Search Results

Search found 2 results on 1 pages for 'the111'.

Page 1/1 | 1 

  • Were the first assemblers written in machine code?

    - by The111
    I am reading the book The Elements of Computing Systems: Building a Modern Computer from First Principles, which contains projects encompassing the build of a computer from boolean gates all the way to high level applications (in that order). The current project I'm working on is writing an assembler using a high level language of my choice, to translate from Hack assembly code to Hack machine code (Hack is the name of the hardware platform built in the previous chapters). Although the hardware has all been built in a simulator, I have tried to pretend that I am really constructing each level using only the tools available to me at that point in the real process. That said, it got me thinking. Using a high level language to write my assembler is certainly convenient, but for the very first assembler ever written (i.e. in history), wouldn't it need to be written in machine code, since that's all that existed at the time? And a correlated question... how about today? If a brand new CPU architecture comes out, with a brand new instruction set, and a brand new assembly syntax, how would the assembler be constructed? I'm assuming you could still use an existing high level language to generate binaries for the assembler program, since if you know the syntax of both the assembly and machine languages for your new platform, then the task of writing the assembler is really just a text analysis task and is not inherently related to that platform (i.e. needing to be written in that platform's machine language)... which is the very reason I am able to "cheat" while writing my Hack assembler in 2012, and use some preexisting high level language to help me out.

    Read the article

  • How does java.util.Collections.contains() perform faster than a linear search?

    - by The111
    I've been fooling around with a bunch of different ways of searching collections, collections of collections, etc. Doing lots of stupid little tests to verify my understanding. Here is one which boggles me (source code further below). In short, I am generating N random integers and adding them to a list. The list is NOT sorted. I then use Collections.contains() to look for a value in the list. I intentionally look for a value that I know won't be there, because I want to ensure that the entire list space is probed. I time this search. I then do another linear search manually, iterating through each element of the list and checking if it matches my target. I also time this search. On average, the second search takes 33% longer than the first one. By my logic, the first search must also be linear, because the list is unsorted. The only possibility I could think of (which I immediately discard) is that Java is making a sorted copy of my list just for the search, but (1) I did not authorize that usage of memory space and (2) I would think that would result in MUCH more significant time savings with such a large N. So if both searches are linear, they should both take the same amount of time. Somehow the Collections class has optimized this search, but I can't figure out how. So... what am I missing? import java.util.*; public class ListSearch { public static void main(String[] args) { int N = 10000000; // number of ints to add to the list int high = 100; // upper limit for random int generation List<Integer> ints; int target = -1; // target will not be found, forces search of entire list space long start; long end; ints = new ArrayList<Integer>(); start = System.currentTimeMillis(); System.out.print("Generating new list... "); for (int i = 0; i < N; i++) { ints.add(((int) (Math.random() * high)) + 1); } end = System.currentTimeMillis(); System.out.println("took " + (end-start) + "ms."); start = System.currentTimeMillis(); System.out.print("Searching list for target (method 1)... "); if (ints.contains(target)) { // nothing } end = System.currentTimeMillis(); System.out.println(" Took " + (end-start) + "ms."); System.out.println(); ints = new ArrayList<Integer>(); start = System.currentTimeMillis(); System.out.print("Generating new list... "); for (int i = 0; i < N; i++) { ints.add(((int) (Math.random() * high)) + 1); } end = System.currentTimeMillis(); System.out.println("took " + (end-start) + "ms."); start = System.currentTimeMillis(); System.out.print("Searching list for target (method 2)... "); for (Integer i : ints) { // nothing } end = System.currentTimeMillis(); System.out.println(" Took " + (end-start) + "ms."); } }

    Read the article

1