Search Results

Search found 46790 results on 1872 pages for 'type systems'.

Page 1/1872 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • When is type testing OK?

    - by svidgen
    Assuming a language with some inherent type safety (e.g., not JavaScript): Given a method that accepts a SuperType, we know that in most cases wherein we might be tempted to perform type testing to pick an action: public void DoSomethingTo(SuperType o) { if (o isa SubTypeA) { o.doSomethingA() } else { o.doSomethingB(); } } We should usually, if not always, create a single, overridable method on the SuperType and do this: public void DoSomethingTo(SuperType o) { o.doSomething(); } ... wherein each subtype is given its own doSomething() implementation. The rest of our application can then be appropriately ignorant of whether any given SuperType is really a SubTypeA or a SubTypeB. Wonderful. But, we're still given is a-like operations in most, if not all, type-safe languages. And that seems suggests a potential need for explicit type testing. So, in what situations, if any, should we or must we perform explicit type testing? Forgive my absent mindedness or lack of creativity. I know I've done it before; but, it was honestly so long ago I can't remember if what I did was good! And in recent memory, I don't think I've encountered a need to test types outside my cowboy JavaScript.

    Read the article

  • Checking out systems programming, what should I learn, using what resources?

    - by Anto
    I have done some hobby application development, but now I'm interested in checking out systems programming (mainly operating systems, Linux kernel etc.). I know low-level languages like C, and I know minimal amounts of x86 Assembly (should I improve on it?). What resources/books/websites/projects etc. do you recommend for one to get started with systems programming and what topics are important? Note that I know close to nothing about the subject, so whatever resources you suggest should be introductory resources. I still know what the subject is and what it includes etc., but I have not done systems programming before (but some application development, as previously noted, and I'm familiar with a bunch of programming languages as well as software engineering in general and algorithms, data structures etc.).

    Read the article

  • Type Casting variables in PHP: Is there a practical example?

    - by Stephen
    PHP, as most of us know, has weak typing. For those who don't, PHP.net says: PHP does not require (or support) explicit type definition in variable declaration; a variable's type is determined by the context in which the variable is used. Love it or hate it, PHP re-casts variables on-the-fly. So, the following code is valid: $var = "10"; $value = 10 + $var; var_dump($value); // int(20) PHP also alows you to explicitly cast a variable, like so: $var = "10"; $value = 10 + $var; $value = (string)$value; var_dump($value); // string(2) "20" That's all cool... but, for the life of me, I cannot conceive of a practical reason for doing this. I don't have a problem with strong typing in languages that support it, like Java. That's fine, and I completely understand it. Also, I'm aware of—and fully understand the usefulness of—type hinting in function parameters. The problem I have with type casting is explained by the above quote. If PHP can swap types at-will, it can do so even after you force cast a type; and it can do so on-the-fly when you need a certain type in an operation. That makes the following valid: $var = "10"; $value = (int)$var; $value = $value . ' TaDa!'; var_dump($value); // string(8) "10 TaDa!" So what's the point? Can anyone show me a practical application or example of type casting—one that would fail if type casting were not involved? I ask this here instead of SO because I figure practicality is too subjective. Edit in response to Chris' comment Take this theoretical example of a world where user-defined type casting makes sense in PHP: You force cast variable $foo as int -- (int)$foo. You attempt to store a string value in the variable $foo. PHP throws an exception!! <--- That would make sense. Suddenly the reason for user defined type casting exists! The fact that PHP will switch things around as needed makes the point of user defined type casting vague. For example, the following two code samples are equivalent: // example 1 $foo = 0; $foo = (string)$foo; $foo = '# of Reasons for the programmer to type cast $foo as a string: ' . $foo; // example 2 $foo = 0; $foo = (int)$foo; $foo = '# of Reasons for the programmer to type cast $foo as a string: ' . $foo;

    Read the article

  • What are some good resources for learning about file systems? [closed]

    - by Daniel
    I'd like to learn about file system design at a very detailed level. I'm currently in a graduate level operating systems course, and we're currently going over file systems. We mostly discuss papers and such, but our semester long project is to implement a log-structured file system using fuse and a virtual disk. Are there any good books that focus heavily on file system design and implementation? I have some conceptual clouding on things that seem very basic such as "when we say that an inode has pointers to blocks, do we mean anything besides the inode keeping track of block numbers? Is there any other format for 'disk pointers'?" I'm actually looking at file system design to start my career, so I'm probably going to try to implement a more traditional file system with fuse and our virtual disk format after this course is over.

    Read the article

  • Type Casting variables in PHP: Is there a practical example?

    - by Stephen
    PHP, as most of us know, has weak typing. For those who don't, PHP.net says: PHP does not require (or support) explicit type definition in variable declaration; a variable's type is determined by the context in which the variable is used. Love it or hate it, PHP re-casts variables on-the-fly. So, the following code is valid: $var = "10"; $value = 10 + $var; var_dump($value); // int(20) PHP also alows you to explicitly cast a variable, like so: $var = "10"; $value = 10 + $var; $value = (string)$value; var_dump($value); // string(2) "20" That's all cool... but, for the life of me, I cannot conceive of a practical reason for doing this. I don't have a problem with strong typing in languages that support it, like Java. That's fine, and I completely understand it. Also, I'm aware of—and fully understand the usefulness of—type hinting in function parameters. The problem I have with type casting is explained by the above quote. If PHP can swap types at-will, it can do so even after you force cast a type; and it can do so on-the-fly when you need a certain type in an operation. That makes the following valid: $var = "10"; $value = (int)$var; $value = $value . ' TaDa!'; var_dump($value); // string(8) "10 TaDa!" So what's the point? Can anyone show me a practical application or example of type casting—one that would fail if type casting were not involved? I ask this here instead of SO because I figure practicality is too subjective. Edit in response to Chris' comment Take this theoretical example of a world where user-defined type casting makes sense in PHP: You force cast variable $foo as int -- (int)$foo. You attempt to store a string value in the variable $foo. PHP throws an exception!! <--- That would make sense. Suddenly the reason for user defined type casting exists! The fact that PHP will switch things around as needed makes the point of user defined type casting vague. For example, the following two code samples are equivalent: // example 1 $foo = 0; $foo = (string)$foo; $foo = '# of Reasons for the programmer to type cast $foo as a string: ' . $foo; // example 2 $foo = 0; $foo = (int)$foo; $foo = '# of Reasons for the programmer to type cast $foo as a string: ' . $foo; UPDATE Guess who found himself using typecasting in a practical environment? Yours Truly. The requirement was to display money values on a website for a restaurant menu. The design of the site required that trailing zeros be trimmed, so that the display looked something like the following: Menu Item 1 .............. $ 4 Menu Item 2 .............. $ 7.5 Menu Item 3 .............. $ 3 The best way I found to do that wast to cast the variable as a float: $price = '7.50'; // a string from the database layer. echo 'Menu Item 2 .............. $ ' . (float)$price; PHP trims the float's trailing zeros, and then recasts the float as a string for concatenation.

    Read the article

  • Role of systems in entity systems architecture

    - by bio595
    I've been reading a lot about entity components and systems and have thought that the idea of an entity just being an ID is quite interesting. However I don't know how this completely works with the components aspect or the systems aspect. A component is just a data object managed by some relevant system. A collision system uses some BoundsComponent together with a spatial data structure to determine if collisions have happened. All good so far, but what if multiple systems need access to the same component? Where should the data live? An input system could modify an entities BoundsComponent, but the physics system(s) need access to the same component as does some rendering system. Also, how are entities constructed? One of the advantages I've read so much about is flexibility in entity construction. Are systems intrinsically tied to a component? If I want to introduce some new component, do I also have to introduce a new system or modify an existing one? Another thing that I've read often is that the 'type' of an entity is inferred by what components it has. If my entity is just an id how can I know that my robot entity needs to be moved or rendered and thus modified by some system? Sorry for the long post (or at least it seems so from my phone screen)!

    Read the article

  • Type checking and recursive types (Writing the Y combinator in Haskell/Ocaml)

    - by beta
    When explaining the Y combinator in the context of Haskell, it's usually noted that the straight-forward implementation won't type-check in Haskell because of its recursive type. For example, from Rosettacode [1]: The obvious definition of the Y combinator in Haskell canot be used because it contains an infinite recursive type (a = a -> b). Defining a data type (Mu) allows this recursion to be broken. newtype Mu a = Roll { unroll :: Mu a -> a } fix :: (a -> a) -> a fix = \f -> (\x -> f (unroll x x)) $ Roll (\x -> f (unroll x x)) And indeed, the “obvious” definition does not type check: ?> let fix f g = (\x -> \a -> f (x x) a) (\x -> \a -> f (x x) a) g <interactive>:10:33: Occurs check: cannot construct the infinite type: t2 = t2 -> t0 -> t1 Expected type: t2 -> t0 -> t1 Actual type: (t2 -> t0 -> t1) -> t0 -> t1 In the first argument of `x', namely `x' In the first argument of `f', namely `(x x)' In the expression: f (x x) a <interactive>:10:57: Occurs check: cannot construct the infinite type: t2 = t2 -> t0 -> t1 In the first argument of `x', namely `x' In the first argument of `f', namely `(x x)' In the expression: f (x x) a (0.01 secs, 1033328 bytes) The same limitation exists in Ocaml: utop # let fix f g = (fun x a -> f (x x) a) (fun x a -> f (x x) a) g;; Error: This expression has type 'a -> 'b but an expression was expected of type 'a The type variable 'a occurs inside 'a -> 'b However, in Ocaml, one can allow recursive types by passing in the -rectypes switch: -rectypes Allow arbitrary recursive types during type-checking. By default, only recursive types where the recursion goes through an object type are supported. By using -rectypes, everything works: utop # let fix f g = (fun x a -> f (x x) a) (fun x a -> f (x x) a) g;; val fix : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun> utop # let fact_improver partial n = if n = 0 then 1 else n*partial (n-1);; val fact_improver : (int -> int) -> int -> int = <fun> utop # (fix fact_improver) 5;; - : int = 120 Being curious about type systems and type inference, this raises some questions I'm still not able to answer. First, how does the type checker come up with the type t2 = t2 -> t0 -> t1? Having come up with that type, I guess the problem is that the type (t2) refers to itself on the right side? Second, and perhaps most interesting, what is the reason for the Haskell/Ocaml type systems to disallow this? I guess there is a good reason since Ocaml also will not allow it by default even if it can deal with recursive types if given the -rectypes switch. If these are really big topics, I'd appreciate pointers to relevant literature. [1] http://rosettacode.org/wiki/Y_combinator#Haskell

    Read the article

  • eventmachine on debian fails install via rubygems

    - by Max
    this has been killing me for the last 5 hours. I don't seem to be able to get eventmachine running on my debian box. here this output: $ gem install thin Building native extensions. This could take a while... ERROR: Error installing thin: ERROR: Failed to build gem native extension. /home/eventhub/.rvm/rubies/ruby-1.9.3-p125/bin/ruby extconf.rb checking for rb_trap_immediate in ruby.h,rubysig.h... no checking for rb_thread_blocking_region()... yes checking for inotify_init() in sys/inotify.h... yes checking for writev() in sys/uio.h... yes checking for rb_wait_for_single_fd()... yes checking for rb_enable_interrupt()... yes checking for rb_time_new()... yes checking for sys/event.h... no checking for epoll_create() in sys/epoll.h... yes creating Makefile make compiling kb.cpp cc1plus: warning: command line option "-Wdeclaration-after-statement" is valid for C/ObjC but not for C++ cc1plus: warning: command line option "-Wimplicit-function-declaration" is valid for C/ObjC but not for C++ In file included from project.h:149, from kb.cpp:20: binder.h:35: warning: type qualifiers ignored on function return type In file included from project.h:150, from kb.cpp:20: em.h:84: warning: type qualifiers ignored on function return type em.h:85: warning: type qualifiers ignored on function return type em.h:86: warning: type qualifiers ignored on function return type em.h:88: warning: type qualifiers ignored on function return type em.h:89: warning: type qualifiers ignored on function return type em.h:90: warning: type qualifiers ignored on function return type em.h:91: warning: type qualifiers ignored on function return type em.h:93: warning: type qualifiers ignored on function return type em.h:99: warning: type qualifiers ignored on function return type em.h:116: warning: type qualifiers ignored on function return type em.h:125: warning: type qualifiers ignored on function return type In file included from project.h:154, from kb.cpp:20: eventmachine.h:46: warning: type qualifiers ignored on function return type eventmachine.h:47: warning: type qualifiers ignored on function return type eventmachine.h:48: warning: type qualifiers ignored on function return type eventmachine.h:50: warning: type qualifiers ignored on function return type eventmachine.h:65: warning: type qualifiers ignored on function return type eventmachine.h:66: warning: type qualifiers ignored on function return type eventmachine.h:67: warning: type qualifiers ignored on function return type eventmachine.h:68: warning: type qualifiers ignored on function return type In file included from project.h:154, from kb.cpp:20: eventmachine.h:103: warning: type qualifiers ignored on function return type eventmachine.h:105: warning: type qualifiers ignored on function return type eventmachine.h:108: warning: type qualifiers ignored on function return type compiling rubymain.cpp cc1plus: warning: command line option "-Wdeclaration-after-statement" is valid for C/ObjC but not for C++ cc1plus: warning: command line option "-Wimplicit-function-declaration" is valid for C/ObjC but not for C++ In file included from project.h:149, from rubymain.cpp:20: binder.h:35: warning: type qualifiers ignored on function return type In file included from project.h:150, from rubymain.cpp:20: em.h:84: warning: type qualifiers ignored on function return type em.h:85: warning: type qualifiers ignored on function return type em.h:86: warning: type qualifiers ignored on function return type em.h:88: warning: type qualifiers ignored on function return type em.h:89: warning: type qualifiers ignored on function return type em.h:90: warning: type qualifiers ignored on function return type em.h:91: warning: type qualifiers ignored on function return type em.h:93: warning: type qualifiers ignored on function return type em.h:99: warning: type qualifiers ignored on function return type em.h:116: warning: type qualifiers ignored on function return type em.h:125: warning: type qualifiers ignored on function return type In file included from project.h:154, from rubymain.cpp:20: eventmachine.h:46: warning: type qualifiers ignored on function return type eventmachine.h:47: warning: type qualifiers ignored on function return type eventmachine.h:48: warning: type qualifiers ignored on function return type eventmachine.h:50: warning: type qualifiers ignored on function return type eventmachine.h:65: warning: type qualifiers ignored on function return type eventmachine.h:66: warning: type qualifiers ignored on function return type eventmachine.h:67: warning: type qualifiers ignored on function return type eventmachine.h:68: warning: type qualifiers ignored on function return type In file included from project.h:154, from rubymain.cpp:20: eventmachine.h:103: warning: type qualifiers ignored on function return type eventmachine.h:105: warning: type qualifiers ignored on function return type eventmachine.h:108: warning: type qualifiers ignored on function return type compiling ssl.cpp cc1plus: warning: command line option "-Wdeclaration-after-statement" is valid for C/ObjC but not for C++ cc1plus: warning: command line option "-Wimplicit-function-declaration" is valid for C/ObjC but not for C++ In file included from project.h:149, from ssl.cpp:23: binder.h:35: warning: type qualifiers ignored on function return type In file included from project.h:150, from ssl.cpp:23: em.h:84: warning: type qualifiers ignored on function return type em.h:85: warning: type qualifiers ignored on function return type em.h:86: warning: type qualifiers ignored on function return type em.h:88: warning: type qualifiers ignored on function return type em.h:89: warning: type qualifiers ignored on function return type em.h:90: warning: type qualifiers ignored on function return type em.h:91: warning: type qualifiers ignored on function return type em.h:93: warning: type qualifiers ignored on function return type em.h:99: warning: type qualifiers ignored on function return type em.h:116: warning: type qualifiers ignored on function return type em.h:125: warning: type qualifiers ignored on function return type In file included from project.h:154, from ssl.cpp:23: eventmachine.h:46: warning: type qualifiers ignored on function return type eventmachine.h:47: warning: type qualifiers ignored on function return type eventmachine.h:48: warning: type qualifiers ignored on function return type eventmachine.h:50: warning: type qualifiers ignored on function return type eventmachine.h:65: warning: type qualifiers ignored on function return type eventmachine.h:66: warning: type qualifiers ignored on function return type eventmachine.h:67: warning: type qualifiers ignored on function return type eventmachine.h:68: warning: type qualifiers ignored on function return type In file included from project.h:154, from ssl.cpp:23: eventmachine.h:103: warning: type qualifiers ignored on function return type eventmachine.h:105: warning: type qualifiers ignored on function return type eventmachine.h:108: warning: type qualifiers ignored on function return type compiling cmain.cpp cc1plus: warning: command line option "-Wdeclaration-after-statement" is valid for C/ObjC but not for C++ cc1plus: warning: command line option "-Wimplicit-function-declaration" is valid for C/ObjC but not for C++ In file included from project.h:149, from cmain.cpp:20: binder.h:35: warning: type qualifiers ignored on function return type In file included from project.h:150, from cmain.cpp:20: em.h:84: warning: type qualifiers ignored on function return type em.h:85: warning: type qualifiers ignored on function return type em.h:86: warning: type qualifiers ignored on function return type em.h:88: warning: type qualifiers ignored on function return type em.h:89: warning: type qualifiers ignored on function return type em.h:90: warning: type qualifiers ignored on function return type em.h:91: warning: type qualifiers ignored on function return type em.h:93: warning: type qualifiers ignored on function return type em.h:99: warning: type qualifiers ignored on function return type em.h:116: warning: type qualifiers ignored on function return type em.h:125: warning: type qualifiers ignored on function return type In file included from project.h:154, from cmain.cpp:20: eventmachine.h:46: warning: type qualifiers ignored on function return type eventmachine.h:47: warning: type qualifiers ignored on function return type eventmachine.h:48: warning: type qualifiers ignored on function return type eventmachine.h:50: warning: type qualifiers ignored on function return type eventmachine.h:65: warning: type qualifiers ignored on function return type eventmachine.h:66: warning: type qualifiers ignored on function return type eventmachine.h:67: warning: type qualifiers ignored on function return type eventmachine.h:68: warning: type qualifiers ignored on function return type In file included from project.h:154, from cmain.cpp:20: eventmachine.h:103: warning: type qualifiers ignored on function return type eventmachine.h:105: warning: type qualifiers ignored on function return type eventmachine.h:108: warning: type qualifiers ignored on function return type cmain.cpp:96: warning: type qualifiers ignored on function return type cmain.cpp:107: warning: type qualifiers ignored on function return type cmain.cpp:117: warning: type qualifiers ignored on function return type cmain.cpp:127: warning: type qualifiers ignored on function return type cmain.cpp:269: warning: type qualifiers ignored on function return type cmain.cpp:279: warning: type qualifiers ignored on function return type cmain.cpp:289: warning: type qualifiers ignored on function return type cmain.cpp:299: warning: type qualifiers ignored on function return type cmain.cpp:309: warning: type qualifiers ignored on function return type cmain.cpp:329: warning: type qualifiers ignored on function return type cmain.cpp:678: warning: type qualifiers ignored on function return type compiling em.cpp cc1plus: warning: command line option "-Wdeclaration-after-statement" is valid for C/ObjC but not for C++ cc1plus: warning: command line option "-Wimplicit-function-declaration" is valid for C/ObjC but not for C++ In file included from project.h:149, from em.cpp:23: binder.h:35: warning: type qualifiers ignored on function return type In file included from project.h:150, from em.cpp:23: em.h:84: warning: type qualifiers ignored on function return type em.h:85: warning: type qualifiers ignored on function return type em.h:86: warning: type qualifiers ignored on function return type em.h:88: warning: type qualifiers ignored on function return type em.h:89: warning: type qualifiers ignored on function return type em.h:90: warning: type qualifiers ignored on function return type em.h:91: warning: type qualifiers ignored on function return type em.h:93: warning: type qualifiers ignored on function return type em.h:99: warning: type qualifiers ignored on function return type em.h:116: warning: type qualifiers ignored on function return type em.h:125: warning: type qualifiers ignored on function return type In file included from project.h:154, from em.cpp:23: eventmachine.h:46: warning: type qualifiers ignored on function return type eventmachine.h:47: warning: type qualifiers ignored on function return type eventmachine.h:48: warning: type qualifiers ignored on function return type eventmachine.h:50: warning: type qualifiers ignored on function return type eventmachine.h:65: warning: type qualifiers ignored on function return type eventmachine.h:66: warning: type qualifiers ignored on function return type eventmachine.h:67: warning: type qualifiers ignored on function return type eventmachine.h:68: warning: type qualifiers ignored on function return type In file included from project.h:154, from em.cpp:23: eventmachine.h:103: warning: type qualifiers ignored on function return type eventmachine.h:105: warning: type qualifiers ignored on function return type eventmachine.h:108: warning: type qualifiers ignored on function return type em.cpp: In member function 'bool EventMachine_t::_RunEpollOnce()': em.cpp:578: warning: 'int rb_thread_select(int, fd_set*, fd_set*, fd_set*, timeval*)' is deprecated (declared at /home/eventhub/.rvm/rubies/ruby-1.9.3-p125/include/ruby-1.9.1/ruby/intern.h:379) em.cpp:578: warning: 'int rb_thread_select(int, fd_set*, fd_set*, fd_set*, timeval*)' is deprecated (declared at /home/eventhub/.rvm/rubies/ruby-1.9.3-p125/include/ruby-1.9.1/ruby/intern.h:379) em.cpp: In member function 'bool EventMachine_t::_RunSelectOnce()': em.cpp:974: warning: 'int rb_thread_select(int, fd_set*, fd_set*, fd_set*, timeval*)' is deprecated (declared at /home/eventhub/.rvm/rubies/ruby-1.9.3-p125/include/ruby-1.9.1/ruby/intern.h:379) em.cpp:974: warning: 'int rb_thread_select(int, fd_set*, fd_set*, fd_set*, timeval*)' is deprecated (declared at /home/eventhub/.rvm/rubies/ruby-1.9.3-p125/include/ruby-1.9.1/ruby/intern.h:379) em.cpp: At global scope: em.cpp:1057: warning: type qualifiers ignored on function return type em.cpp:1079: warning: type qualifiers ignored on function return type em.cpp:1265: warning: type qualifiers ignored on function return type em.cpp:1338: warning: type qualifiers ignored on function return type em.cpp:1510: warning: type qualifiers ignored on function return type em.cpp:1593: warning: type qualifiers ignored on function return type em.cpp:1856: warning: type qualifiers ignored on function return type em.cpp:1982: warning: type qualifiers ignored on function return type em.cpp:2046: warning: type qualifiers ignored on function return type em.cpp:2070: warning: type qualifiers ignored on function return type em.cpp:2142: warning: type qualifiers ignored on function return type em.cpp:2361: fatal error: error writing to /tmp/ccdlOK0T.s: No space left on device compilation terminated. make: *** [em.o] Error 1 Gem files will remain installed in /home/eventhub/.rvm/gems/ruby-1.9.3-p125/gems/eventmachine-1.0.1 for inspection. Results logged to /home/eventhub/.rvm/gems/ruby-1.9.3-p125/gems/eventmachine-1.0.1/ext/gem_make.out Any thoughts? I read a lot of different ways to solve this issue, but none of them worked. Thanks

    Read the article

  • How to allow bind in app armor?

    - by WitchCraft
    Question: I did setup bind9 as described here: http://ubuntuforums.org/showthread.php?p=12149576#post12149576 Now I have a little problem with apparmor: If I switch it off, it works. If apparmor runs, it doesn't work, and I get the following dmesg output: [ 23.809767] type=1400 audit(1344097913.519:11): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=1540 comm="apparmor_parser" [ 23.811537] type=1400 audit(1344097913.519:12): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=1540 comm="apparmor_parser" [ 23.812514] type=1400 audit(1344097913.523:13): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=1540 comm="apparmor_parser" [ 23.821999] type=1400 audit(1344097913.531:14): apparmor="STATUS" operation="profile_load" name="/usr/sbin/mysqld" pid=1544 comm="apparmor_parser" [ 23.845085] type=1400 audit(1344097913.555:15): apparmor="STATUS" operation="profile_load" name="/usr/sbin/libvirtd" pid=1543 comm="apparmor_parser" [ 23.849051] type=1400 audit(1344097913.559:16): apparmor="STATUS" operation="profile_load" name="/usr/sbin/named" pid=1545 comm="apparmor_parser" [ 23.849509] type=1400 audit(1344097913.559:17): apparmor="STATUS" operation="profile_load" name="/usr/lib/libvirt/virt-aa-helper" pid=1542 comm="apparmor_parser" [ 23.851597] type=1400 audit(1344097913.559:18): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=1547 comm="apparmor_parser" [ 24.415193] type=1400 audit(1344097914.123:19): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/mysqld" pid=1625 comm="apparmor_parser" [ 24.738631] ip_tables: (C) 2000-2006 Netfilter Core Team [ 25.005242] nf_conntrack version 0.5.0 (16384 buckets, 65536 max) [ 25.187939] ADDRCONF(NETDEV_UP): virbr0: link is not ready [ 26.004282] Ebtables v2.0 registered [ 26.068783] ip6_tables: (C) 2000-2006 Netfilter Core Team [ 28.158848] postgres (1900): /proc/1900/oom_adj is deprecated, please use /proc/1900/oom_score_adj instead. [ 29.840079] xenbr0: no IPv6 routers present [ 31.502916] type=1400 audit(1344097919.088:20): apparmor="DENIED" operation="mknod" parent=1984 profile="/usr/sbin/named" name="/var/log/query.log" pid=1989 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 34.336141] xenbr0: port 1(eth0) entering forwarding state [ 38.424359] Event-channel device installed. [ 38.853077] XENBUS: Unable to read cpu state [ 38.854215] XENBUS: Unable to read cpu state [ 38.855231] XENBUS: Unable to read cpu state [ 38.858891] XENBUS: Unable to read cpu state [ 47.411497] device vif1.0 entered promiscuous mode [ 47.429245] ADDRCONF(NETDEV_UP): vif1.0: link is not ready [ 49.366219] virbr0: port 1(vif1.0) entering disabled state [ 49.366705] virbr0: port 1(vif1.0) entering disabled state [ 49.368873] virbr0: mixed no checksumming and other settings. [ 97.273028] type=1400 audit(1344097984.861:21): apparmor="DENIED" operation="mknod" parent=3076 profile="/usr/sbin/named" name="/var/log/query.log" pid=3078 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 277.790627] type=1400 audit(1344098165.377:22): apparmor="DENIED" operation="mknod" parent=3384 profile="/usr/sbin/named" name="/var/log/query.log" pid=3389 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 287.812986] type=1400 audit(1344098175.401:23): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/root/tmp-gjnX0c0dDa" pid=3400 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 287.818466] type=1400 audit(1344098175.405:24): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/root/tmp-CpOtH52qU5" pid=3400 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 323.166228] type=1400 audit(1344098210.753:25): apparmor="DENIED" operation="mknod" parent=3422 profile="/usr/sbin/named" name="/var/log/query.log" pid=3427 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 386.512586] type=1400 audit(1344098274.101:26): apparmor="DENIED" operation="mknod" parent=3456 profile="/usr/sbin/named" name="/var/log/query.log" pid=3459 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 808.549049] type=1400 audit(1344098696.137:27): apparmor="DENIED" operation="mknod" parent=3872 profile="/usr/sbin/named" name="/var/log/query.log" pid=3877 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 894.671081] type=1400 audit(1344098782.257:28): apparmor="DENIED" operation="mknod" parent=3922 profile="/usr/sbin/named" name="/var/log/query.log" pid=3927 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 968.514669] type=1400 audit(1344098856.101:29): apparmor="DENIED" operation="mknod" parent=3978 profile="/usr/sbin/named" name="/var/log/query.log" pid=3983 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1021.814582] type=1400 audit(1344098909.401:30): apparmor="DENIED" operation="mknod" parent=4010 profile="/usr/sbin/named" name="/var/log/query.log" pid=4012 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1063.856633] type=1400 audit(1344098951.445:31): apparmor="DENIED" operation="mknod" parent=4041 profile="/usr/sbin/named" name="/var/log/query.log" pid=4043 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1085.404001] type=1400 audit(1344098972.989:32): apparmor="DENIED" operation="mknod" parent=4072 profile="/usr/sbin/named" name="/var/log/query.log" pid=4077 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1108.207402] type=1400 audit(1344098995.793:33): apparmor="DENIED" operation="mknod" parent=4102 profile="/usr/sbin/named" name="/var/log/query.log" pid=4107 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1156.947189] type=1400 audit(1344099044.533:34): apparmor="DENIED" operation="mknod" parent=4134 profile="/usr/sbin/named" name="/var/log/query.log" pid=4136 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1166.768005] type=1400 audit(1344099054.353:35): apparmor="DENIED" operation="mknod" parent=4150 profile="/usr/sbin/named" name="/var/log/query.log" pid=4155 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1168.873385] type=1400 audit(1344099056.461:36): apparmor="DENIED" operation="mknod" parent=4162 profile="/usr/sbin/named" name="/var/log/query.log" pid=4167 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1181.558946] type=1400 audit(1344099069.145:37): apparmor="DENIED" operation="mknod" parent=4177 profile="/usr/sbin/named" name="/var/log/query.log" pid=4182 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 1199.349265] type=1400 audit(1344099086.937:38): apparmor="DENIED" operation="mknod" parent=4191 profile="/usr/sbin/named" name="/var/log/query.log" pid=4196 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 1296.805604] type=1400 audit(1344099184.393:39): apparmor="DENIED" operation="mknod" parent=4232 profile="/usr/sbin/named" name="/var/log/query.log" pid=4237 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1317.730568] type=1400 audit(1344099205.317:40): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-nuBes0IXwi" pid=4251 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1317.730744] type=1400 audit(1344099205.317:41): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-ZDJA06ZOkU" pid=4252 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1365.072687] type=1400 audit(1344099252.661:42): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-EnsuYUrGOC" pid=4290 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1365.074520] type=1400 audit(1344099252.661:43): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-LVCnpWOStP" pid=4287 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1380.336984] type=1400 audit(1344099267.925:44): apparmor="DENIED" operation="mknod" parent=4617 profile="/usr/sbin/named" name="/var/log/query.log" pid=4622 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1437.924534] type=1400 audit(1344099325.513:45): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-Uyf1dHIZUU" pid=4648 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1437.924626] type=1400 audit(1344099325.513:46): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-OABXWclII3" pid=4647 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1526.334959] type=1400 audit(1344099413.921:47): apparmor="DENIED" operation="mknod" parent=4749 profile="/usr/sbin/named" name="/var/log/query.log" pid=4754 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 1601.292548] type=1400 audit(1344099488.881:48): apparmor="DENIED" operation="mknod" parent=4835 profile="/usr/sbin/named" name="/var/log/query.log" pid=4840 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 1639.543733] type=1400 audit(1344099527.129:49): apparmor="DENIED" operation="mknod" parent=4905 profile="/usr/sbin/named" name="/var/log/query.log" pid=4907 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1916.381179] type=1400 audit(1344099803.969:50): apparmor="DENIED" operation="mknod" parent=4959 profile="/usr/sbin/named" name="/var/log/query.log" pid=4961 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1940.816898] type=1400 audit(1344099828.405:51): apparmor="DENIED" operation="mknod" parent=4991 profile="/usr/sbin/named" name="/var/log/query.log" pid=4996 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 2043.010898] type=1400 audit(1344099930.597:52): apparmor="DENIED" operation="mknod" parent=5048 profile="/usr/sbin/named" name="/var/log/query.log" pid=5053 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 2084.956230] type=1400 audit(1344099972.545:53): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/var/log/tmp-XYgr33RqUt" pid=5069 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 2084.959120] type=1400 audit(1344099972.545:54): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/var/log/tmp-vO24RHwL14" pid=5066 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 2088.169500] type=1400 audit(1344099975.757:55): apparmor="DENIED" operation="mknod" parent=5076 profile="/usr/sbin/named" name="/var/log/query.log" pid=5078 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 2165.625096] type=1400 audit(1344100053.213:56): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=5124 comm="apparmor" [ 2165.625401] type=1400 audit(1344100053.213:57): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=5124 comm="apparmor" [ 2165.625608] type=1400 audit(1344100053.213:58): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=5124 comm="apparmor" [ 2165.625782] type=1400 audit(1344100053.213:59): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=5124 comm="apparmor" [ 2165.625931] type=1400 audit(1344100053.213:60): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=5124 comm="apparmor" [ 2165.626057] type=1400 audit(1344100053.213:61): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=5124 comm="apparmor" [ 2165.626181] type=1400 audit(1344100053.213:62): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=5124 comm="apparmor" [ 2165.626319] type=1400 audit(1344100053.213:63): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=5124 comm="apparmor" [ 3709.583927] type=1400 audit(1344101597.169:64): apparmor="STATUS" operation="profile_load" name="/usr/sbin/libvirtd" pid=7484 comm="apparmor_parser" [ 3709.839895] type=1400 audit(1344101597.425:65): apparmor="STATUS" operation="profile_load" name="/usr/sbin/mysqld" pid=7485 comm="apparmor_parser" [ 3710.008892] type=1400 audit(1344101597.597:66): apparmor="STATUS" operation="profile_load" name="/usr/lib/libvirt/virt-aa-helper" pid=7483 comm="apparmor_parser" [ 3710.545232] type=1400 audit(1344101598.133:67): apparmor="STATUS" operation="profile_load" name="/usr/sbin/named" pid=7486 comm="apparmor_parser" [ 3710.655600] type=1400 audit(1344101598.241:68): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=7481 comm="apparmor_parser" [ 3710.656013] type=1400 audit(1344101598.241:69): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7481 comm="apparmor_parser" [ 3710.656786] type=1400 audit(1344101598.245:70): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=7481 comm="apparmor_parser" [ 3710.832624] type=1400 audit(1344101598.421:71): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=7488 comm="apparmor_parser" [ 3717.573123] type=1400 audit(1344101605.161:72): apparmor="DENIED" operation="open" parent=7505 profile="/usr/sbin/named" name="/var/log/query.log" pid=7510 comm="named" requested_mask="ac" denied_mask="ac" fsuid=107 ouid=0 [ 3743.667808] type=1400 audit(1344101631.253:73): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=7552 comm="apparmor" [ 3743.668338] type=1400 audit(1344101631.257:74): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7552 comm="apparmor" [ 3743.668625] type=1400 audit(1344101631.257:75): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=7552 comm="apparmor" [ 3743.668834] type=1400 audit(1344101631.257:76): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=7552 comm="apparmor" [ 3743.668991] type=1400 audit(1344101631.257:77): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=7552 comm="apparmor" [ 3743.669127] type=1400 audit(1344101631.257:78): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=7552 comm="apparmor" [ 3743.669282] type=1400 audit(1344101631.257:79): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=7552 comm="apparmor" [ 3743.669520] type=1400 audit(1344101631.257:80): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=7552 comm="apparmor" [ 3873.572336] type=1400 audit(1344101761.161:81): apparmor="STATUS" operation="profile_load" name="/usr/sbin/libvirtd" pid=7722 comm="apparmor_parser" [ 3873.826209] type=1400 audit(1344101761.413:82): apparmor="STATUS" operation="profile_load" name="/usr/sbin/mysqld" pid=7723 comm="apparmor_parser" [ 3873.988181] type=1400 audit(1344101761.577:83): apparmor="STATUS" operation="profile_load" name="/usr/lib/libvirt/virt-aa-helper" pid=7721 comm="apparmor_parser" [ 3874.520305] type=1400 audit(1344101762.109:84): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=7719 comm="apparmor_parser" [ 3874.520736] type=1400 audit(1344101762.109:85): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7719 comm="apparmor_parser" [ 3874.521000] type=1400 audit(1344101762.109:86): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=7719 comm="apparmor_parser" [ 3874.528878] type=1400 audit(1344101762.117:87): apparmor="STATUS" operation="profile_load" name="/usr/sbin/named" pid=7724 comm="apparmor_parser" [ 3874.930712] type=1400 audit(1344101762.517:88): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=7726 comm="apparmor_parser" [ 3971.744599] type=1400 audit(1344101859.333:89): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/libvirtd" pid=7899 comm="apparmor_parser" [ 3972.009857] type=1400 audit(1344101859.597:90): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/mysqld" pid=7900 comm="apparmor_parser" [ 3972.165297] type=1400 audit(1344101859.753:91): apparmor="STATUS" operation="profile_replace" name="/usr/lib/libvirt/virt-aa-helper" pid=7898 comm="apparmor_parser" [ 3972.587766] type=1400 audit(1344101860.173:92): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/named" pid=7901 comm="apparmor_parser" [ 3972.847189] type=1400 audit(1344101860.433:93): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=7896 comm="apparmor_parser" [ 3972.847705] type=1400 audit(1344101860.433:94): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7896 comm="apparmor_parser" [ 3972.848150] type=1400 audit(1344101860.433:95): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=7896 comm="apparmor_parser" [ 3973.147889] type=1400 audit(1344101860.733:96): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/tcpdump" pid=7903 comm="apparmor_parser" [ 3988.863999] type=1400 audit(1344101876.449:97): apparmor="DENIED" operation="open" parent=7939 profile="/usr/sbin/named" name="/var/log/query.log" pid=7944 comm="named" requested_mask="ac" denied_mask="ac" fsuid=107 ouid=0 [ 4025.826132] type=1400 audit(1344101913.413:98): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=7975 comm="apparmor" [ 4025.826627] type=1400 audit(1344101913.413:99): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7975 comm="apparmor" [ 4025.826861] type=1400 audit(1344101913.413:100): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=7975 comm="apparmor" [ 4025.827059] type=1400 audit(1344101913.413:101): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=7975 comm="apparmor" [ 4025.827214] type=1400 audit(1344101913.413:102): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=7975 comm="apparmor" [ 4025.827352] type=1400 audit(1344101913.413:103): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=7975 comm="apparmor" [ 4025.827485] type=1400 audit(1344101913.413:104): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=7975 comm="apparmor" [ 4025.827624] type=1400 audit(1344101913.413:105): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=7975 comm="apparmor" [ 4027.862198] type=1400 audit(1344101915.449:106): apparmor="STATUS" operation="profile_load" name="/usr/sbin/libvirtd" pid=8090 comm="apparmor_parser" [ 4039.500920] audit_printk_skb: 21 callbacks suppressed [ 4039.500932] type=1400 audit(1344101927.089:114): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=8114 comm="apparmor" [ 4039.501413] type=1400 audit(1344101927.089:115): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=8114 comm="apparmor" [ 4039.501672] type=1400 audit(1344101927.089:116): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=8114 comm="apparmor" [ 4039.501861] type=1400 audit(1344101927.089:117): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=8114 comm="apparmor" [ 4039.502033] type=1400 audit(1344101927.089:118): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=8114 comm="apparmor" [ 4039.502170] type=1400 audit(1344101927.089:119): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=8114 comm="apparmor" [ 4039.502305] type=1400 audit(1344101927.089:120): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=8114 comm="apparmor" [ 4039.502442] type=1400 audit(1344101927.089:121): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=8114 comm="apparmor" [ 4041.425405] type=1400 audit(1344101929.013:122): apparmor="STATUS" operation="profile_load" name="/usr/lib/libvirt/virt-aa-helper" pid=8240 comm="apparmor_parser" [ 4041.425952] type=1400 audit(1344101929.013:123): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=8238 comm="apparmor_parser" [ 4058.910390] audit_printk_skb: 18 callbacks suppressed [ 4058.910401] type=1400 audit(1344101946.497:130): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=8264 comm="apparmor" [ 4058.910757] type=1400 audit(1344101946.497:131): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=8264 comm="apparmor" [ 4058.910969] type=1400 audit(1344101946.497:132): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=8264 comm="apparmor" [ 4058.911185] type=1400 audit(1344101946.497:133): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=8264 comm="apparmor" [ 4058.911335] type=1400 audit(1344101946.497:134): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=8264 comm="apparmor" [ 4058.911595] type=1400 audit(1344101946.497:135): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=8264 comm="apparmor" [ 4058.911856] type=1400 audit(1344101946.497:136): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=8264 comm="apparmor" [ 4058.912001] type=1400 audit(1344101946.497:137): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=8264 comm="apparmor" [ 4060.266700] type=1400 audit(1344101947.853:138): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=8391 comm="apparmor_parser" [ 4060.268356] type=1400 audit(1344101947.857:139): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=8391 comm="apparmor_parser" [ 5909.432749] audit_printk_skb: 18 callbacks suppressed [ 5909.432759] type=1400 audit(1344103797.021:146): apparmor="DENIED" operation="open" parent=8800 profile="/usr/sbin/named" name="/var/log/query.log" pid=8805 comm="named" requested_mask="ac" denied_mask="ac" fsuid=107 ouid=0 root@zotac:~# What can I do that it still works and I don't have to disable apparmor ?

    Read the article

  • What are the safety benefits of a type system?

    - by vandros526
    In Javascript: The Good Parts by Douglas Crockford, he mentions in his inheritance chapter, "The other benefit of classical inheritance is that it includes the specification of a system of types. This mostly frees the programmer from having to write explicit casting operations, which is a very good thing because when casting, the safety benefits of a type system are lost." So first of all, what actually is safety? protection against data corruption, or hackers, or system malfunctions, etc? What are the safety benefits of a type system? What makes a type system different that allows it to provide these safety benefits?

    Read the article

  • Design patterns frequently seen in embedded systems programming

    - by softwarelover
    I don't have any question related to coding. My concerns are about embedded systems programming independent of any particular programming language. Because I am new in the realm of embedded programming, I would quite appreciate responses from those who consider themselves experienced embedded systems programmers. I basically have 2 questions. Of the design patterns listed below are there any seen frequently in embedded systems programming? Abstraction-Occurrence pattern General Hierarchy pattern Player-Role pattern Singleton pattern Observer pattern Delegation pattern Adapter pattern Facade pattern Immutable pattern Read-Only Interface pattern Proxy pattern As an experienced embedded developer, what design patterns have you, as an individual, come across? There is no need to describe the details. Only the pattern names would suffice. Please share your own experience. I believe the answers to the above questions would work as a good starting point for any novice programmers in the embedded world.

    Read the article

  • Full Portfolio of x86 Systems On Display at Oracle OpenWorld

    - by kgee
    This OpenWorld, Oracle’s x86 hardware team will have two hardware demos, showcasing the new X3 systems, as well as several other x86 solutions such as the ZFS Storage Appliance, Oracle Database Appliance and the Carrier Grade NETRA systems. These two demos are located in the South Hall in Oracle’s booth 1133 and Intel’s booth 1101.  The Intel booth will feature additional demos including 3D demos of each server, a static architectural demo, the Oracle x86 Grand Prix video game and the Intel Theatre featuring several presentations by Intel’s partners. Oracle’s Intel Theatre Schedule and Topics Include:Monday 1. 10:30 a.m. - Engineered to Work Together: Oracle x86 Systems in the Data Center2. 12:30 a.m. - The Oracle NoSQL Database on the Intel Platform.3. 1:30 p.m. - Accelerate Your Path to Cloud with Oracle VM4. 3:30 p.m. - Why Oracle Linux is the Best Linux for Your Intel Based Systems5. 4:30 p.m. - Accelerate Your Path to Cloud with Oracle VMTuesday 1. 10:00 a.m. - Speed of thought” Analytics using In-Memory Analytics2. 1:30 a.m. - A Storage Architecture for Big Data:  "It’s Not JUST Hadoop"3. 2:00 a.m. - Oracle Optimized Solution for Enterprise Cloud Infrastructure.4. 2:30 p.m. - Configuring Storage to Optimize Database Performance and Efficiency.5. 3:30 p.m. - Total Cloud Control for Oracle's x86 SystemsWednesday 1. 10:00 a.m. - Big Data Analysis Using R-Programming Language2. 11:30 a.m. - Extreme Performance Overview, The Oracle Exadata Database Machine3. 1:30 p.m. - Oracle Times Ten In-Memory Database Overview

    Read the article

  • Converting Generic Type into reference type after checking its type using GetType(). How ?

    - by Shantanu Gupta
    i am trying to call a function that is defined in a class RFIDeas_Wrapper(dll being used). But when i checked for type of reader and after that i used it to call function it shows me error Cannot convert type T to RFIDeas_Wrapper. EDIT private List<string> GetTagCollection<T>(T Reader) { TagCollection = new List<string>(); if (Reader.GetType() == typeof(RFIDeas_Wrapper)) { ((RFIDeas_Wrapper)Reader).OpenDevice(); // here Reader is of type RFIDeas_Wrapper //, but i m not able to convert Reader into its datatype. string Tag_Id = ((RFIDeas_Wrapper)Reader).TagID(); //Adds Valid Tag Ids into the collection if(Tag_Id!="0") TagCollection.Add(Tag_Id); } else if (Reader.GetType() == typeof(AlienReader)) TagCollection = ((AlienReader)Reader).TagCollection; return TagCollection; } ((RFIDeas_Wrapper)Reader).OpenDevice(); , ((AlienReader)Reader).TagCollection; I want this line to be executed without any issue. As Reader will always be of the type i m specifying. How to make compiler understand the same thing.

    Read the article

  • Enterprise vs Real time embedded systems

    - by JakeFisher
    In university I have 2 options for software architecture: Enterprise Real time embedded systems I would be very glad if someone can give me a brief explanation of what those are. I am interested in following criterias: Brief overview Complexity and interest. So does knowledge costs time? Area of usage Profit(salary) Working tools, programs. Might be some text editor, uml editor. Something else?

    Read the article

  • Languages on embedded systems in aeronautic and spatial sector

    - by Niels
    I know that my question is very broad but a general answer would be nice. I would like to know which are the main languages used in aeronautic and spatial sector. I know that the OS which run on embedded systems are RTOS (Real time OS) and I think that, this languages must be checked correctly by different methods (formal methods, unit tests) and must permit a sure verification of whole process of a program.

    Read the article

  • How to Avoid Your Next 12-Month Science Project

    - by constant
    While most customers immediately understand how the magic of Oracle's Hybrid Columnar Compression, intelligent storage servers and flash memory make Exadata uniquely powerful against home-grown database systems, some people think that Exalogic is nothing more than a bunch of x86 servers, a storage appliance and an InfiniBand (IB) network, built into a single rack. After all, isn't this exactly what the High Performance Computing (HPC) world has been doing for decades? On the surface, this may be true. And some people tried exactly that: They tried to put together their own version of Exalogic, but then they discover there's a lot more to building a system than buying hardware and assembling it together. IT is not Ikea. Why is that so? Could it be there's more going on behind the scenes than merely putting together a bunch of servers, a storage array and an InfiniBand network into a rack? Let's explore some of the special sauce that makes Exalogic unique and un-copyable, so you can save yourself from your next 6- to 12-month science project that distracts you from doing real work that adds value to your company. Engineering Systems is Hard Work! The backbone of Exalogic is its InfiniBand network: 4 times better bandwidth than even 10 Gigabit Ethernet, and only about a tenth of its latency. What a potential for increased scalability and throughput across the middleware and database layers! But InfiniBand is a beast that needs to be tamed: It is true that Exalogic uses a standard, open-source Open Fabrics Enterprise Distribution (OFED) InfiniBand driver stack. Unfortunately, this software has been developed by the HPC community with fastest speed in mind (which is good) but, despite the name, not many other enterprise-class requirements are included (which is less good). Here are some of the improvements that Oracle's InfiniBand development team had to add to the OFED stack to make it enterprise-ready, simply because typical HPC users didn't have the need to implement them: More than 100 bug fixes in the pieces that were not related to the Message Passing Interface Protocol (MPI), which is the protocol that HPC users use most of the time, but which is less useful in the enterprise. Performance optimizations and tuning across the whole IB stack: From Switches, Host Channel Adapters (HCAs) and drivers to low-level protocols, middleware and applications. Yes, even the standard HPC IB stack could be improved in terms of performance. Ethernet over IB (EoIB): Exalogic uses InfiniBand internally to reach high performance, but it needs to play nicely with datacenters around it. That's why Oracle added Ethernet over InfiniBand technology to it that allows for creating many virtual 10GBE adapters inside Exalogic's nodes that are aggregated and connected to Exalogic's IB gateway switches. While this is an open standard, it's up to the vendor to implement it. In this case, Oracle integrated the EoIB stack with Oracle's own IB to 10GBE gateway switches, and made it fully virtualized from the beginning. This means that Exalogic customers can completely rewire their server infrastructure inside the rack without having to physically pull or plug a single cable - a must-have for every cloud deployment. Anybody who wants to match this level of integration would need to add an InfiniBand switch development team to their project. Or just buy Oracle's gateway switches, which are conveniently shipped with a whole server infrastructure attached! IPv6 support for InfiniBand's Sockets Direct Protocol (SDP), Reliable Datagram Sockets (RDS), TCP/IP over IB (IPoIB) and EoIB protocols. Because no IPv6 = not very enterprise-class. HA capability for SDP. High Availability is not a big requirement for HPC, but for enterprise-class application servers it is. Every node in Exalogic's InfiniBand network is connected twice for redundancy. If any cable or port or HCA fails, there's always a replacement link ready to take over. This requires extra magic at the protocol level to work. So in addition to Weblogic's failover capabilities, Oracle implemented IB automatic path migration at the SDP level to avoid unnecessary failover operations at the middleware level. Security, for example spoof-protection. Another feature that is less important for traditional users of InfiniBand, but very important for enterprise customers. InfiniBand Partitioning and Quality-of-Service (QoS): One of the first questions we get from customers about Exalogic is: “How can we implement multi-tenancy?” The answer is to partition your IB network, which effectively creates many networks that work independently and that are protected at the lowest networking layer possible. In addition to that, QoS allows administrators to prioritize traffic flow in multi-tenancy environments so they can keep their service levels where it matters most. Resilient IB Fabric Management: InfiniBand is a self-managing network, so a lot of the magic lies in coming up with the right topology and in teaching the subnet manager how to properly discover and manage the network. Oracle's Infiniband switches come with pre-integrated, highly available fabric management with seamless integration into Oracle Enterprise Manager Ops Center. In short: Oracle elevated the OFED InfiniBand stack into an enterprise-class networking infrastructure. Many years and multiple teams of manpower went into the above improvements - this is something you can only get from Oracle, because no other InfiniBand vendor can give you these features across the whole stack! Exabus: Because it's not About the Size of Your Network, it's How You Use it! So let's assume that you somehow were able to get your hands on an enterprise-class IB driver stack. Or maybe you don't care and are just happy with the standard OFED one? Anyway, the next step is to actually leverage that InfiniBand performance. Here are the choices: Use traditional TCP/IP on top of the InfiniBand stack, Develop your own integration between your middleware and the lower-level (but faster) InfiniBand protocols. While more bandwidth is always a good thing, it's actually the low latency that enables superior performance for your applications when running on any networking infrastructure: The lower the latency, the faster the response travels through the network and the more transactions you can close per second. The reason why InfiniBand is such a low latency technology is that it gets rid of most if not all of your traditional networking protocol stack: Data is literally beamed from one region of RAM in one server into another region of RAM in another server with no kernel/drivers/UDP/TCP or other networking stack overhead involved! Which makes option 1 a no-go: Adding TCP/IP on top of InfiniBand is like adding training wheels to your racing bike. It may be ok in the beginning and for development, but it's not quite the performance IB was meant to deliver. Which only leaves option 2: Integrating your middleware with fast, low-level InfiniBand protocols. And this is what Exalogic's "Exabus" technology is all about. Here are a few Exabus features that help applications leverage the performance of InfiniBand in Exalogic: RDMA and SDP integration at the JDBC driver level (SDP), for Oracle Weblogic (SDP), Oracle Coherence (RDMA), Oracle Tuxedo (RDMA) and the new Oracle Traffic Director (RDMA) on Exalogic. Using these protocols, middleware can communicate a lot faster with each other and the Oracle database than by using standard networking protocols, Seamless Integration of Ethernet over InfiniBand from Exalogic's Gateway switches into the OS, Oracle Weblogic optimizations for handling massive amounts of parallel transactions. Because if you have an 8-lane Autobahn, you also need to improve your ramps so you can feed it with many cars in parallel. Integration of Weblogic with Oracle Exadata for faster performance, optimized session management and failover. As you see, “Exabus” is Oracle's word for describing all the InfiniBand enhancements Oracle put into Exalogic: OFED stack enhancements, protocols for faster IB access, and InfiniBand support and optimizations at the virtualization and middleware level. All working together to deliver the full potential of InfiniBand performance. Who else has 100% control over their middleware so they can develop their own low-level protocol integration with InfiniBand? Even if you take an open source approach, you're looking at years of development work to create, test and support a whole new networking technology in your middleware! The Extras: Less Hassle, More Productivity, Faster Time to Market And then there are the other advantages of Engineered Systems that are true for Exalogic the same as they are for every other Engineered System: One simple purchasing process: No headaches due to endless RFPs and no “Will X work with Y?” uncertainties. Everything has been engineered together: All kinds of bugs and problems have been already fixed at the design level that would have only manifested themselves after you have built the system from scratch. Everything is built, tested and integrated at the factory level . Less integration pain for you, faster time to market. Every Exalogic machine world-wide is identical to Oracle's own machines in the lab: Instant replication of any problems you may encounter, faster time to resolution. Simplified patching, management and operations. One throat to choke: Imagine finger-pointing hell for systems that have been put together using several different vendors. Oracle's Engineered Systems have a single phone number that customers can call to get their problems solved. For more business-centric values, read The Business Value of Engineered Systems. Conclusion: Buy Exalogic, or get ready for a 6-12 Month Science Project And here's the reason why it's not easy to "build your own Exalogic": There's a lot of work required to make such a system fly. In fact, anybody who is starting to "just put together a bunch of servers and an InfiniBand network" is really looking at a 6-12 month science project. And the outcome is likely to not be very enterprise-class. And it won't have Exalogic's performance either. Because building an Engineered System is literally rocket science: It takes a lot of time, effort, resources and many iterations of design/test/analyze/fix to build such a system. That's why InfiniBand has been reserved for HPC scientists for such a long time. And only Oracle can bring the power of InfiniBand in an enterprise-class, ready-to use, pre-integrated version to customers, without the develop/integrate/support pain. For more details, check the new Exalogic overview white paper which was updated only recently. P.S.: Thanks to my colleagues Ola, Paul, Don and Andy for helping me put together this article! var flattr_uid = '26528'; var flattr_tle = 'How to Avoid Your Next 12-Month Science Project'; var flattr_dsc = 'While most customers immediately understand how the magic of Oracle's Hybrid Columnar Compression, intelligent storage servers and flash memory make Exadata uniquely powerful against home-grown database systems, some people think that Exalogic is nothing more than a bunch of x86 servers, a storage appliance and an InfiniBand (IB) network, built into a single rack.After all, isn't this exactly what the High Performance Computing (HPC) world has been doing for decades?On the surface, this may be true. And some people tried exactly that: They tried to put together their own version of Exalogic, but then they discover there's a lot more to building a system than buying hardware and assembling it together. IT is not Ikea.Why is that so? Could it be there's more going on behind the scenes than merely putting together a bunch of servers, a storage array and an InfiniBand network into a rack? Let's explore some of the special sauce that makes Exalogic unique and un-copyable, so you can save yourself from your next 6- to 12-month science project that distracts you from doing real work that adds value to your company.'; var flattr_tag = 'Engineered Systems,Engineered Systems,Infiniband,Integration,latency,Oracle,performance'; var flattr_cat = 'text'; var flattr_url = 'http://constantin.glez.de/blog/2012/04/how-avoid-your-next-12-month-science-project'; var flattr_lng = 'en_GB'

    Read the article

  • Type dependencies vs directory structure

    - by paul
    Something I've been wondering about recently is how to organize types in directories/namespaces w.r.t. their dependencies. One method I've seen, which I believe is the recommendation for both Haskell and .NET (though I can't find the references for this at the moment), is: Type Type/ATypeThatUsesType Type/AnotherTypeThatUsesType My natural inclination, however, is to do the opposite: Type Type/ATypeUponWhichTypeDepends Type/AnotherTypeUponWhichTypeDepends Questions: Is my inclination bass-ackwards? Are there any major benefits/pitfalls of one over the other? Is it just something that depends on the application, e.g. whether you're building a library vs doing normal coding?

    Read the article

  • Accessing type-parameter of a type-parameter

    - by itemState
    i would like to access, in a trait, the type-parameter of a type-parameter of that trait. without adding this "second-order" type-parameter as another "first-order" parameter to the trait. the following illustrates this problem: sealed trait A; sealed trait A1 extends A; sealed trait A2 extends A trait B[ ASpecific <: A ] { type ASpec = ASpecific } trait D[ ASpecific <: A ] extends B[ ASpecific ] trait C[ +BSpecific <: B[ _ <: A ]] { def unaryOp : C[ D[ BSpecific#ASpec ]] } def test( c: C[ B[ A1 ]]) : C[ D[ A1 ]] = c.unaryOp the test fails to compile because apparently, the c.unaryOp has a result of type C[D[A]] and not C[D[A1]], indicating that ASpec is merely a shortcut for _ <: A and does not refer to the specific type parameter. the two-type-parameter solution is simple: sealed trait A; sealed trait A1 extends A; sealed trait A2 extends A trait B[ ASpecific <: A ] trait D[ ASpecific <: A ] extends B[ ASpecific ] trait C[ ASpecific <: A, +BSpecific <: B[ ASpecific ]] { def unaryOp : C[ ASpecific, D[ ASpecific ]] } def test( c: C[ A1, B[ A1 ]]) : C[ A1, D[ A1 ]] = c.unaryOp but i don't understand why i need to clutter my source with this second, obviously redundant, parameter. is there no way to retrieve it from trait B?

    Read the article

  • Change type of control by type

    - by Ruben
    Hi, I'm having following problem. I should convert a control to a certain type, this can be multiple types (for example a custom button or a custom label, ....) Here's an example of what i would like to do: private void ConvertToTypeAndUseCustomProperty(Control c) { Type type = c.getType(); ((type) c).CustomPropertieOfControl = 234567; } Thanks in advance.

    Read the article

  • Operating systems theory -- using minimum number of semaphores

    - by stackuser
    This situation is prone to deadlock of processes in an operating system and I'd like to solve it with the minimum of semaphores. Basically there are three cooperating processes that all read data from the same input device. Each process, when it gets the input device, must read two consecutive data. I want to use mutual exclusion to do this. Semaphores should be used to synchronize: P1: P2: P3: input(a1,a2) input (b1,b2) input(c1,c2) Y=a1+c1 W=b2+c2 Z=a2+b1 Print (X) X=Z-Y+W The declaration and initialization that I think would work here are: semaphore s=1 sa1 = 0, sa2 = 0, sb1 = 0, sb2 = 0, sc1 = 0, sc2 = 0 I'm sure that any kernel programmers that happen on this can knock this out in a minute or 2. Diagram of cooperating Processes and one input device: It seems like P1 and P2 would start something like: wait(s) input (a1/b1, a2/b2) signal(s)

    Read the article

  • Web application framework for embedded systems?

    - by datenwolf
    I'm currently developing the software for a measurement and control system. In addition to the usual SCPI interface I'd also give it a nice HTTP frontend. Now I don't want to reinvent the wheel all over again. I already have a simple HTTPD running, but I don't want to implement all the other stuff. So what I'm looking for is a web application toolkit targeted at embedded system development. In particular this has to run on a ARM Cortex-M4, and I have some 8k of RAM available for this. It must be written in C. Is there such a thing or do I have to implement this myself?

    Read the article

  • Operating systems -- using minimum number of semaphores

    - by stackuser
    The three cooperating processes all read data from the same input device. Each process, when it gets the input device, must read two consecutive data. I want to use mutual exclusion to do this. The declaration and initialization that I think would work here are: semaphore s=1 sa1 = 0, sa2 = 0, sb1 = 0, sb2 = 0, sc1 = 0, sc2 = 0 I'd like to use semaphores to synchronize the following processes: P1: P2: P3: input(a1,a2) input (b1,b2) input(c1,c2) Y=a1+c1 W=b2+c2 Z=a2+b1 Print (X) X=Z-Y+W I'm wondering how to use the minimum number of semaphores to solve this. Diagram of cooperating Processes and one input device: It seems like P1 and P2 would start something like: wait(s) input (a1/b1, a2/b2) signal(s)

    Read the article

  • IIS website is sending multiple content-type headers for zip files

    - by frankadelic
    We have a problem with an IIS5 server. When certain users/browsers click to download .zip files, binary gibberish text sometimes renders in the browser window. The desired behavior is for the file to either download or open with the associated zip application. Initially, we suspected that the wrong content-type header was set on the file. The IIS tech confirmed that .zip files were being served by IIS with the mime-type "application/x-zip-compressed". However, an inspection of the HTTP packets using Wireshark reveals that requests for zip files return two Content-Type headers. Content-Type: text/html; charset=UTF-8 Content-Type: application/x-zip-compressed Any idea why IIS is sending two content-type headers? This doesn't happen for regular HTML or images files. It does happen with ZIP and PDF. Is there a particular place we can ask the IIS tech to look? Or is there a configuration file we can examine?

    Read the article

  • Which statically typed languages support intersection types for function return values?

    - by stakx
    Initial note: This question got closed after several edits because I lacked the proper terminology to state accurately what I was looking for. Sam Tobin-Hochstadt then posted a comment which made me recognise exactly what that was: programming languages that support intersection types for function return values. Now that the question has been re-opened, I've decided to improve it by rewriting it in a (hopefully) more precise manner. Therefore, some answers and comments below might no longer make sense because they refer to previous edits. (Please see the question's edit history in such cases.) Are there any popular statically & strongly typed programming languages (such as Haskell, generic Java, C#, F#, etc.) that support intersection types for function return values? If so, which, and how? (If I'm honest, I would really love to see someone demonstrate a way how to express intersection types in a mainstream language such as C# or Java.) I'll give a quick example of what intersection types might look like, using some pseudocode similar to C#: interface IX { … } interface IY { … } interface IB { … } class A : IX, IY { … } class B : IX, IY, IB { … } T fn() where T : IX, IY { return … ? new A() : new B(); } That is, the function fn returns an instance of some type T, of which the caller knows only that it implements interfaces IX and IY. (That is, unlike with generics, the caller doesn't get to choose the concrete type of T — the function does. From this I would suppose that T is in fact not a universal type, but an existential type.) P.S.: I'm aware that one could simply define a interface IXY : IX, IY and change the return type of fn to IXY. However, that is not really the same thing, because often you cannot bolt on an additional interface IXY to a previously defined type A which only implements IX and IY separately. Footnote: Some resources about intersection types: Wikipedia article for "Type system" has a subsection about intersection types. Report by Benjamin C. Pierce (1991), "Programming With Intersection Types, Union Types, and Polymorphism" David P. Cunningham (2005), "Intersection types in practice", which contains a case study about the Forsythe language, which is mentioned in the Wikipedia article. A Stack Overflow question, "Union types and intersection types" which got several good answers, among them this one which gives a pseudocode example of intersection types similar to mine above.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >