Performance in backpropagation algorithm
- by Taban
I've written a matlab program for standard backpropagation algorithm, it is my homework and I should not use matlab toolbox, so I write the entire code by myself. This link helped me for backpropagation algorithm. I have a data set of 40 random number and initial weights randomly. As output, I want to see a diagram that shows the performance. I used mse and plot function to see performance for 20 epochs but the result is this:
I heard that performance should go up through backpropagation, so I want to know is there any problem with my code or this result is normal because local minimums.
This is my code:
Hidden_node=inputdlg('Enter the number of Hidden nodes');
a=0.5;%initialize learning rate
hiddenn=str2num(Hidden_node{1,1});
randn('seed',0);
%creating data set
s=2;
N=10;
m=[5 -5 5 5;-5 -5 5 -5];
S = s*eye(2);
[l,c] = size(m);
x = []; % Creating the training set
for i = 1:c
x = [x mvnrnd(m(:,i)',S,N)'];
end
% target value
toutput=[ones(1,N) zeros(1,N) ones(1,N) zeros(1,N)];
for epoch=1:20; %number of epochs
for kk=1:40; %number of patterns
%initial weights of hidden layer
for ii=1 : 2;
for jj=1 :hiddenn;
whidden{ii,jj}=rand(1);
end
end
initial the wights of output layer
for ii=1 : hiddenn;
woutput{ii,1}=rand(1);
end
for ii=1:hiddenn;
x1=x(1,kk);
x2=x(2,kk);
w1=whidden{1,ii};
w2=whidden{2,ii};
activation{1,ii}=(x1(1,1)*w1(1,1))+(x2(1,1)*w2(1,1));
end
%calculate output of hidden nodes
for ii=1:hiddenn;
hidden_to_out{1,ii}=logsig(activation{1,ii});
end
activation_O{1,1}=0;
for jj=1:hiddenn;
activation_O{1,1} = activation_O{1,1}+(hidden_to_out{1,jj}*woutput{jj,1});
end
%calculate output
out{1,1}=logsig(activation_O{1,1});
out_for_plot(1,kk)= out{1,ii};
%calculate error for output node
delta_out{1,1}=(toutput(1,kk)-out{1,1});
%update weight of output node
for ii=1:hiddenn;
woutput{ii,jj}=woutput{ii,jj}+delta_out{1,jj}*hidden_to_out{1,ii}*dlogsig(activation_O{1,jj},logsig(activation_O{1,jj}))*a;
end
%calculate error of hidden nodes
for ii=1:hiddenn;
delta_hidden{1,ii}=woutput{ii,1}*delta_out{1,1};
end
%update weight of hidden nodes
for ii=1:hiddenn;
for jj=1:2;
whidden{jj,ii}= whidden{jj,ii}+(delta_hidden{1,ii}*dlogsig(activation{1,ii},logsig(activation{1,ii}))*x(jj,kk)*a);
end
end
a=a/(1.1);%decrease learning rate
end
%calculate performance
e=toutput(1,kk)-out_for_plot(1,1);
perf(1,epoch)=mse(e);
end
plot(perf);
Thanks a lot.