.1 library/libtool/libltdl 1.5.22 2.4.2 library/nspr 4.8.8 4.8.9 library/openldap 2.4.25 2.4.30 library/pcre 7.8 8.21 library/perl-5/subversion 1.6.16 1.7.5 library/python-2/jsonrpclib not included 0.1.3 library/python-2/lxml 2.1.2 2.3.3 library/python-2/nose not included 1.1.2 library/python-2/pyopenssl not included 0.11 library/python-2/subversion 1.6.16 1.7.5 library/python-2/tkinter-26 2.6.4 2.6.8 library/python-2/tkinter-27 2.7.1 2.7.3 library/security/nss 4.12.10 4.13.1 library/security/openssl 1.0.0.5 (1.0.0e) 1.0.0.10 (1.0.0j) mail/thunderbird 6.0 10.0.6 network/dns/bind 9.6.3.4.3 9.6.3.7.2 package/pkgbuild not included 1.3.104 print/filter/enscript not included 1.6.4 print/filter/gutenprint 5.2.4 5.2.7 print/lp/filter/foomatic-rip 3.0.2 4.0.15 runtime/java/jre-6 1.6.0.26 1.6.0.35 runtime/java/jre-7 1.7.0.0 1.7.0.7 runtime/perl-512 5.12.3 5.12.4 runtime/python-26 2.6.4 2.6.8 runtime/python-27 2.7.1 2.7.3 runtime/ruby-18 1.8.7.334 1.8.7.357 runtime/tcl-8/tcl-sqlite-3 3.7.6.3 3.7.11 security/compliance/openscap not included 0.8.1 security/nss-utilities 4.12.10 4.13.1 security/sudo 1.8.1.2 1.8.4.5 service/network/dhcp/isc-dhcp 4.1 4.1.0.6 service/network/dns/bind 9.6.3.4.3 9.6.3.7.2 service/network/ftp (ProFTPD) 1.3.3.0.5 1.3.3.0.7 service/network/samba 3.5.10 3.6.6 shell/conflict 0.2004.9.1 0.2010.6.27 shell/pipe-viewer 1.1.4 1.2.0 shell/zsh 4.3.12 4.3.17 system/boot/grub 0.97 1.99 system/font/truetype/liberation 1.4 1.7.2 system/library/freetype-2 2.4.6 2.4.9 system/library/libnet 1.1.2.1 1.1.5 system/management/cim/pegasus 2.9.1 2.11.0 system/management/ipmitool 1.8.10 1.8.11 system/management/wbem/wbemcli 1.3.7 1.3.9.1 system/network/routing/quagga 0.99.8 0.99.19 system/rsyslog not included 6.2.0 terminal/luit 1.1.0 1.1.1 text/convmv 1.14 1.15 text/gawk 3.1.5 3.1.8 text/gnu-grep 2.5.4 2.10 web/browser/firefox 6.0.2 10.0.6 web/browser/links 1.0 1.0.3 web/java-servlet/tomcat 6.0.33 6.0.35 web/php-53 not included 5.3.14 web/php-53/extension/php-apc not included 3.1.9 web/php-53/extension/php-idn not included 0.2.0 web/php-53/extension/php-memcache not included 3.0.6 web/php-53/extension/php-mysql not included 5.3.14 web/php-53/extension/php-pear not included 5.3.14 web/php-53/extension/php-suhosin not included 0.9.33 web/php-53/extension/php-tcpwrap not included 1.1.3 web/php-53/extension/php-xdebug not included 2.2.0 web/php-common not included 11.1 web/proxy/squid 3.1.8 3.1.18 web/server/apache-22 2.2.20 2.2.22 web/server/apache-22/module/apache-sed 2.2.20 2.2.22 web/server/apache-22/module/apache-wsgi not included 3.3 x11/diagnostic/xev 1.1.0 1.2.0 x11/diagnostic/xscope 1.3 1.3.1 x11/documentation/xorg-docs 1.6 1.7 x11/keyboard/xkbcomp 1.2.3 1.2.4 x11/library/libdmx 1.1.1 1.1.2 x11/library/libdrm 2.4.25 2.4.32 x11/library/libfontenc 1.1.0 1.1.1 x11/library/libfs 1.0.3 1.0.4 x11/library/libice 1.0.7 1.0.8 x11/library/libsm 1.2.0 1.2.1 x11/library/libx11 1.4.4 1.5.0 x11/library/libxau 1.0.6 1.0.7 x11/library/libxcb 1.7 1.8.1 x11/library/libxcursor 1.1.12 1.1.13 x11/library/libxdmcp 1.1.0 1.1.1 x11/library/libxext 1.3.0 1.3.1 x11/library/libxfixes 4.0.5 5.0 x11/library/libxfont 1.4.4 1.4.5 x11/library/libxft 2.2.0 2.3.1 x11/library/libxi 1.4.3 1.6.1 x11/library/libxinerama 1.1.1 1.1.2 x11/library/libxkbfile 1.0.7 1.0.8 x11/library/libxmu 1.1.0 1.1.1 x11/library/libxmuu 1.1.0 1.1.1 x11/library/libxpm 3.5.9 3.5.10 x11/library/libxrender 0.9.6 0.9.7 x11/library/libxres 1.0.5 1.0.6 x11/library/libxscrnsaver 1.2.1 1.2.2 x11/library/libxtst 1.2.0 1.2.1 x11/library/libxv 1.0.6 1.0.7 x11/library/libxvmc 1.0.6 1.0.7 x11/library/libxxf86vm 1.1.1 1.1.2 x11/library/mesa 7.10.2 7.11.2 x11/library/toolkit/libxaw7 1.0.9 1.0.11 x11/library/toolkit/libxt 1.0.9 1.1.3 x11/library/xtrans 1.2.6 1.2.7 x11/oclock 1.0.2 1.0.3 x11/server/xdmx 1.10.3 1.12.2 x11/server/xephyr 1.10.3 1.12.2 x11/server/xorg 1.10.3 1.12.2 x11/server/xorg/driver/xorg-input-keyboard 1.6.0 1.6.1 x11/server/xorg/driver/xorg-input-mouse 1.7.1 1.7.2 x11/server/xorg/driver/xorg-input-synaptics 1.4.1 1.6.2 x11/server/xorg/driver/xorg-input-vmmouse 12.7.0 12.8.0 x11/server/xorg/driver/xorg-video-ast 0.91.10 0.93.10 x11/server/xorg/driver/xorg-video-ati 6.14.1 6.14.4 x11/server/xorg/driver/xorg-video-cirrus 1.3.2 1.4.0 x11/server/xorg/driver/xorg-video-dummy 0.3.4 0.3.5 x11/server/xorg/driver/xorg-video-intel 2.10.0 2.18.0 x11/server/xorg/driver/xorg-video-mach64 6.9.0 6.9.1 x11/server/xorg/driver/xorg-video-mga 1.4.13 1.5.0 x11/server/xorg/driver/xorg-video-openchrome 0.2.904 0.2.905 x11/server/xorg/driver/xorg-video-r128 6.8.1 6.8.2 x11/server/xorg/driver/xorg-video-trident 1.3.4 1.3.5 x11/server/xorg/driver/xorg-video-vesa 2.3.0 2.3.1 x11/server/xorg/driver/xorg-video-vmware 11.0.3 12.0.2 x11/server/xserver-common 1.10.3 1.12.2 x11/server/xvfb 1.10.3 1.12.2 x11/server/xvnc 1.0.90 1.1.0 x11/session/sessreg 1.0.6 1.0.7 x11/session/xauth 1.0.6 1.0.7 x11/session/xinit 1.3.1 1.3.2 x11/transset 0.9.1 1.0.0 x11/trusted/trusted-xorg 1.10.3 1.12.2 x11/x11-window-dump 1.0.4 1.0.5 x11/xclipboard 1.1.1 1.1.2 x11/xclock 1.0.5 1.0.6 x11/xfd 1.1.0 1.1.1 x11/xfontsel 1.0.3 1.0.4 x11/xfs 1.1.1 1.1.2 P.S. To get the version numbers for this table, I ran a quick perl script over the output from: % pkg contents -H -r -t depend -a type=incorporate -o fmri \ `pkg contents -H -r -t depend -a type=incorporate -o fmri [email protected],5.11-0.175.1.0.0.24` \ | sort /tmp/11.1 % pkg contents -H -r -t depend -a type=incorporate -o fmri \ `pkg contents -H -r -t depend -a type=incorporate -o fmri [email protected],5.11-0.175.0.0.0.2` \ | sort /tmp/11.0

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >