Search Results

Search found 17 results on 1 pages for 'spinlock'.

Page 1/1 | 1 

  • Fastest inline-assembly spinlock

    - by sigvardsen
    I'm writing a multithreaded application in c++, where performance is critical. I need to use a lot of locking while copying small structures between threads, for this I have chosen to use spinlocks. I have done some research and speed testing on this and I found that most implementations are roughly equally fast: Microsofts CRITICAL_SECTION, with SpinCount set to 1000, scores about 140 time units Implementing this algorithm with Microsofts InterlockedCompareExchange scores about 95 time units Ive also tried to use some inline assembly with __asm {} using something like this code and it scores about 70 time units, but I am not sure that a proper memory barrier has been created. Edit: The times given here are the time it takes for 2 threads to lock and unlock the spinlock 1,000,000 times. I know this isn't a lot of difference but as a spinlock is a heavily used object, one would think that programmers would have agreed on the fastest possible way to make a spinlock. Googling it leads to many different approaches however. I would think this aforementioned method would be the fastest if implemented using inline assembly and using the instruction CMPXCHG8B instead of comparing 32bit registers. Furthermore memory barriers must be taken into account, this could be done by LOCK CMPXHG8B (I think?), which guarantees "exclusive rights" to the shared memory between cores. At last [some suggests] that for busy waits should be accompanied by NOP:REP that would enable Hyper-threading processors to switch to another thread, but I am not sure whether this is true or not? From my performance-test of different spinlocks, it is seen that there is not much difference, but for purely academic purpose I would like to know which one is fastest. However as I have extremely limited experience in the assembly-language and with memory barriers, I would be happy if someone could write the assembly code for the last example I provided with LOCK CMPXCHG8B and proper memory barriers in the following template: __asm { spin_lock: ;locking code. spin_unlock: ;unlocking code. }

    Read the article

  • .NET 4 SpinLock

    - by Jon Harrop
    The following test code (F#) is not returning the result I'd expect: let safeCount() = let n = 1000000 let counter = ref 0 let spinlock = ref <| SpinLock(false) let run i0 i1 () = for i=i0 to i1-1 do let locked = ref false try (!spinlock).Enter locked if !locked then counter := !counter + 1 finally if !locked then (!spinlock).Exit() let thread = System.Threading.Thread(run 0 (n/2)) thread.Start() run (n/2) n () thread.Join() !counter I'd expect the SpinLock to mutually exclude the counter and, therefore, for it to return counts of 1,000,000 but, instead, it returns smaller values as if no mutual exclusion is occurring. Any ideas what's wrong?

    Read the article

  • How to write a spinlock without using CAS

    - by Martin
    Following on from a discussion which got going in the comments of this question. How would one go about writing a Spinlock without CAS operations? As the other question states: The memory ordering model is such that writes will be atomic (if two concurrent threads write a memory location at the same time, the result will be one or the other). The platform will not support atomic compare-and-set operations.

    Read the article

  • Spinlocks, How Much Useful Are They?

    - by unknown
    How often do you find yourself actually using spinlocks in your code? How common is it to come across a situation where using a busy loop actually outperforms the usage of locks? Personally, when I write some sort of code that requires thread safety, I tend to benchmark it with different synchronization primitives, and as far as it goes, it seems like using locks gives better performance than using spinlocks. No matter for how little time I actually hold the lock, the amount of contention I receive when using spinlocks is far greater than the amount I get from using locks (of course, I run my tests on a multiprocessor machine). I realize that it's more likely to come across a spinlock in "low-level" code, but I'm interested to know whether you find it useful in even a more high-level kind of programming?

    Read the article

  • How is spin lock implemented under the hood?

    - by httpinterpret
    This is a lock that can be held by only one thread of execution at a time. An attempt to acquire the lock by another thread of execution makes the latter loop until the lock is released. How does it handle the case when two threads try to acquire the lock exactly the same time? I think this question also applies to various of other mutex implementation.

    Read the article

  • Is it safe to spin on a volatile variable in user-mode threads?

    - by yongsun
    I'm not quite sure if it's safe to spin on a volatile variable in user-mode threads, to implement a light-weight spin_lock, I looked at the tbb source code, tbb_machine.h:170, //! Spin WHILE the value of the variable is equal to a given value /** T and U should be comparable types. */ template<typename T, typename U> void spin_wait_while_eq( const volatile T& location, U value ) { atomic_backoff backoff; while( location==value ) backoff.pause(); } And there is no fences in atomic_backoff class as I can see. While from other user-mode spin_lock implementation, most of them use CAS (Compare and Swap).

    Read the article

  • Why does one loop take longer to detect a shared memory update than another loop?

    - by Joseph Garvin
    I've written a 'server' program that writes to shared memory, and a client program that reads from the memory. The server has different 'channels' that it can be writing to, which are just different linked lists that it's appending items too. The client is interested in some of the linked lists, and wants to read every node that's added to those lists as it comes in, with the minimum latency possible. I have 2 approaches for the client: For each linked list, the client keeps a 'bookmark' pointer to keep its place within the linked list. It round robins the linked lists, iterating through all of them over and over (it loops forever), moving each bookmark one node forward each time if it can. Whether it can is determined by the value of a 'next' member of the node. If it's non-null, then jumping to the next node is safe (the server switches it from null to non-null atomically). This approach works OK, but if there are a lot of lists to iterate over, and only a few of them are receiving updates, the latency gets bad. The server gives each list a unique ID. Each time the server appends an item to a list, it also appends the ID number of the list to a master 'update list'. The client only keeps one bookmark, a bookmark into the update list. It endlessly checks if the bookmark's next pointer is non-null ( while(node->next_ == NULL) {} ), if so moves ahead, reads the ID given, and then processes the new node on the linked list that has that ID. This, in theory, should handle large numbers of lists much better, because the client doesn't have to iterate over all of them each time. When I benchmarked the latency of both approaches (using gettimeofday), to my surprise #2 was terrible. The first approach, for a small number of linked lists, would often be under 20us of latency. The second approach would have small spats of low latencies but often be between 4,000-7,000us! Through inserting gettimeofday's here and there, I've determined that all of the added latency in approach #2 is spent in the loop repeatedly checking if the next pointer is non-null. This is puzzling to me; it's as if the change in one process is taking longer to 'publish' to the second process with the second approach. I assume there's some sort of cache interaction going on I don't understand. What's going on?

    Read the article

  • Atomic int writes on file

    - by Waneck
    Hello! I'm writing an application that will have to be able to handle many concurrent accesses to it, either by threads as by processes. So no mutex'es or locks should be applied to this. To make the use of locks go down to a minimum, I'm designing for the file to be "append-only", so all data is first appended to disk, and then the address pointing to the info it has updated, is changed to refer to the new one. So I will need to implement a small lock system only to change this one int so it refers to the new address. How is the best way to do it? I was thinking about maybe putting a flag before the address, that when it's set, the readers will use a spin lock until it's released. But I'm afraid that it isn't at all atomic, is it? e.g. a reader reads the flag, and it is unset on the same time, a writer writes the flag and changes the value of the int the reader may read an inconsistent value! I'm looking for locking techniques but all I find is either for thread locking techniques, or to lock an entire file, not fields. Is it not possible to do this? How do append-only databases handle this? Thanks! Cauê

    Read the article

  • spin_lock_irqsave vs spin_lock_irq

    - by cojocar
    On a SMP machine we must use spin_lock_irqsave and not spin_lock_irq from interrupt context. Why would we want to save the flags (which contains the IF)? Is there another interrupt routine that could interrupt us? The flags are per CPU?

    Read the article

  • Synchronization between user space process and interupt context code

    - by user1748950
    Recently I attended couple of interviews. Out of all kernel questions which were asked, thr is one specific question which I couldnt find convincing answer of. How will you use different synchronization techniques while sharing data between user space process and interrupt context function? My convincing answer was: In interrupt context code: 1. do *spin_lock_irqsave* 2. access data buffer which is shared between user space app and kernel 3. do *spin_lock_irqrestore* Then this was not convincing answer. Do I have to do irqsave and irqrestore in all the instances of data access? Regards, Yogi

    Read the article

  • How do I install axis2 into tomcat6 on 10.04?

    - by spinlock
    I'm trying to install axis2 onto tomcat6 and I'm having some difficulties. I've installed tomcat6 using apt and I've downloaded the axis2.war file and placed it in /usr/share/tomcat6/webapps/. From the instructions I'm following, tomcat should now unpack the war file and create and axis2 directory in webapps/ but this is not happening. I can see the default tomcat page on http://localhost:8080/ but I cannot see the axis2 page on http://localhost:8080/axis2/ Any help would be greatly appreciated.

    Read the article

  • Why can't I connect to a Cisco wireless access point?

    - by spinlock
    I'm running a Lucid Netbook Remix on my Dell Inspiron 600m and I was not able to connect to the wireless network at the Hacker Dojo in Mountain View yesterday. There were plenty of other people on the network - MS, Mac, and Linux boxes - but my laptop would never get an ip address. I can connect to my home network, which is open, and I've never had a problem connecting at the coffee shop, which uses WPA. The Hacker Dojo is running WPA and we checked the password a number of times but got no love. Any ideas would be greatly appreciated. Additional Info: $iwlist eth1 scan eth1 Scan completed : Cell 01 - Address: EC:C8:82:FA:63:92 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:62 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 280ms ago Cell 02 - Address: 00:18:4D:24:08:61 ESSID:"Green Zone" Protocol:IEEE 802.11bg Mode:Master Frequency:2.417 GHz (Channel 2) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s 9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:23 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 11516ms ago Cell 03 - Address: 08:17:35:32:6E:13 ESSID:"\x00" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:71 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 2760ms ago Cell 04 - Address: EC:C8:82:FA:63:90 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:61 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 772ms ago Cell 05 - Address: 08:17:35:32:6E:11 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:65 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 3308ms ago Cell 06 - Address: 08:17:35:32:7E:31 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:88 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 1668ms ago Cell 07 - Address: 38:E7:D8:01:46:1E ESSID:"JWS_Incredible" Protocol:IEEE 802.11bg Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 500 kb/s; 54 Mb/s Quality:31 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK Extra: Last beacon: 2848ms ago Cell 08 - Address: 08:17:35:32:6E:10 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:67 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 7848ms ago Cell 09 - Address: 08:17:35:32:7E:30 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:85 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 8300ms ago Cell 10 - Address: 08:17:35:32:6E:12 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:68 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 232ms ago Cell 11 - Address: 08:17:35:32:7E:32 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:86 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 168ms ago Cell 12 - Address: EC:C8:82:FA:63:91 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:62 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 7408ms ago $iwconfig eth1 eth1 unassociated ESSID:"HackerDojo-gwifi" Nickname:"ipw2100" Mode:Managed Channel=0 Access Point: Not-Associated Bit Rate:0 kb/s Tx-Power:16 dBm Retry short limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off Link Quality:0 Signal level:0 Noise level:0 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

    Read the article

  • What is the best way to mock a 3rd party object in ruby?

    - by spinlock
    I'm writing a test app using the twitter gem and I'd like to write an integration test but I can't figure out how to mock the objects in the Twitter namespace. Here's the function that I want to test: def build_twitter(omniauth) Twitter.configure do |config| config.consumer_key = TWITTER_KEY config.consumer_secret = TWITTER_SECRET config.oauth_token = omniauth['credentials']['token'] config.oauth_token_secret = omniauth['credentials']['secret'] end client = Twitter::Client.new user = client.current_user self.name = user.name end and here's the rspec test that I'm trying to write: feature 'testing oauth' do before(:each) do @twitter = double("Twitter") @twitter.stub!(:configure).and_return true @client = double("Twitter::Client") @client.stub!(:current_user).and_return(@user) @user = double("Twitter::User") @user.stub!(:name).and_return("Tester") end scenario 'twitter' do visit root_path login_with_oauth page.should have_content("Pages#home") end end But, I'm getting this error: 1) testing oauth twitter Failure/Error: login_with_oauth Twitter::Error::Unauthorized: GET https://api.twitter.com/1/account/verify_credentials.json: 401: Invalid / expired Token # ./app/models/user.rb:40:in `build_twitter' # ./app/models/user.rb:16:in `build_authentication' # ./app/controllers/authentications_controller.rb:47:in `create' # ./spec/support/integration_spec_helper.rb:3:in `login_with_oauth' # ./spec/integration/twit_test.rb:16:in `block (2 levels) in <top (required)>' The mocks above are using rspec but I'm open to trying mocha too. Any help would be greatly appreciated.

    Read the article

  • Subterranean IL: Volatile

    - by Simon Cooper
    This time, we'll be having a look at the volatile. prefix instruction, and one of the differences between volatile in IL and C#. The volatile. prefix volatile is a tricky one, as there's varying levels of documentation on it. From what I can see, it has two effects: It prevents caching of the load or store value; rather than reading or writing to a cached version of the memory location (say, the processor register or cache), it forces the value to be loaded or stored at the 'actual' memory location, so it is then immediately visible to other threads. It forces a memory barrier at the prefixed instruction. This ensures instructions don't get re-ordered around the volatile instruction. This is slightly more complicated than it first seems, and only seems to matter on certain architectures. For more details, Joe Duffy has a blog post going into the details. For this post, I'll be concentrating on the first aspect of volatile. Caching field accesses To demonstrate this, I created a simple multithreaded IL program. It boils down to the following code: .class public Holder { .field public static class Holder holder .field public bool stop .method public static specialname void .cctor() { newobj instance void Holder::.ctor() stsfld class Holder Holder::holder ret }}.method private static void Main() { .entrypoint // Thread t = new Thread(new ThreadStart(DoWork)) // t.Start() // Thread.Sleep(2000) // Console.WriteLine("Stopping thread...") ldsfld class Holder Holder::holder ldc.i4.1 stfld bool Holder::stop call instance void [mscorlib]System.Threading.Thread::Join() ret}.method private static void DoWork() { ldsfld class Holder Holder::holder // while (!Holder.holder.stop) {} DoWork: dup ldfld bool Holder::stop brfalse DoWork pop ret} If you compile and run this code, you'll find that the call to Thread.Join() never returns - the DoWork spinlock is reading a cached version of Holder.stop, which is never being updated with the new value set by the Main method. Adding volatile to the ldfld fixes this: dupvolatile.ldfld bool Holder::stopbrfalse DoWork The volatile ldfld forces the field access to read direct from heap memory, which is then updated by the main thread, rather than using a cached copy. volatile in C# This highlights one of the differences between IL and C#. In IL, volatile only applies to the prefixed instruction, whereas in C#, volatile is specified on a field to indicate that all accesses to that field should be volatile (interestingly, there's no mention of the 'no caching' aspect of volatile in the C# spec; it only focuses on the memory barrier aspect). Furthermore, this information needs to be stored within the assembly somehow, as such a field might be accessed directly from outside the assembly, but there's no concept of a 'volatile field' in IL! How this information is stored with the field will be the subject of my next post.

    Read the article

  • Anyone else experiencing high rates of linux server crashes today?

    - by Bron Gondwana
    Just today, Sat June 30th - starting soon after the start of the day GMT. We've had a handful of blades in different datacentres as managed by different teams all go dark - not responding to pings, screen blank. They're all running Debian Squeeze - with everything from stock kernel to custom 3.2.21 builds. Most are Dell M610 blades, but I've also just lost a Dell R510 and other departments have lost machines from other vendors too. There was also an older IBM x3550 which crashed and which I thought might be unrelated, but now I'm wondering. The one crash which I did get a screen dump from said: [3161000.864001] BUG: spinlock lockup on CPU#1, ntpd/3358 [3161000.864001] lock: ffff88083fc0d740, .magic: dead4ead, .owner: imapd/24737, .owner_cpu: 0 Unfortunately the blades all supposedly had kdump configured, but they died so hard that kdump didn't trigger - and they had console blanking turned on. I've disabled console blanking now, so fingers crossed I'll have more information after the next crash. Just want to know if it's a common thread or "just us". It's really odd that they're different units in different datacentres bought at different times and run by different admins (I run the FastMail.FM ones)... and now even different vendor hardware. Most of the machines which crashed had been up for weeks/months and were running 3.1 or 3.2 series kernels. The most recent crash was a machine which had only been up about 6 hours running 3.2.21.

    Read the article

  • Anyone else experiencing high rates of Linux server crashes during a leap second day?

    - by Bron Gondwana
    POSTMORTEM Anticlimax: only thing that died was my VPN (openvpn) link to the cluster, so there was an exciting few seconds while it re-established. Everything else was fine. Starting back ntp everywhere. If you look at Marco's blog at http://my.opera.com/marcomarongiu/blog/2012/06/01/an-humble-attempt-to-work-around-the-leap-second - he has a solution for phasing the time change over 24 hours using ntpd -x to avoid the 1 second skip. Give that a go if it matters to you. For the systems I run, the jump isn't a problem. Just today, Sat June 30th - starting soon after the start of the day GMT. We've had a handful of blades in different datacentres as managed by different teams all go dark - not responding to pings, screen blank. They're all running Debian Squeeze - with everything from stock kernel to custom 3.2.21 builds. Most are Dell M610 blades, but I've also just lost a Dell R510 and other departments have lost machines from other vendors too. There was also an older IBM x3550 which crashed and which I thought might be unrelated, but now I'm wondering. The one crash which I did get a screen dump from said: [3161000.864001] BUG: spinlock lockup on CPU#1, ntpd/3358 [3161000.864001] lock: ffff88083fc0d740, .magic: dead4ead, .owner: imapd/24737, .owner_cpu: 0 Unfortunately the blades all supposedly had kdump configured, but they died so hard that kdump didn't trigger - and they had console blanking turned on. I've disabled console blanking now, so fingers crossed I'll have more information after the next crash. Just want to know if it's a common thread or "just us". It's really odd that they're different units in different datacentres bought at different times and run by different admins (I run the FastMail.FM ones)... and now even different vendor hardware. Most of the machines which crashed had been up for weeks/months and were running 3.1 or 3.2 series kernels. The most recent crash was a machine which had only been up about 6 hours running 3.2.21. THE WORKAROUND Ok people, here's how I worked around it. disabled ntp: /etc/init.d/ntp stop created http://linux.brong.fastmail.fm/2012-06-30/fixtime.pl (code stolen from Marco, see blog posts in comments) ran fixtime.pl without an argument to see that there was a leap second set ran fixtime.pl with an argument to remove the leap second NOTE: depends on adjtimex. I've put a copy of the squeeze adjtimex binary at http://linux.brong.fastmail.fm/2012-06-30/adjtimex - it will run without dependencies on a squeeze 64 bit system. If you put it in the same directory as fixtime.pl, it will be used if the system one isn't present. Obviously if you don't have squeeze 64 bit... find your own. I'm going to start ntp again tomorrow. As an anonymous user suggested - an alternative to running adjtimex is to just set the time yourself, which will presumably also clear the leapsecond counter.

    Read the article

  • linux thread synchronization

    - by johnnycrash
    I am new to linux and linux threads. I have spent some time googling to try to understand the differences between all the functions available for thread synchronization. I still have some questions. I have found all of these different types of synchronizations, each with a number of functions for locking, unlocking, testing the lock, etc. gcc atomic operations futexes mutexes spinlocks seqlocks rculocks conditions semaphores My current (but probably flawed) understanding is this: semaphores are process wide, involve the filesystem (virtually I assume), and are probably the slowest. Futexes might be the base locking mechanism used by mutexes, spinlocks, seqlocks, and rculocks. Futexes might be faster than the locking mechanisms that are based on them. Spinlocks dont block and thus avoid context swtiches. However they avoid the context switch at the expense of consuming all the cycles on a CPU until the lock is released (spinning). They should only should be used on multi processor systems for obvious reasons. Never sleep in a spinlock. The seq lock just tells you when you finished your work if a writer changed the data the work was based on. You have to go back and repeat the work in this case. Atomic operations are the fastest synch call, and probably are used in all the above locking mechanisms. You do not want to use atomic operations on all the fields in your shared data. You want to use a lock (mutex, futex, spin, seq, rcu) or a single atomic opertation on a lock flag when you are accessing multiple data fields. My questions go like this: Am I right so far with my assumptions? Does anyone know the cpu cycle cost of the various options? I am adding parallelism to the app so we can get better wall time response at the expense of running fewer app instances per box. Performances is the utmost consideration. I don't want to consume cpu with context switching, spinning, or lots of extra cpu cycles to read and write shared memory. I am absolutely concerned with number of cpu cycles consumed. Which (if any) of the locks prevent interruption of a thread by the scheduler or interrupt...or am I just an idiot and all synchonization mechanisms do this. What kinds of interruption are prevented? Can I block all threads or threads just on the locking thread's CPU? This question stems from my fear of interrupting a thread holding a lock for a very commonly used function. I expect that the scheduler might schedule any number of other workers who will likely run into this function and then block because it was locked. A lot of context switching would be wasted until the thread with the lock gets rescheduled and finishes. I can re-write this function to minimize lock time, but still it is so commonly called I would like to use a lock that prevents interruption...across all processors. I am writing user code...so I get software interrupts, not hardware ones...right? I should stay away from any functions (spin/seq locks) that have the word "irq" in them. Which locks are for writing kernel or driver code and which are meant for user mode? Does anyone think using an atomic operation to have multiple threads move through a linked list is nuts? I am thinking to atomicly change the current item pointer to the next item in the list. If the attempt works, then the thread can safely use the data the current item pointed to before it was moved. Other threads would now be moved along the list. futexes? Any reason to use them instead of mutexes? Is there a better way than using a condition to sleep a thread when there is no work? When using gcc atomic ops, specifically the test_and_set, can I get a performance increase by doing a non atomic test first and then using test_and_set to confirm? *I know this will be case specific, so here is the case. There is a large collection of work items, say thousands. Each work item has a flag that is initialized to 0. When a thread has exclusive access to the work item, the flag will be one. There will be lots of worker threads. Any time a thread is looking for work, they can non atomicly test for 1. If they read a 1, we know for certain that the work is unavailable. If they read a zero, they need to perform the atomic test_and_set to confirm. So if the atomic test_and_set is 500 cpu cycles because it is disabling pipelining, causes cpu's to communicate and L2 caches to flush/fill .... and a simple test is 1 cycle .... then as long as I had a better ratio of 500 to 1 when it came to stumbling upon already completed work items....this would be a win.* I hope to use mutexes or spinlocks to sparilngly protect sections of code that I want only one thread on the SYSTEM (not jsut the CPU) to access at a time. I hope to sparingly use gcc atomic ops to select work and minimize use of mutexes and spinlocks. For instance: a flag in a work item can be checked to see if a thread has worked it (0=no, 1=yes or in progress). A simple test_and_set tells the thread if it has work or needs to move on. I hope to use conditions to wake up threads when there is work. Thanks!

    Read the article

1