Search Results

Search found 13 results on 1 pages for 'timestamping'.

Page 1/1 | 1 

  • Which CA issues Timestamping certificate

    - by frx
    Hello! Our company currently implementing TSA (Time Stamp Authority) service. And now we are searching CA (Certification Authority), which could issue certificate with intended usage: Timestamping. I contacted with few CA's, but they offer just Digital ID certificates, and know nothing about TSA. Maybe someone has experience with such problem? Thank You!

    Read the article

  • Calculation of average and Timestamping

    - by user554230
    pls do sumone help me to solve this for me and the number should be variable and not constant. the output should be: Timestamping In 6 Digit 8 5 6 3 0 1 Average In 6 Digit 9 8 7 6 5 2 class Timestamp1 extends Average1 { public static void main (String args[]) { int i = 103658; int j = 10; int k = i % j; System.out.println(" Timestamping In 6 Digit " ); System.out.println(" " + k); int o = 10365; int p = 10; int q = o % p; System.out.println(" " + q); int l = 1036; int m = 10; int n = l % m; System.out.println(" " + n); int r = 103; int s = 10; int t = r % s; System.out.println(" " + t); int u = 10; int v = 10; int w = u % v; System.out.println(" " + w); int x = 1; int y = 10; int z = x % y; System.out.println(" " + z); class Average1 extends Timestamp1 { public void main() { int i = 256789; int j = 10; int k = i % j; System.out.println(" Average In 6 Digit "); System.out.println(" " + k); int o = 25678; int p = 10; int q = o % p; System.out.println(" " + q); int l = 2567; int m = 10; int n = l % m; System.out.println(" " + n); int r = 256; int s = 10; int t = r % s; System.out.println(" " + t); int u = 25; int v = 10; int w = u % v; System.out.println(" " + w); int x = 2; int y = 10; int z = x % y; System.out.println(" " + z); } } } }

    Read the article

  • How can I (reasonably) precisely perform an action every N milliseconds?

    - by Jon Cage
    I have a machine which uses an NTP client to sync up to internet time so it's system clock should be fairly accurate. I've got an application which I'm developing which logs data in real time, processes it and then passes it on. What I'd like to do now is output that data every N milliseconds aligned with the system clock. So for example if I wanted to do 20ms intervals, my oututs ought to be something like this: 13:15:05:0000 13:15:05:0020 13:15:05:0040 13:15:05:0060 I've seen suggestions for using the stopwatch class, but that only measures time spans as opposed to looking for specific time stamps. The code to do this is running in it's own thread, so should be a problem if I need to do some relatively blocking calls. Any suggestions on how to achieve this to a reasonable (close to or better than 1ms precision would be nice) would be very gratefully received.

    Read the article

  • Why is my code signing (MS authenticode) verification failing?

    - by Tim
    I posted this question and have a freshly minted code signing cert from Thawte. I followed the instructions (or so I thought) and the code signing claims to be done right, however when I try to verify the tool shows an error. I have no idea what it means and no idea how to fix this. Any comments would be appreciated. Command line to sign exe: signtool sign /f mdt.pfx /p password /t http://timestamp.verisign.com/scripts/timstamp.dll test.exe Results: The following certificate was selected: Issued to: [my company] Issued by: Thawte Code Signing CA Expires: 4/23/2011 7:59:59 PM SHA1 hash: 7D1A42364765F8969E83BC00AB77F901118F3601 Done Adding Additional Store Attempting to sign: test.exe Successfully signed and timestamped: test.exe Number of files successfully Signed: 1 Number of warnings: 0 Number of errors: 0 Note that there are no errors or warnings. Now, when I try to verify imagine my surprise: signtool verify /v test.exe results in: Verifying: test.exe SHA1 hash of file: 490BA0656517D3A322D19F432F1C6D40695CAD22 Signing Certificate Chain: Issued to: Thawte Premium Server CA Issued by: Thawte Premium Server CA Expires: 12/31/2020 7:59:59 PM SHA1 hash: 627F8D7827656399D27D7F9044C9FEB3F33EFA9A Issued to: Thawte Code Signing CA Issued by: Thawte Premium Server CA Expires: 8/5/2013 7:59:59 PM SHA1 hash: A706BA1ECAB6A2AB18699FC0D7DD8C7DE36F290F Issued to: [my company] Issued by: Thawte Code Signing CA Expires: 4/23/2011 7:59:59 PM SHA1 hash: 7D1A42364765F8969E83BC00AB77F901118F3601 The signature is timestamped: 4/27/2010 10:19:19 AM Timestamp Verified by: Issued to: Thawte Timestamping CA Issued by: Thawte Timestamping CA Expires: 12/31/2020 7:59:59 PM SHA1 hash: BE36A4562FB2EE05DBB3D32323ADF445084ED656 Issued to: VeriSign Time Stamping Services CA Issued by: Thawte Timestamping CA Expires: 12/3/2013 7:59:59 PM SHA1 hash: F46AC0C6EFBB8C6A14F55F09E2D37DF4C0DE012D Issued to: VeriSign Time Stamping Services Signer - G2 Issued by: VeriSign Time Stamping Services CA Expires: 6/14/2012 7:59:59 PM SHA1 hash: ADA8AAA643FF7DC38DD40FA4C97AD559FF4846DE Number of files successfully Verified: 0 Number of warnings: 0 Number of errors: 1

    Read the article

  • Microsoft signed driver appears as publisher not verfied

    - by Priyanka Gupta
    Task at hand: Microsoft sign drivers on Win 7. I microsoft signed my driver package 3 times every time thinking I might have missed a step or something. However, I cannot seem to get rid of the Windows Security error message "Windows can't verify the publisher of this driver software'. This is not the first time I have signed the driver packages. I was successfully able to sign other driver packages a few months ago. However, with this driver package I keep getting Windows security dialog box. Here's the procedure I follow - Create a new cat file using INF2CAT tool. Self sign the driver using a Versign Class 3 Public Primary Certification Authority - G5.cer. Run the microsoft tests on DTM Servers and clients with the devices that use this driver. Create WLK submission package. Self sign the cab file. Submit the package for certification. The catalog file that comes back after successfully passing tests says Name of signer "Microsoft Windows Hardware Comptibility Publisher". When I check the validity of signature using SignTool, it says the signature is vaild. However, when I try to install the driver with new signed catalog file the windows complain. Any ideas? Edit 11/12/2012: Reply to Eugene's comment Thanks for the help, Eugene. Yes. I did sign two other driver packages before. One of them was modified version of WinUSB driver. I am using the same certificate I used when I signed those two driver packages a few months ago. It costs $250 per signing from Microsoft. I would think that Microsoft would complain about it during certification if the certificate is wrong. I use the following command to self sign the CAT file. I don't have to specify the ceritificate name as there's only one certificate in the directory - Signtool sign /v /a /n CompanyName /t http://timestamp.verisign.com/scripts/timestamp.dll OurCatalogFile.cat Below is the result from running Verify command on the Microsoft signed OurCatalogFile.cat C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\x64signtool verify /v "C:\User s\logotest\Documents\serialdriversigning\OurCatalogFile.cat" Verifying: C:\Users\logotest\Documents\serialdriversigning\OurCatalogFile.cat" Hash of file (sha1): BDDF39B1DD95881B462164129758A7FFD54F47D9 Signing Certificate Chain: Issued to: Microsoft Root Certificate Authority Issued by: Microsoft Root Certificate Authority Expires: Sun May 09 18:28:13 2021 SHA1 hash: CDD4EEAE6000AC7F40C3802C171E30148030C072 Issued to: Microsoft Windows Hardware Compatibility PCA Issued by: Microsoft Root Certificate Authority Expires: Thu Jun 04 16:15:46 2020 SHA1 hash: 8D42419D8B21E5CF9C3204D0060B19312B96EB78 Issued to: Microsoft Windows Hardware Compatibility Publisher Issued by: Microsoft Windows Hardware Compatibility PCA Expires: Wed Sep 18 18:20:55 2013 SHA1 hash: D94345C032D23404231DD3902F22AB1C2100341E The signature is timestamped: Tue Nov 06 11:26:48 2012 Timestamp Verified by: Issued to: Microsoft Root Authority Issued by: Microsoft Root Authority Expires: Thu Dec 31 02:00:00 2020 SHA1 hash: A43489159A520F0D93D032CCAF37E7FE20A8B419 Issued to: Microsoft Timestamping PCA Issued by: Microsoft Root Authority Expires: Sun Sep 15 02:00:00 2019 SHA1 hash: 3EA99A60058275E0ED83B892A909449F8C33B245 Issued to: Microsoft Time-Stamp Service Issued by: Microsoft Timestamping PCA Expires: Tue Apr 09 16:53:56 2013 SHA1 hash: 1895C2C907E0D7E5C0292B92C6EA8D0E236F525E Successfully verified: C:\Users\logotest\Documents\serialdriversigning\OurCatalogFile.cat" Number of files successfully Verified: 1 Number of warnings: 0 Number of errors: 0 Thank you!

    Read the article

  • Microsoft signed drivers appears as publisher not verfied

    - by Priyanka Gupta
    Task at hand: Microsoft sign drivers on Win 7. I microsoft signed my driver package 3 times every time thinking I might have missed a step or something. However, I cannot seem to get rid of the Windows Security error message "Windows can't verify the publisher of this driver software'. This is not the first time I have signed the driver packages. I was successfully able to sign other driver packages a few months ago. However, with this driver package I keep getting Windows security dialog box. Here's the procedure I follow - Create a new cat file using INF2CAT tool. Self sign the driver using a Versign Class 3 Public Primary Certification Authority - G5.cer. Run the microsoft tests on DTM Servers and clients with the devices that use this driver. Create WLK submission package. Self sign the cab file. Submit the package for certification. The catalog file that comes back after successfully passing tests says Name of signer "Microsoft Windows Hardware Comptibility Publisher". When I check the validity of signature using SignTool, it says the signature is vaild. However, when I try to install the driver with new signed catalog file the windows complain. Any ideas? Edit 11/12/2012: Reply to Eugene's comment Thanks for the help, Eugene. Yes. I did sign two other driver packages before. One of them was modified version of WinUSB driver. I am using the same certificate I used when I signed those two driver packages a few months ago. It costs $250 per signing from Microsoft. I would think that Microsoft would complain about it during certification if the certificate is wrong. I use the following command to self sign the CAT file. I don't have to specify the ceritificate name as there's only one certificate in the directory - Signtool sign /v /a /n CompanyName /t http://timestamp.verisign.com/scripts/timestamp.dll OurCatalogFile.cat Below is the result from running Verify command on the Microsoft signed OutCatalogFile.cat C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\x64signtool verify /v "C:\User s\logotest\Documents\serialdriversigning\OurCatalogFile.cat" Verifying: C:\Users\logotest\Documents\serialdriversigning\OurCatalogFile.cat" Hash of file (sha1): BDDF39B1DD95881B462164129758A7FFD54F47D9 Signing Certificate Chain: Issued to: Microsoft Root Certificate Authority Issued by: Microsoft Root Certificate Authority Expires: Sun May 09 18:28:13 2021 SHA1 hash: CDD4EEAE6000AC7F40C3802C171E30148030C072 Issued to: Microsoft Windows Hardware Compatibility PCA Issued by: Microsoft Root Certificate Authority Expires: Thu Jun 04 16:15:46 2020 SHA1 hash: 8D42419D8B21E5CF9C3204D0060B19312B96EB78 Issued to: Microsoft Windows Hardware Compatibility Publisher Issued by: Microsoft Windows Hardware Compatibility PCA Expires: Wed Sep 18 18:20:55 2013 SHA1 hash: D94345C032D23404231DD3902F22AB1C2100341E The signature is timestamped: Tue Nov 06 11:26:48 2012 Timestamp Verified by: Issued to: Microsoft Root Authority Issued by: Microsoft Root Authority Expires: Thu Dec 31 02:00:00 2020 SHA1 hash: A43489159A520F0D93D032CCAF37E7FE20A8B419 Issued to: Microsoft Timestamping PCA Issued by: Microsoft Root Authority Expires: Sun Sep 15 02:00:00 2019 SHA1 hash: 3EA99A60058275E0ED83B892A909449F8C33B245 Issued to: Microsoft Time-Stamp Service Issued by: Microsoft Timestamping PCA Expires: Tue Apr 09 16:53:56 2013 SHA1 hash: 1895C2C907E0D7E5C0292B92C6EA8D0E236F525E Successfully verified: C:\Users\logotest\Documents\serialdriversigning\OurCatalogFile.cat" Number of files successfully Verified: 1 Number of warnings: 0 Number of errors: 0 Thank you!

    Read the article

  • Save a single web page (with background images) with Wget

    - by mikael
    I want to use Wget to save single web pages (not recursively, not whole sites) for reference. Much like Firefox's "Web Page, complete". My first problem is: I can't get Wget to save background images specified in the CSS. Even if it did save the background image files I don't think --convert-links would convert the background-image URLs in the CSS file to point to the locally saved background images. Firefox has the same problem. My second problem is: If there are images on the page I want to save that are hosted on another server (like ads) these wont be included. --span-hosts doesn't seem to solve that problem with the line below. I'm using: wget --no-parent --timestamping --convert-links --page-requisites --no-directories --no-host-directories -erobots=off http://domain.tld/webpage.html

    Read the article

  • Concurrency pattern of logger in multithreaded application

    - by Dipan Mehta
    The context: We are working on a multi-threaded (Linux-C) application that follows a pipeline model. Each module has a private thread and encapsulated objects which do processing of data; and each stage has a standard form of exchanging data with next unit. The application is free from memory leak and is threadsafe using locks at the point where they exchange data. Total number of threads is about 15- and each thread can have from 1 to 4 objects. Making about 25 - 30 odd objects which all have some critical logging to do. Most discussion I have seen about different levels as in Log4J and it's other translations. The real big questions is about how the overall logging should really happen? One approach is all local logging does fprintf to stderr. The stderr is redirected to some file. This approach is very bad when logs become too big. If all object instantiate their individual loggers - (about 30-40 of them) there will be too many files. And unlike above, one won't have the idea of true order of events. Timestamping is one possibility - but it is still a mess to collate. If there is a single global logger (singleton) pattern - it indirectly blocks so many threads while one is busy putting up logs. This is unacceptable when processing of the threads are heavy. So what should be the ideal way to structure the logging objects? What are some of the best practices in actual large scale applications? I would also love to learn from some of the real designs of large scale applications to get inspirations from!

    Read the article

  • Setting database-agnostic default column timestamp using Hibernate

    - by unsquared
    I'm working on a java project full of Hibernate (3.3.1) mapping files that have the following sort of declaration for most domain objects. <property name="dateCreated" generated="insert"> <column name="date_created" default="getdate()" /> </property> The problem here is that getdate() is an MSSQL specific function, and when I'm using something like H2 to test subsections of the project, H2 screams that getdate() isn't a recognized function. It's own timestamping function is current_timestamp(). I'd like to be able to keep working with H2 for testing, and wanted to know whether there was a way of telling Hibernate "use this database's own mechanism for retrieving the current timestamp". With H2, I've come up with the following solution. CREATE ALIAS getdate AS $$ java.util.Date now() { return new java.util.Date(); } $$; CALL getdate(); It works, but is obviously H2 specific. I've tried extending H2Dialect and registering the function getdate(), but that doesn't seem to be invoked when Hibernate is creating tables. Is it possible to abstract the idea of a default timestamp away from the specific database engine?

    Read the article

  • Can any linux API or tool watch for any change in any folder below e.g. /SharedRoot or do I have to

    - by Simon B.
    I have a folder with ~10 000 subfolders. Can any linux API or tool watch for any change in any folder below e.g. /SharedRoot or do I have to setup inotify for each folder? (i.e. I loose if I want to do this for 10k+ folders). I guess yes, since I've already seen examples of this inefficient method, for instance http://twistedmatrix.com/trac/browser/trunk/twisted/internet/inotify.py?rev=28866#L345 My problem: I need to keep folders time-sorted with most recently active "project" up top. When a file changes, each folder above that file should update its last-modified timestamp to match the file. Delays are ok. Opening a file (typically MS Excel) and closing again, its file date can jump up and then down again. For this reason I need to wait until after a file is closed, then queue the folder of that file for checking, and only a while later do I go and look for the newest file in its folder, since the filedate of the triggering file could already be back-dated to its original timestamp by Excel or similar programs. Also in case several files from same folder are used/created, it makes sense to buffer timestamping of that folders' parents to at least get a bunch of updates collapsed into one delayed update. I'm looking for a linux solution. I have some code that can be run on a windows server, most of the queing functionality is here: http://github.com/sesam/FolderdateFollowsFiles/blob/master/FolderdateFollowsFiles/Follower.vb Available API:s The relative of inotify on windows, ReadDirectoryChangesW, can watch a folder and its whole subtree; see bWatchSubtree on http://msdn.microsoft.com/en-us/library/aa365465(VS.85).aspx Samba? Patching samba source is a possibility, but perhaps there are already hooks available? Other possibilities, like client side (various windows versions) and spying on file activities in order to update folders recursively?

    Read the article

  • Reasons for missing IP info in `last` output on pts logins?

    - by Mike Pennington
    I have five CentOS 6 linux systems at work, and encountered a rather strange issue that only seems to happen with my userid across all the linux systems I have... This is an example of the problem from entries I excepted from the last command... mpenning pts/19 Fri Nov 16 10:32 - 10:35 (00:03) mpenning pts/17 Fri Nov 16 10:21 - 10:42 (00:21) bill pts/15 sol-bill.local Fri Nov 16 10:19 - 10:36 (00:16) mpenning pts/1 192.0.2.91 Fri Nov 16 10:17 - 10:49 (12+00:31) kkim14 pts/14 192.0.2.225 Thu Nov 15 18:02 - 15:17 (4+21:15) gduarte pts/10 192.0.2.135 Thu Nov 15 12:33 - 08:10 (11+19:36) gduarte pts/9 192.0.2.135 Thu Nov 15 12:31 - 08:10 (11+19:38) kkim14 pts/0 :0.0 Thu Nov 15 12:27 - 15:17 (5+02:49) gduarte pts/6 192.0.2.135 Thu Nov 15 11:44 - 08:10 (11+20:25) kkim14 pts/13 192.0.2.225 Thu Nov 15 09:56 - 15:17 (5+05:20) kkim14 pts/12 192.0.2.225 Thu Nov 15 08:28 - 15:17 (5+06:49) kkim14 pts/11 192.0.2.225 Thu Nov 15 08:26 - 15:17 (5+06:50) dspencer pts/8 192.0.2.130 Wed Nov 14 18:24 still logged in mpenning pts/18 alpha-console-1. Mon Nov 12 14:41 - 14:46 (00:04) You can see two of my pts login entries above that do not have a source IP address associated with them. My CentOS machines have as many as six other users that share the systems, but the mpenning userid is the only one that has this issue. Approximately 5% of my logins see this issue, but no other usernames exhibit this behavior. Questions Given the kind of scripts I keep on these systems (which control much of our network infrastructure), I'm a little spooked by this and would like to understand what would cause my logins to occasionally miss source addresses. Is there anything (other than malicious activity) that would reasonably explain the behavior? Other than bash history timestamping, are there other things I can do to track the issue down? Informational Since this started happening, I enabled bash history time-stamping (i.e. HISTTIMEFORMAT="%y-%m-%d %T " in .bash_profile) and also added a few other bash history hacks; however, that does not give clues to what happened during the previous occurrences. All the systems run CentOS 6.3... [mpenning@typo ~]$ uname -a Linux typo.local 2.6.32-279.9.1.el6.x86_64 #1 SMP Tue Sep 25 21:43:11 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux [mpenning@typo ~]$ EDIT If I use last -i mpenning, I see entries like this... mpenning pts/19 0.0.0.0 Fri Nov 16 10:32 - 10:35 (00:03) mpenning pts/17 0.0.0.0 Fri Nov 16 10:21 - 10:42 (00:21)

    Read the article

  • Windows Azure Root CAs and SSL Client Certificates

    - by Your DisplayName here!
    I ran into some problems while trying to make SSL client certificates work for StarterSTS 1.5. In theory you have to do two things (via startup tasks): Unlock the SSL section in IIS Install all the root certificates for the client certs you want to accept I did that. But it still does not work. While inspecting the event log, I stumbled over an schannel error message that I’ve never seen before: “When asking for client authentication, this server sends a list of trusted certificate authorities to the client. The client uses this list to choose a client certificate that is trusted by the server. Currently, this server trusts so many certificate authorities that the list has grown too long. This list has thus been truncated. The administrator of this machine should review the certificate authorities trusted for client authentication and remove those that do not really need to be trusted.” WTF? And indeed standard Azure (web role) VMs trust 275 root CAs (see attached list). Including kinda obscure ones. I don’t really know why MS made this design decision. It seems just wrong (including breaking the SSL client cert functionality). Deleting like 60% of them made SSL client certs from my CA work. So I guess I now have to find an automated way to attach CTLs to my site…joy. Exported list of trusted CA (as of 30th Dec 2010) AC Raíz Certicámara S.A. (4/2/2030 9:42:02 PM) AC RAIZ FNMT-RCM (1/1/2030 12:00:00 AM) A-CERT ADVANCED (10/23/2011 2:14:14 PM) Actalis Authentication CA G1 (6/25/2022 2:06:00 PM) Agence Nationale de Certification Electronique (8/12/2037 9:03:17 AM) Agence Nationale de Certification Electronique (8/12/2037 9:58:14 AM) Agencia Catalana de Certificacio (NIF Q-0801176-I) (1/7/2031 10:59:59 PM) America Online Root Certification Authority 1 (11/19/2037 8:43:00 PM) America Online Root Certification Authority 2 (9/29/2037 2:08:00 PM) ANCERT Certificados CGN (2/11/2024 5:27:12 PM) ANCERT Certificados Notariales (2/11/2024 3:58:26 PM) ANCERT Corporaciones de Derecho Publico (2/11/2024 5:22:45 PM) A-Trust-nQual-01 (11/30/2014 11:00:00 PM) A-Trust-nQual-03 (8/17/2015 10:00:00 PM) A-Trust-Qual-01 (11/30/2014 11:00:00 PM) A-Trust-Qual-02 (12/2/2014 11:00:00 PM) A-Trust-Qual-03a (4/24/2018 10:00:00 PM) Austria Telekom-Control Kommission (9/24/2005 12:40:00 PM) Austrian Society for Data Protection (2/12/2009 11:30:30 AM) Austrian Society for Data Protection GLOBALTRUST Certification Service (9/18/2036 2:12:35 PM) Autoridad Certificadora Raiz de la Secretaria de Economia (5/9/2025 12:00:00 AM) Autoridad de Certificacion de la Abogacia (6/13/2030 10:00:00 PM) Autoridad de Certificacion Firmaprofesional CIF A62634068 (10/24/2013 10:00:00 PM) Autoridade Certificadora Raiz Brasileira (11/30/2011 11:59:00 PM) Baltimore CyberTrust Root (5/12/2025 11:59:00 PM) BIT AdminCA-CD-T01 (1/25/2016 12:36:19 PM) BIT Admin-Root-CA (11/10/2021 7:51:07 AM) Buypass Class 2 CA 1 (10/13/2016 10:25:09 AM) Buypass Class 3 CA 1 (5/9/2015 2:13:03 PM) CA Disig (3/22/2016 1:39:34 AM) CertEurope (3/27/2037 11:00:00 PM) CERTICAMARA S.A. (2/23/2015 5:10:37 PM) Certicámara S.A. (5/23/2011 10:00:00 PM) Certigna (6/29/2027 3:13:05 PM) Certipost E-Trust Primary Normalised CA (7/26/2020 10:00:00 AM) Certipost E-Trust Primary Qualified CA (7/26/2020 10:00:00 AM) Certipost E-Trust Primary TOP Root CA (7/26/2025 10:00:00 AM) Certisign Autoridade Certificadora AC1S (6/27/2018 12:00:00 AM) Certisign Autoridade Certificadora AC2 (6/27/2018 12:00:00 AM) Certisign Autoridade Certificadora AC3S (7/9/2018 8:56:32 PM) Certisign Autoridade Certificadora AC4 (6/27/2018 12:00:00 AM) CertPlus Class 1 Primary CA (7/6/2020 11:59:59 PM) CertPlus Class 2 Primary CA (7/6/2019 11:59:59 PM) CertPlus Class 3 Primary CA (7/6/2019 11:59:59 PM) CertPlus Class 3P Primary CA (7/6/2019 11:59:59 PM) CertPlus Class 3TS Primary CA (7/6/2019 11:59:59 PM) CertRSA01 (3/3/2010 2:59:59 PM) certSIGN Root CA (7/4/2031 5:20:04 PM) Certum (6/11/2027 10:46:39 AM) Certum Trusted Network CA (12/31/2029 12:07:37 PM) Chambers of Commerce Root - 2008 (7/31/2038 12:29:50 PM) Chambersign Chambers of Commerce Root (9/30/2037 4:13:44 PM) Chambersign Global Root (9/30/2037 4:14:18 PM) Chambersign Public Notary Root (9/30/2037 4:14:49 PM) Chunghwa Telecom Co. Ltd. (12/20/2034 2:31:27 AM) Cisco Systems (5/14/2029 8:25:42 PM) CNNIC Root (4/16/2027 7:09:14 AM) Common Policy (10/15/2027 4:08:00 PM) COMODO (12/31/2028 11:59:59 PM) COMODO (1/18/2038 11:59:59 PM) COMODO (12/31/2029 11:59:59 PM) ComSign Advanced Security CA (3/24/2029 9:55:55 PM) ComSign CA (3/19/2029 3:02:18 PM) ComSign Secured CA (3/16/2029 3:04:56 PM) Correo Uruguayo - Root CA (12/31/2030 2:59:59 AM) Cybertrust Global Root (12/15/2021 8:00:00 AM) DanID (2/11/2037 9:09:30 AM) DanID (4/5/2021 5:03:17 PM) Deutsche Telekom Root CA 2 (7/9/2019 11:59:00 PM) DigiCert (11/10/2031 12:00:00 AM) DigiCert (11/10/2031 12:00:00 AM) DigiCert (11/10/2031 12:00:00 AM) DigiNotar Root CA (3/31/2025 6:19:21 PM) DIRECCION GENERAL DE LA POLICIA (2/8/2036 10:59:59 PM) DST (ABA.ECOM) CA (7/9/2009 5:33:53 PM) DST (ANX Network) CA (12/9/2018 4:16:48 PM) DST (Baltimore EZ) CA (7/3/2009 7:56:53 PM) DST (National Retail Federation) RootCA (12/8/2008 4:14:16 PM) DST (United Parcel Service) RootCA (12/7/2008 12:25:46 AM) DST ACES CA X6 (11/20/2017 9:19:58 PM) DST Root CA X3 (9/30/2021 2:01:15 PM) DST RootCA X1 (11/28/2008 6:18:55 PM) DST RootCA X2 (11/27/2008 10:46:16 PM) DSTCA E1 (12/10/2018 6:40:23 PM) DSTCA E2 (12/9/2018 7:47:26 PM) DST-Entrust GTI CA (12/9/2018 12:32:24 AM) D-TRUST GmbH (5/16/2022 5:20:47 AM) D-TRUST GmbH (6/8/2012 11:47:46 AM) D-TRUST GmbH (5/16/2022 5:20:47 AM) EBG Elektronik Sertifika Hizmet Saglayicisi (8/14/2016 12:31:09 AM) E-Certchile (9/5/2028 7:39:41 PM) Echoworx Root CA2 (10/7/2030 10:49:13 AM) ECRaizEstado (6/23/2030 1:41:27 PM) EDICOM (4/13/2028 4:24:22 PM) E-GÜVEN Elektronik Sertifika Hizmet Saglayicisi (1/4/2017 11:32:48 AM) E-ME SSI (RCA) (5/19/2027 8:48:15 AM) Entrust (11/27/2026 8:53:42 PM) Entrust (5/25/2019 4:39:40 PM) Entrust.net (12/7/2030 5:55:54 PM) Equifax Secure eBusiness CA-1 (6/21/2020 4:00:00 AM) Equifax Secure eBusiness CA-2 (6/23/2019 12:14:45 PM) Equifax Secure Global eBusiness CA-1 (6/21/2020 4:00:00 AM) eSign Australia: eSign Imperito Primary Root CA (5/23/2012 11:59:59 PM) eSign Australia: Gatekeeper Root CA (5/23/2014 11:59:59 PM) eSign Australia: Primary Utility Root CA (5/23/2012 11:59:59 PM) Fabrica Nacional de Moneda y Timbre (3/18/2019 3:26:19 PM) GeoTrust (8/22/2018 4:41:51 PM) GeoTrust (7/16/2036 11:59:59 PM) GeoTrust Global CA (5/21/2022 4:00:00 AM) GeoTrust Global CA 2 (3/4/2019 5:00:00 AM) GeoTrust Primary Certification Authority - G2 (1/18/2038 11:59:59 PM) GeoTrust Primary Certification Authority - G3 (12/1/2037 11:59:59 PM) GeoTrust Universal CA (3/4/2029 5:00:00 AM) GeoTrust Universal CA 2 (3/4/2029 5:00:00 AM) Global Chambersign Root - 2008 (7/31/2038 12:31:40 PM) GlobalSign (1/28/2028 12:00:00 PM) GlobalSign (12/15/2021 8:00:00 AM) Go Daddy Class 2 Certification Authority (6/29/2034 5:06:20 PM) GTE CyberTrust Global Root (8/13/2018 11:59:00 PM) GTE CyberTrust Root (4/3/2004 11:59:00 PM) GTE CyberTrust Root (2/23/2006 11:59:00 PM) Halcom CA FO (6/5/2020 10:33:31 AM) Halcom CA PO 2 (2/7/2019 6:33:31 PM) Hongkong Post Root CA (1/16/2010 11:59:00 PM) Hongkong Post Root CA 1 (5/15/2023 4:52:29 AM) I.CA První certifikacní autorita a.s. (4/1/2018 12:00:00 AM) I.CA První certifikacní autorita a.s. (4/1/2018 12:00:00 AM) InfoNotary (3/6/2026 5:33:05 PM) IPS SERVIDORES (12/29/2009 11:21:07 PM) IZENPE S.A. (1/30/2018 11:00:00 PM) Izenpe.com (12/13/2037 8:27:25 AM) Japan Certification Services, Inc. SecureSign RootCA1 (9/15/2020 2:59:59 PM) Japan Certification Services, Inc. SecureSign RootCA11 (4/8/2029 4:56:47 AM) Japan Certification Services, Inc. SecureSign RootCA2 (9/15/2020 2:59:59 PM) Japan Certification Services, Inc. SecureSign RootCA3 (9/15/2020 2:59:59 PM) Japan Local Government PKI Application CA (3/31/2016 2:59:59 PM) Japanese Government ApplicationCA (12/12/2017 3:00:00 PM) Juur-SK AS Sertifitseerimiskeskus (8/26/2016 2:23:01 PM) KamuSM (8/21/2017 11:37:07 AM) KISA RootCA 1 (8/24/2025 8:05:46 AM) KISA RootCA 3 (11/19/2014 6:39:51 AM) Macao Post eSignTrust (1/29/2013 11:59:59 PM) MicroSec e-Szigno Root CA (4/6/2017 12:28:44 PM) Microsoft Authenticode(tm) Root (12/31/1999 11:59:59 PM) Microsoft Root Authority (12/31/2020 7:00:00 AM) Microsoft Root Certificate Authority (5/9/2021 11:28:13 PM) Microsoft Timestamp Root (12/30/1999 11:59:59 PM) MOGAHA Govt of Korea (4/21/2012 9:07:23 AM) MOGAHA Govt of Korea GPKI (3/15/2017 6:00:04 AM) NetLock Arany (Class Gold) Fotanúsítvány (12/6/2028 3:08:21 PM) NetLock Expressz (Class C) Tanusitvanykiado (2/20/2019 2:08:11 PM) NetLock Kozjegyzoi (Class A) Tanusitvanykiado (2/19/2019 11:14:47 PM) NetLock Minositett Kozjegyzoi (Class QA) Tanusitvanykiado (12/15/2022 1:47:11 AM) NetLock Platina (Class Platinum) Fotanúsítvány (12/6/2028 3:12:44 PM) NetLock Uzleti (Class B) Tanusitvanykiado (2/20/2019 2:10:22 PM) Netrust CA1 (3/30/2021 2:57:45 AM) Network Solutions (12/31/2029 11:59:59 PM) NLB Nova Ljubljanska Banka d.d. Ljubljana (5/15/2023 12:22:45 PM) OISTE WISeKey Global Root GA CA (12/11/2037 4:09:51 PM) Post.Trust Root CA (7/5/2022 9:12:33 AM) Post.Trust Root CA (8/20/2010 1:56:21 PM) Posta CA Root (10/20/2028 12:52:08 PM) POSTarCA (2/7/2023 11:06:58 AM) QuoVadis Root CA 2 (11/24/2031 6:23:33 PM) QuoVadis Root CA 3 (11/24/2031 7:06:44 PM) QuoVadis Root Certification Authority (3/17/2021 6:33:33 PM) Root CA Generalitat Valenciana (7/1/2021 3:22:47 PM) RSA Security 2048 V3 (2/22/2026 8:39:23 PM) SECOM Trust Systems CO LTD (6/6/2037 2:12:32 AM) SECOM Trust Systems CO LTD (6/25/2019 10:23:48 PM) SECOM Trust Systems CO LTD (9/30/2023 4:20:49 AM) Secretaria de Economia Mexico (5/8/2025 12:00:00 AM) Secrétariat Général de la Défense Nationale (10/17/2020 2:29:22 PM) SecureNet CA Class B (10/16/2009 9:59:00 AM) Serasa Certificate Authority I (11/21/2024 2:12:45 PM) Serasa Certificate Authority II (11/21/2024 12:44:48 PM) Serasa Certificate Authority III (11/21/2024 1:24:14 PM) SERVICIOS DE CERTIFICACION - A.N.C. (3/9/2009 9:08:07 PM) Sigen-CA (6/29/2021 9:57:46 PM) Sigov-CA (1/10/2021 2:22:52 PM) Skaitmeninio sertifikavimo centras (12/28/2026 12:05:04 PM) Skaitmeninio sertifikavimo centras (12/25/2026 12:08:26 PM) Skaitmeninio sertifikavimo centras (12/22/2026 12:11:30 PM) Sonera Class1 CA (4/6/2021 10:49:13 AM) Sonera Class2 CA (4/6/2021 7:29:40 AM) Spanish Property & Commerce Registry CA (4/27/2012 9:39:50 AM) Staat der Nederlanden Root CA (12/16/2015 9:15:38 AM) Staat der Nederlanden Root CA - G2 (3/25/2020 11:03:10 AM) Starfield Class 2 Certification Authority (6/29/2034 5:39:16 PM) Starfield Technologies (6/26/2019 12:19:54 AM) Starfield Technologies Inc. (12/31/2029 11:59:59 PM) StartCom Certification Authority (9/17/2036 7:46:36 PM) S-TRUST Authentication and Encryption Root CA 2005:PN (6/21/2030 11:59:59 PM) Swisscom Root CA 1 (8/18/2025 10:06:20 PM) SwissSign (10/25/2036 8:30:35 AM) SwissSign Platinum G2 Root CA (10/25/2036 8:36:00 AM) SwissSign Silver G2 Root CA (10/25/2036 8:32:46 AM) TC TrustCenter Class 1 CA (1/1/2011 11:59:59 AM) TC TrustCenter Class 2 CA (1/1/2011 11:59:59 AM) TC TrustCenter Class 2 CA II (12/31/2025 10:59:59 PM) TC TrustCenter Class 3 CA (1/1/2011 11:59:59 AM) TC TrustCenter Class 3 CA II (12/31/2025 10:59:59 PM) TC TrustCenter Class 4 CA (1/1/2011 11:59:59 AM) TC TrustCenter Class 4 CA II (12/31/2025 10:59:59 PM) TC TrustCenter Time Stamping CA (1/1/2011 11:59:59 AM) TC TrustCenter Universal CA I (12/31/2025 10:59:59 PM) TC TrustCenter Universal CA II (12/31/2030 10:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (7/16/2036 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte Primary Root CA - G2 (1/18/2038 11:59:59 PM) thawte Primary Root CA - G3 (12/1/2037 11:59:59 PM) Thawte Timestamping CA (12/31/2020 11:59:59 PM) Trustis EVS Root CA (1/9/2027 11:56:00 AM) Trustis FPS Root CA (1/21/2024 11:36:54 AM) Trustwave (1/1/2035 5:37:19 AM) Trustwave (12/31/2029 7:40:55 PM) Trustwave (12/31/2029 7:52:06 PM) TURKTRUST Elektronik Islem Hizmetleri (9/16/2015 12:13:05 PM) TURKTRUST Elektronik Islem Hizmetleri (3/22/2015 10:04:51 AM) TURKTRUST Elektronik Sertifika Hizmet Saglayicisi (9/16/2015 10:07:57 AM) TURKTRUST Elektronik Sertifika Hizmet Saglayicisi (3/22/2015 10:27:17 AM) TÜRKTRUST Elektronik Sertifika Hizmet Saglayicisi (12/22/2017 6:37:19 PM) TW Government Root Certification Authority (12/5/2032 1:23:33 PM) TWCA Root Certification Authority 1 (12/31/2030 3:59:59 PM) TWCA Root Certification Authority 2 (12/31/2030 3:59:59 PM) U.S. Government FBCA (10/6/2010 6:53:56 PM) UCA Global Root (12/31/2037 12:00:00 AM) UCA Root (12/31/2029 12:00:00 AM) USERTrust (7/9/2019 6:40:36 PM) USERTrust (7/9/2019 5:36:58 PM) USERTrust (6/24/2019 7:06:30 PM) USERTrust (7/9/2019 6:19:22 PM) USERTrust (5/30/2020 10:48:38 AM) UTN - USERFirst-Network Applications (7/9/2019 6:57:49 PM) ValiCert Class 3 Policy Validation Authority (6/26/2019 12:22:33 AM) VAS Latvijas Pasts SSI(RCA) (9/13/2024 9:27:57 AM) VeriSign (5/18/2018 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (12/31/1999 9:37:48 AM) VeriSign (1/7/2004 11:59:59 PM) VeriSign (5/18/2018 11:59:59 PM) VeriSign (1/7/2004 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (1/7/2020 11:59:59 PM) VeriSign (12/31/1999 9:35:58 AM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (1/7/2004 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (1/7/2010 11:59:59 PM) VeriSign (5/18/2018 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (1/7/2004 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (5/18/2018 11:59:59 PM) VeriSign Class 3 Public Primary CA (8/1/2028 11:59:59 PM) VeriSign Class 3 Public Primary Certification Authority - G4 (1/18/2038 11:59:59 PM) VeriSign Time Stamping CA (1/7/2004 11:59:59 PM) VeriSign Universal Root Certification Authority (12/1/2037 11:59:59 PM) Visa eCommerce Root (6/24/2022 12:16:12 AM) Visa Information Delivery Root CA (6/29/2025 5:42:42 PM) VRK Gov. Root CA (12/18/2023 1:51:08 PM) Wells Fargo Root Certificate Authority (1/14/2021 4:41:28 PM) WellsSecure Public Certificate Authority (12/14/2022 12:07:54 AM) Xcert EZ by DST (7/11/2009 4:14:18 PM)

    Read the article

1