Search Results

Search found 44 results on 2 pages for 'typemock'.

Page 1/2 | 1 2  | Next Page >

  • GuestPost: Unit Testing Entity Framework (v1) Dependent Code using TypeMock Isolator

    - by Eric Nelson
    Time for another guest post (check out others in the series), this time bringing together the world of mocking with the world of Entity Framework. A big thanks to Moses for agreeing to do this. Unit Testing Entity Framework Dependent Code using TypeMock Isolator by Muhammad Mosa Introduction Unit testing data access code in my opinion is a challenging thing. Let us consider unit tests and integration tests. In integration tests you are allowed to have environmental dependencies such as a physical database connection to insert, update, delete or retrieve your data. However when performing unit tests it is often much more efficient and productive to remove environmental dependencies. Instead you will need to fake these dependencies. Faking a database (also known as mocking) can be relatively straight forward but the version of Entity Framework released with .Net 3.5 SP1 has a number of implementation specifics which actually makes faking the existence of a database quite difficult. Faking Entity Framework As mentioned earlier, to effectively unit test you will need to fake/simulate Entity Framework calls to the database. There are many free open source mocking frameworks that can help you achieve this but it will require additional effort to overcome & workaround a number of limitations in those frameworks. Examples of these limitations include: Not able to fake calls to non virtual methods Not able to fake sealed classes Not able to fake LINQ to Entities queries (replace database calls with in-memory collection calls) There is a mocking framework which is flexible enough to handle limitations such as those above. The commercially available TypeMock Isolator can do the job for you with less code and ultimately more readable unit tests. I’m going to demonstrate tackling one of those limitations using MoQ as my mocking framework. Then I will tackle the same issue using TypeMock Isolator. Mocking Entity Framework with MoQ One basic need when faking Entity Framework is to fake the ObjectContext. This cannot be done by passing any connection string. You have to pass a correct Entity Framework connection string that specifies CSDL, SSDL and MSL locations along with a provider connection string. Assuming we are going to do that, we’ll explore another limitation. The limitation we are going to face now is related to not being able to fake calls to non-virtual/overridable members with MoQ. I have the following repository method that adds an EntityObject (instance of a Blog entity) to Blogs entity set in an ObjectContext. public override void Add(Blog blog) { if(BlogContext.Blogs.Any(b=>b.Name == blog.Name)) { throw new InvalidOperationException("Blog with same name already exists!"); } BlogContext.AddToBlogs(blog); } The method does a very simple check that the name of the new Blog entity instance doesn’t exist. This is done through the simple LINQ query above. If the blog doesn’t already exist it simply adds it to the current context to be saved when SaveChanges of the ObjectContext instance (e.g. BlogContext) is called. However, if a blog with the same name exits, and exception (InvalideOperationException) will be thrown. Let us now create a unit test for the Add method using MoQ. [TestMethod] [ExpectedException(typeof(InvalidOperationException))] public void Add_Should_Throw_InvalidOperationException_When_Blog_With_Same_Name_Already_Exits() { //(1) We shouldn't depend on configuration when doing unit tests! But, //its a workaround to fake the ObjectContext string connectionString = ConfigurationManager .ConnectionStrings["MyBlogConnString"] .ConnectionString; //(2) Arrange: Fake ObjectContext var fakeContext = new Mock<MyBlogContext>(connectionString); //(3) Next Line will pass, as ObjectContext now can be faked with proper connection string var repo = new BlogRepository(fakeContext.Object); //(4) Create fake ObjectQuery<Blog>. Will be used to substitute MyBlogContext.Blogs property var fakeObjectQuery = new Mock<ObjectQuery<Blog>>("[Blogs]", fakeContext.Object); //(5) Arrange: Set Expectations //Next line will throw an exception by MoQ: //System.ArgumentException: Invalid setup on a non-overridable member fakeContext.SetupGet(c=>c.Blogs).Returns(fakeObjectQuery.Object); fakeObjectQuery.Setup(q => q.Any(b => b.Name == "NewBlog")).Returns(true); //Act repo.Add(new Blog { Name = "NewBlog" }); } This test method is checking to see if the correct exception ([ExpectedException(typeof(InvalidOperationException))]) is thrown when a developer attempts to Add a blog with a name that’s already exists. On (1) a connection string is initialized from configuration file. To retrieve the full connection string. On (2) a fake ObjectContext is being created. The ObjectContext here is MyBlogContext and its being created using this var fakeContext = new Mock<MyBlogContext>(connectionString); This way a fake context is being created using MoQ. On (3) a BlogRepository instance is created. BlogRepository has dependency on generate Entity Framework ObjectContext, MyObjectContext. And so the fake context is passed to the constructor. var repo = new BlogRepository(fakeContext.Object); On (4) a fake instance of ObjectQuery<Blog> is being created to use as a substitute to MyObjectContext.Blogs property as we will see in (5). On (5) setup an expectation for calling Blogs property of MyBlogContext and substitute the return result with the fake ObjectQuery<Blog> instance created on (4). When you run this test it will fail with MoQ throwing an exception because of this line: fakeContext.SetupGet(c=>c.Blogs).Returns(fakeObjectQuery.Object); This happens because the generate property MyBlogContext.Blogs is not virtual/overridable. And assuming it is virtual or you managed to make it virtual it will fail at the following line throwing the same exception: fakeObjectQuery.Setup(q => q.Any(b => b.Name == "NewBlog")).Returns(true); This time the test will fail because the Any extension method is not virtual/overridable. You won’t be able to replace ObjectQuery<Blog> with fake in memory collection to test your LINQ to Entities queries. Now lets see how replacing MoQ with TypeMock Isolator can help. Mocking Entity Framework with TypeMock Isolator The following is the same test method we had above for MoQ but this time implemented using TypeMock Isolator: [TestMethod] [ExpectedException(typeof(InvalidOperationException))] public void Add_New_Blog_That_Already_Exists_Should_Throw_InvalidOperationException() { //(1) Create fake in memory collection of blogs var fakeInMemoryBlogs = new List<Blog> {new Blog {Name = "FakeBlog"}}; //(2) create fake context var fakeContext = Isolate.Fake.Instance<MyBlogContext>(); //(3) Setup expected call to MyBlogContext.Blogs property through the fake context Isolate.WhenCalled(() => fakeContext.Blogs) .WillReturnCollectionValuesOf(fakeInMemoryBlogs.AsQueryable()); //(4) Create new blog with a name that already exits in the fake in memory collection in (1) var blog = new Blog {Name = "FakeBlog"}; //(5) Instantiate instance of BlogRepository (Class under test) var repo = new BlogRepository(fakeContext); //(6) Acting by adding the newly created blog () repo.Add(blog); } When running the above test method it will pass as the Add method of BlogRepository is going to throw an InvalidOperationException which is the expected behaviour. Nothing prevents us from faking out the database interaction! Even faking ObjectContext  at (2) didn’t require a connection string. On (3) Isolator sets up a faking result for MyBlogContext.Blogs when its being called through the fake instance fakeContext created on (2). The faking result is just an in-memory collection declared an initialized on (1). Finally at (6) action we call the Add method of BlogRepository passing a new Blog instance that has a name that’s already exists in the fake in-memory collection which we set up at (1). As expected the test will pass because it will throw the expected exception defined on top of the test method - InvalidOperationException. TypeMock Isolator succeeded in faking Entity Framework with ease. Conclusion We explored how to write a simple unit test using TypeMock Isolator for code which is using Entity Framework. We also explored a few of the limitations of other mocking frameworks which TypeMock is successfully able to handle. There are workarounds that you can use to overcome limitations when using MoQ or Rhino Mock, however the workarounds will require you to write more code and your tests will likely be more complex. For a comparison between different mocking frameworks take a look at this document produced by TypeMock. You might also want to check out this open source project to compare mocking frameworks. I hope you enjoyed this post Muhammad Mosa http://mosesofegypt.net/ http://twitter.com/mosessaur Screencast of unit testing Entity Framework Related Links GuestPost: Introduction to Mocking GuesPost: Typemock Isolator – Much more than an Isolation framework

    Read the article

  • Typemock - Worth the money?

    - by AngryHacker
    I know that this is a subjective question... Typemock is $799 per developer. Licences for 5 devs comes up to a pretty large sum. If someone here used Typemock and given that there are open source mocking frameworks, is it worth the money? Why?

    Read the article

  • Want to work at Typemock? We’re Hiring

    - by RoyOsherove
    We are looking for a .NET\C++ developer to join the growing Typemock ranks. You need to: Live in Israel know .NET very well (at least 3 years .NET experience – VB.NET or C#, and willing to learn the other one) Have some C++ experience (recent – sometime in the past couple of years) Be interested in Agile development, unit testing and TDD (you don’t have to be an expert. You’ll become one on the job.) have very good english PASSION for programming Advantage to C++ hardcore devs but you don’t have to be one Advantage to Open source contributors   but you don’t have to be one Advantage to public figures (bloggers, speakers..) but you don’t have to be one   You will be working on one of our products, or several of them along the way. Including Typemock Isolator, Test Lint, TeamMate and future products we are working on! We are counting on all our developers to be part of the design process, to take active part in support and customer meetings, and the first day of every two weeks is dedicated to pet projects – you work on anything you want (even if it’s not to do with Typemock)! send an email with your ENGLISH CV to royo AT typemock.com

    Read the article

  • Mocking Autofac's "Resolve" extension method with TypeMock

    - by Lockshopr
    I'm trying to mock an Autofac resolve, such as: using System; using Autofac; using TypeMock.ArrangeActAssert; class Program { static void Main(string[] args) { var inst = Isolate.Fake.Instance<IContainer>(); Isolate.Fake.StaticMethods(typeof(ResolutionExtensions), Members.ReturnNulls); Isolate.WhenCalled(() => inst.Resolve<IRubber>()).WillReturn(new BubbleGum()); Console.Out.WriteLine(inst.Resolve<IRubber>()); } } public interface IRubber {} public class BubbleGum : IRubber {} Coming from Moq, the syntax and exceptions from TypeMock confuse me a great deal. Having initially run this in a TestMethod, I kept getting an exception resembling "WhenCalled cannot be run without a complementing behavior". I tried defining behaviors for everyone and their mothers, but to no avail. Then I debug stepped through the test run, and saw that an actual exception was fired from Autofac: IRubber has not been registered. So it's obvious that the static Resolve function isn't being faked, and I can't get it to be faked, no matter how I go about hooking it up. Isolate.WhenCalled(() => ResolutionExtensions.Resolve<IRubber>(null)).WillReturn(new BubbleGum()); ... throws an exception from Autofac complaining that the IComponentContext cannot be null. Feeding it the presumably faked IContainer (or faking an IComponentContext instead) gets me back to the "IRubber not registered" error.

    Read the article

  • First Typemock Academy - 4 days from now

    This April 27th marks a special occasion for Typemock the first Typemock Partner Conference is about to take place in Oslo, Norway. Some special treats are expected (including a very cool after party), and Uncle Bob Martin and myself will be doing a special Q&A video conference live with the attendees as part of it. Attendance is by invite only, but you can see if youre eligible by going to this page and filling out your details. ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Introducing Typemock Test Lint

    We just released a new, free product -  Typemock Test Lint, click here for all the gory details. Its a just-in-time unit testing coach that looks at your code as you type and looks for common unit testing errors. Or, you can just watch this movie: ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Want to work at Typemock? Were Hiring

    We are looking for a .NET\C++ developer to join the growing Typemock ranks. You need to: Live in Israel know .NET very well (at least 3 years .NET experience VB.NET or C#, and willing to learn the other one) Have some C++ experience (recent sometime in the past couple of years) Be interested in Agile development, unit testing and TDD (you dont have to be an expert. Youll become one on the job.) have very good english PASSION for programming Advantage to C++ hardcore devs but...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Any teams out there using TypeMock? Is it worth the hefty price tag?

    - by dferraro
    Hi, I hope this question is not 'controversial' - I'm just basically asking - has anyone here purchased TypeMock and been happy (or unhappy) with the results? We are a small dev shop of only 12 developers including the 2 dev managers. We've been using NMock so far but there are limitations. I have done research and started playing with TypeMock and I love it. It's super clean syntax and lets you basically mock everything, which is great for legacy code. The problem is - how do I justify to my boss spending 800-1200$ per license for an API which has 4-5 competitors that are completly free? 800-1200$ is how much Infragistrics or Telerik cost per license - and there sure as hell isn't 4-5 open source comparable UI frameworks... Which is why I find it a bit overpriced, albeit an awesome library... Any opinions / experiences are greatly appreciated. EDIT: after finding MOQ I thought I fell in love - until I found out that it's not fully supported in VB.NET because VB lacks lambda sub routines =(. Is anyone using MOQ for VB.NET? The problem is we are a mixed shop - we use C# for our CRM development and VB for everything else. Any guidence is greatly appreciated again

    Read the article

  • EF4 - possible to mock ObjectContext for unit testing?

    - by steve.macdonald
    Can it be done without using TypeMock Islolator? I've found a few suggestions online such as passing in a metadata only connection string, however nothing I've come across besides TypeMock seems to truly allow for a mock ObjectContext that can be injected into services for unit testing. Do I plunk down the $$ for TypeMock, or are there alternatives? Has nobody managed to create anything comparable to TypeMock that is open source?

    Read the article

  • Silverlight unit testing. Error while running tests.

    - by 1gn1ter
    I'm using VS2010. Silverlight 4, NUnit 2.5.5, and TypeMock TypemockIsolatorSetup6.0.3.619.msi In the test project MVVM is implemented, PeopleViewModel is a ViewModel which I want to test. Please advise if you use other products for unit testing of MVVM Silverlight. Or please help to win this TypeMock. TIA This is the code of the test: [Test] [SilverlightUnitTest] public void SomeTestAgainstSilverlight() { PeopleViewModel o = new PeopleViewModel(); var res = o.People; Assert.AreEqual(15, res.Count()); } While running the test in ReSharper i get the following error: TestA.SomeTestAgainstSilverlight : Failed****************************************** *Loading Silverlight Isolation Aspects...* ****************************************** TEST RESULTS: --------------------------------------------- System.MissingMethodException : Method not found: 'hv TypeMock.ArrangeActAssert.Isolate.a(System.Delegate)'. at a4.a(ref Delegate A_0) at a4.a(Boolean A_0) at il.b() at CThru.Silverlight.SilverlightUnitTestAttribute.Init() at CThru.Silverlight.SilverlightUnitTestAttribute.Execute() at TypeMock.MockManager.a(String A_0, String A_1, Object A_2, Object A_3, Boolean A_4, Object[] A_5) at TypeMock.InternalMockManager.getReturn(Object that, String typeName, String methodName, Object methodParameters, Boolean isInjected) at Tests.TestA.SomeTestAgainstSilverlight() in TestA.cs: line 21 While running test in NUnit i get: Tests.TestA.SomeTestAgainstSilverlight: System.DllNotFoundException : Unable to load DLL 'agcore': The specified module could not be found. (Exception from HRESULT: 0x8007007E) at MS.Internal.XcpImports.Application_GetCurrentNative(IntPtr context, IntPtr& obj) at MS.Internal.XcpImports.Application_GetCurrent(IntPtr& pApp) at System.Windows.Application.get_Current() at ViewModelExample.ViewModel.ViewModelBase.get_IsDesignTime() in C:\Documents and Settings\USER\Desktop\ViewModelExample\ViewModelExample\ViewModel\ViewModelBase.cs:line 20 at ViewModelExample.ViewModel.PeopleViewModel..ctor(IServiceAgent serviceAgent) in C:\Documents and Settings\USER\Desktop\ViewModelExample\ViewModelExample\ViewModel\PeopleViewModel.cs:line 28 at ViewModelExample.ViewModel.PeopleViewModel..ctor() in C:\Documents and Settings\USER\Desktop\ViewModelExample\ViewModelExample\ViewModel\PeopleViewModel.cs:line 24 at Tests.TestA.SomeTestAgainstSilverlight() in C:\Documents and Settings\USER\Desktop\ViewModelExample\Tests\TestA.cs:line 22

    Read the article

  • NMock2.0 - how to stub a non interface call?

    - by dferraro
    Hello, I have a class API which has full code coverage and uses DI to mock out all the logic in the main class function (Job.Run) which does all the work. I found a bug in production where we werent doing some validation on one of the data input fields. So, I added a stub function called ValidateFoo()... Wrote a unit test against this function to Expect a JobFailedException, ran the test - it failed obviously because that function was empty. I added the validation logic, and now the test passes. Great, now we know the validation works. Problem is - how do I write the test to make sure that ValidateFoo() is actually called inside Job.Run()? ValidateFoo() is a private method of the Job class - so it's not an interface... Is there anyway to do this with NMock2.0? I know TypeMock supports fakes of non interface types. But changing mock libs right now is not an option. At this point if NMock can't support it, I will simply just add the ValidateFoo() call to the Run() method and test things manually - which obviously I'd prefer not to do considering my Job.Run() method has 100% coverage right now. Any Advice? Thanks very much it is appreciated. EDIT: the other option I have in mind is to just create an integration test for my Job.Run functionality (injecting to it true implementations of the composite objects instead of mocks). I will give it a bad input value for that field and then validate that the job failed. This works and covers my test - but it's not really a unit test but instead an integration test that tests one unit of functionality.... hmm.. EDIT2: IS there any way to do tihs? Anyone have ideas? Maybe TypeMock - or a better design?

    Read the article

  • Moq - How to mock a function call on a concrete object?

    - by dferraro
    Hello, How can I do this in Moq? Foo bar = new Foo(); Fake(bar.PrivateGetter).Return('whatever value') It seems I can only find how to mock an object that was created via the framework. I want to mock just a single method/property on a concrete object I've created... In TypeMock, I would just do Isolate.WhenCalled(bar.PrivateGetter).Returns('whatever value').. Any ideas?

    Read the article

  • Testing Entity Framework applications, pt. 3: NDbUnit

    - by Thomas Weller
    This is the third of a three part series that deals with the issue of faking test data in the context of a legacy app that was built with Microsoft's Entity Framework (EF) on top of an MS SQL Server database – a scenario that can be found very often. Please read the first part for a description of the sample application, a discussion of some general aspects of unit testing in a database context, and of some more specific aspects of the here discussed EF/MSSQL combination. Lately, I wondered how you would ‘mock’ the data layer of a legacy application, when this data layer is made up of an MS Entity Framework (EF) model in combination with a MS SQL Server database. Originally, this question came up in the context of how you could enable higher-level integration tests (automated UI tests, to be exact) for a legacy application that uses this EF/MSSQL combo as its data store mechanism – a not so uncommon scenario. The question sparked my interest, and I decided to dive into it somewhat deeper. What I've found out is, in short, that it's not very easy and straightforward to do it – but it can be done. The two strategies that are best suited to fit the bill involve using either the (commercial) Typemock Isolator tool or the (free) NDbUnit framework. The use of Typemock was discussed in the previous post, this post now will present the NDbUnit approach... NDbUnit is an Apache 2.0-licensed open-source project, and like so many other Nxxx tools and frameworks, it is basically a C#/.NET port of the corresponding Java version (DbUnit namely). In short, it helps you in flexibly managing the state of a database in that it lets you easily perform basic operations (like e.g. Insert, Delete, Refresh, DeleteAll)  against your database and, most notably, lets you feed it with data from external xml files. Let's have a look at how things can be done with the help of this framework. Preparing the test data Compared to Typemock, using NDbUnit implies a totally different approach to meet our testing needs.  So the here described testing scenario requires an instance of an SQL Server database in operation, and it also means that the Entity Framework model that sits on top of this database is completely unaffected. First things first: For its interactions with the database, NDbUnit relies on a .NET Dataset xsd file. See Step 1 of their Quick Start Guide for a description of how to create one. With this prerequisite in place then, the test fixture's setup code could look something like this: [TestFixture, TestsOn(typeof(PersonRepository))] [Metadata("NDbUnit Quickstart URL",           "http://code.google.com/p/ndbunit/wiki/QuickStartGuide")] [Description("Uses the NDbUnit library to provide test data to a local database.")] public class PersonRepositoryFixture {     #region Constants     private const string XmlSchema = @"..\..\TestData\School.xsd";     #endregion // Constants     #region Fields     private SchoolEntities _schoolContext;     private PersonRepository _personRepository;     private INDbUnitTest _database;     #endregion // Fields     #region Setup/TearDown     [FixtureSetUp]     public void FixtureSetUp()     {         var connectionString = ConfigurationManager.ConnectionStrings["School_Test"].ConnectionString;         _database = new SqlDbUnitTest(connectionString);         _database.ReadXmlSchema(XmlSchema);         var entityConnectionStringBuilder = new EntityConnectionStringBuilder         {             Metadata = "res://*/School.csdl|res://*/School.ssdl|res://*/School.msl",             Provider = "System.Data.SqlClient",             ProviderConnectionString = connectionString         };         _schoolContext = new SchoolEntities(entityConnectionStringBuilder.ConnectionString);         _personRepository = new PersonRepository(this._schoolContext);     }     [FixtureTearDown]     public void FixtureTearDown()     {         _database.PerformDbOperation(DbOperationFlag.DeleteAll);         _schoolContext.Dispose();     }     ...  As you can see, there is slightly more fixture setup code involved if your tests are using NDbUnit to provide the test data: Because we're dealing with a physical database instance here, we first need to pick up the test-specific connection string from the test assemblies' App.config, then initialize an NDbUnit helper object with this connection along with the provided xsd file, and also set up the SchoolEntities and the PersonRepository instances accordingly. The _database field (an instance of the INdUnitTest interface) will be our single access point to the underlying database: We use it to perform all the required operations against the data store. To have a flexible mechanism to easily insert data into the database, we can write a helper method like this: private void InsertTestData(params string[] dataFileNames) {     _database.PerformDbOperation(DbOperationFlag.DeleteAll);     if (dataFileNames == null)     {         return;     }     try     {         foreach (string fileName in dataFileNames)         {             if (!File.Exists(fileName))             {                 throw new FileNotFoundException(Path.GetFullPath(fileName));             }             _database.ReadXml(fileName);             _database.PerformDbOperation(DbOperationFlag.InsertIdentity);         }     }     catch     {         _database.PerformDbOperation(DbOperationFlag.DeleteAll);         throw;     } } This lets us easily insert test data from xml files, in any number and in a  controlled order (which is important because we eventually must fulfill referential constraints, or we must account for some other stuff that imposes a specific ordering on data insertion). Again, as with Typemock, I won't go into API details here. - Unfortunately, there isn't too much documentation for NDbUnit anyway, other than the already mentioned Quick Start Guide (and the source code itself, of course) - a not so uncommon problem with smaller Open Source Projects. Last not least, we need to provide the required test data in xml form. A snippet for data from the People table might look like this, for example: <?xml version="1.0" encoding="utf-8" ?> <School xmlns="http://tempuri.org/School.xsd">   <Person>     <PersonID>1</PersonID>     <LastName>Abercrombie</LastName>     <FirstName>Kim</FirstName>     <HireDate>1995-03-11T00:00:00</HireDate>   </Person>   <Person>     <PersonID>2</PersonID>     <LastName>Barzdukas</LastName>     <FirstName>Gytis</FirstName>     <EnrollmentDate>2005-09-01T00:00:00</EnrollmentDate>   </Person>   <Person>     ... You can also have data from various tables in one single xml file, if that's appropriate for you (but beware of the already mentioned ordering issues). It's true that your test assembly may end up with dozens of such xml files, each containing quite a big amount of text data. But because the files are of very low complexity, and with the help of a little bit of Copy/Paste and Excel magic, this appears to be well manageable. Executing some basic tests Here are some of the possible tests that can be written with the above preparations in place: private const string People = @"..\..\TestData\School.People.xml"; ... [Test, MultipleAsserts, TestsOn("PersonRepository.GetNameList")] public void GetNameList_ListOrdering_ReturnsTheExpectedFullNames() {     InsertTestData(People);     List<string> names =         _personRepository.GetNameList(NameOrdering.List);     Assert.Count(34, names);     Assert.AreEqual("Abercrombie, Kim", names.First());     Assert.AreEqual("Zheng, Roger", names.Last()); } [Test, MultipleAsserts, TestsOn("PersonRepository.GetNameList")] [DependsOn("RemovePerson_CalledOnce_DecreasesCountByOne")] public void GetNameList_NormalOrdering_ReturnsTheExpectedFullNames() {     InsertTestData(People);     List<string> names =         _personRepository.GetNameList(NameOrdering.Normal);     Assert.Count(34, names);     Assert.AreEqual("Alexandra Walker", names.First());     Assert.AreEqual("Yan Li", names.Last()); } [Test, TestsOn("PersonRepository.AddPerson")] public void AddPerson_CalledOnce_IncreasesCountByOne() {     InsertTestData(People);     int count = _personRepository.Count;     _personRepository.AddPerson(new Person { FirstName = "Thomas", LastName = "Weller" });     Assert.AreEqual(count + 1, _personRepository.Count); } [Test, TestsOn("PersonRepository.RemovePerson")] public void RemovePerson_CalledOnce_DecreasesCountByOne() {     InsertTestData(People);     int count = _personRepository.Count;     _personRepository.RemovePerson(new Person { PersonID = 33 });     Assert.AreEqual(count - 1, _personRepository.Count); } Not much difference here compared to the corresponding Typemock versions, except that we had to do a bit more preparational work (and also it was harder to get the required knowledge). But this picture changes quite dramatically if we look at some more demanding test cases: Ok, and what if things are becoming somewhat more complex? Tests like the above ones represent the 'easy' scenarios. They may account for the biggest portion of real-world use cases of the application, and they are important to make sure that it is generally sound. But usually, all these nasty little bugs originate from the more complex parts of our code, or they occur when something goes wrong. So, for a testing strategy to be of real practical use, it is especially important to see how easy or difficult it is to mimick a scenario which represents a more complex or exceptional case. The following test, for example, deals with the case that there is some sort of invalid input from the caller: [Test, MultipleAsserts, TestsOn("PersonRepository.GetCourseMembers")] [Row(null, typeof(ArgumentNullException))] [Row("", typeof(ArgumentException))] [Row("NotExistingCourse", typeof(ArgumentException))] public void GetCourseMembers_WithGivenVariousInvalidValues_Throws(string courseTitle, Type expectedInnerExceptionType) {     var exception = Assert.Throws<RepositoryException>(() =>                                 _personRepository.GetCourseMembers(courseTitle));     Assert.IsInstanceOfType(expectedInnerExceptionType, exception.InnerException); } Apparently, this test doesn't need an 'Arrange' part at all (see here for the same test with the Typemock tool). It acts just like any other client code, and all the required business logic comes from the database itself. This doesn't always necessarily mean that there is less complexity, but only that the complexity happens in a different part of your test resources (in the xml files namely, where you sometimes have to spend a lot of effort for carefully preparing the required test data). Another example, which relies on an underlying 1-n relationship, might be this: [Test, MultipleAsserts, TestsOn("PersonRepository.GetCourseMembers")] public void GetCourseMembers_WhenGivenAnExistingCourse_ReturnsListOfStudents() {     InsertTestData(People, Course, Department, StudentGrade);     List<Person> persons = _personRepository.GetCourseMembers("Macroeconomics");     Assert.Count(4, persons);     Assert.ForAll(         persons,         @p => new[] { 10, 11, 12, 14 }.Contains(@p.PersonID),         "Person has none of the expected IDs."); } If you compare this test to its corresponding Typemock version, you immediately see that the test itself is much simpler, easier to read, and thus much more intention-revealing. The complexity here lies hidden behind the call to the InsertTestData() helper method and the content of the used xml files with the test data. And also note that you might have to provide additional data which are not even directly relevant to your test, but are required only to fulfill some integrity needs of the underlying database. Conclusion The first thing to notice when comparing the NDbUnit approach to its Typemock counterpart obviously deals with performance: Of course, NDbUnit is much slower than Typemock. Technically,  it doesn't even make sense to compare the two tools. But practically, it may well play a role and could or could not be an issue, depending on how much tests you have of this kind, how often you run them, and what role they play in your development cycle. Also, because the dataset from the required xsd file must fully match the database schema (even in parts that otherwise wouldn't be relevant to you), it can be quite cumbersome to be in a team where different people are working with the database in parallel. My personal experience is – as already said in the first part – that Typemock gives you a better development experience in a 'dynamic' scenario (when you're working in some kind of TDD-style, you're oftentimes executing the tests from your dev box, and your database schema changes frequently), whereas the NDbUnit approach is a good and solid solution in more 'static' development scenarios (when you need to execute the tests less frequently or only on a separate build server, and/or the underlying database schema can be kept relatively stable), for example some variations of higher-level integration or User-Acceptance tests. But in any case, opening Entity Framework based applications for testing requires a fair amount of resources, planning, and preparational work – it's definitely not the kind of stuff that you would call 'easy to test'. Hopefully, future versions of EF will take testing concerns into account. Otherwise, I don't see too much of a future for the framework in the long run, even though it's quite popular at the moment... The sample solution A sample solution (VS 2010) with the code from this article series is available via my Bitbucket account from here (Bitbucket is a hosting site for Mercurial repositories. The repositories may also be accessed with the Git and Subversion SCMs - consult the documentation for details. In addition, it is possible to download the solution simply as a zipped archive – via the 'get source' button on the very right.). The solution contains some more tests against the PersonRepository class, which are not shown here. Also, it contains database scripts to create and fill the School sample database. To compile and run, the solution expects the Gallio/MbUnit framework to be installed (which is free and can be downloaded from here), the NDbUnit framework (which is also free and can be downloaded from here), and the Typemock Isolator tool (a fully functional 30day-trial is available here). Moreover, you will need an instance of the Microsoft SQL Server DBMS, and you will have to adapt the connection strings in the test projects App.config files accordingly.

    Read the article

  • Are you cashing in on the MVP complimentary subscriptions ?

    - by Tarun Arora
    The two most asked questions in the Microsoft technology communities around the Microsoft MVP program are, 1. How do I become a Microsoft MVP? 2. What benefits do I get as an MVP? The answer to the first question has been well answered here. In this blog post, I’ll try and answer the second question.           Please find a comprehensive list of Not for Resale personal subscriptions of various products that Microsoft MVP’s are eligible for Product Description Details JetBrains Resharper, dotTrace, dotCover & WebStorm  https://www.jetbrains.com/resharper/buy/mvp.html RedGate Sql server development, database administration, .net development, azure development (merged with Cerebrata), mySQL development, Oracle development http://www.red-gate.com/community/mvp-program Pluralsight Pluralsight on demand training http://blog.pluralsight.com/2011/02/28/pluralsight-for-mvp/ Cerebrata Cloud storage studio and Azure Diagnostic Manager (part of redgate now) https://www.cerebrata.com/Offers/mvp.aspx Telerik Telerik Ultimate collection & Telerik TeamPulse http://blogs.telerik.com/blogs/posts/11-03-01/telerik-gift-for-microsoft-mvps.aspx Developer Express DevEx controls http://www.devexpress.com/Home/Community/mvp.xml InnerWorking 600 hours of .net training catalogue http://www.innerworkings.com/mvp Typemock Typemock Isolator, Typemock Isolator for Sharepoint developers, Typemock Isolator for web developers, TestDriven.NET http://www.typemock.com/mvp SpeakFlow A suite of tools for creating, managing, and delivering non-linear presentations http://www.speakflow.com/ TechSmith Camtasia Studio, SnagIt, screen cast http://www.techsmith.com/camtasia.html Altova Altova XML spy http://www.altova.com/xml-editor/ Visual SVN VisualSVN Subversion integration plug-in for Visual Studio http://www.visualsvn.com/visualsvn/purchase/mvp/ PreEmptive Solution Professional PreEmptive Analytics, Dotfuscator http://www.preemptive.com/landing/mvp Armadillo Armadillo Adaptive Bug Prevention http://www.armadilloverdrive.com/ IS Decisions NFR license to Userlock, RemoteExec, FileAudit & WinReporter http://www.isdecisions.com/download/mvp-mct-program.htm Idera SQL tools http://www.idera.com/Content/Home.aspx West Wind Help Builder Help builder solution http://www.west-wind.com/weblog/posts/2005/Mar/09/Are-you-a-Microsoft-MVP-Get-a-FREE-copy-of-West-Wind-Html-Help-Builder Bamboo Sharepoint tools http://community.bamboosolutions.com/blogs/partner-advantage-program/archive/2008/08/01/partner-advantage-program-mvp.aspx Nitriq Nitriq code analysis http://blog.nitriq.com/FreeLicensesForMicrosoftMVPs.aspx ByteScout Components, Libraries and Developer Tools http://bytescout.com/buy/purchase_nfr_for_mvp.html YourKit Java and .net Profiler http://yourkit.com/.net/profiler/index.jsp Aspose .NET components http://www.aspose.com/corporate/community/2012_05_08_nfr-licenses-for-community-leaders.aspx Apart from google bing fu; stackoverflow and breathtech were a great help in compiling the above list. If you know of any other benefits, offers or complimentary subscriptions on offer for MVPs not cover in the list above, please add to the comment thread and I’ll have it updated in the list. Enjoy

    Read the article

  • JustMock and Moles A short overview for TDD alpha geeks

    People have been lurking near my house, asking me to write something about Moles and JustMock, so Ill try to be as objective as possible, taking in the fact that I work at Typemock. If I were NOT working at Typemock Id write: JustMock JustMock tries to be Typemock at so many levels its not even funny. Technically they work the same and the API almost looks like its a search and replace work based on the Isolator API (awesome compliment!), but JustMock still has too many growing pains and bugs...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • When creating an library published on CodePlex, how "bad" would it be for the unit-test projects to rely on commercial products?

    - by Lasse V. Karlsen
    I have started a project on CodePlex for a WebDAV server implementation for .NET, so that I can host a WebDAV server in my own programs. This is both a learning/research project (WebDAV + server portion) as well as a project I think I can have much fun with, both in terms of making it and using it. However, I see a need to do mocking of types here in order to unit-testing properly. For instance, I will be relying on HttpListener for the web server portion of the WebDAV server, and since this type has no interface, and is sealed, I cannot easily make mocks or stubs out of it. Unless I use something like TypeMock. So if I used TypeMock in the unit-test projects on this library, how bad would this be for potential users? The projects are made in C# 3.5 for .NET 3.5 and 4.0, and the project files was created with Visual Studio 2010 Professional. The actual class libraries you would end up referencing in your software would of course not be encumbered with anything remotely like this, only the unit-test libraries. What's your thoughts on this? As an example, I have in my old code-base, which is private, the ability to just initiate a WebDAV server with just this: var server = new WebDAVServer(); This constructs, and owns, a HttpListener instance internally, and I would like to verify through unit-tests that if I dispose of this server object, the internal listener is disposed of. If, on the other hand, I use the overload where I hand it a listener object, this object should not be disposed of. Short of exposing the internal listener object to the outside world, something I'm a bit loath to do, how can I in a good way ensure that the object was disposed of? With TypeMock I can mock away parts of this object even though it isn't accessed through interfaces. The alternative would be for me to wrap everything in wrapper classes, where I have complete control.

    Read the article

  • JustMock and Moles – A short overview for TDD alpha geeks

    - by RoyOsherove
    People have been lurking near my house, asking me to write something about Moles and JustMock, so I’ll try to be as objective as possible, taking in the fact that I work at Typemock. If I were NOT working at Typemock I’d write: JustMock JustMock tries to be Typemock at so many levels it’s not even funny. Technically they work the same and the API almost looks like it’s a search and replace work based on the Isolator API (awesome compliment!), but JustMock still has too many growing pains and bugs to be usable. Also, JustMock is missing alot of the legacy abilities such as Non public faking, faking all types and various other things that are really needed in real legacy code. Biggest thing (in terms of isolation integration) is that it does not integrate with other profilers such as coverage, NCover etc.) When JustMock comes out of beta, I feel that it should cost about half as Isolator costs, as it currently provides about half the abilities. Moles Moles is an addon of Pex and was originally only intended to work within the Pex environment. It started as a research project and now it’s a power-tool for VS (so it’s a separate install) Now it’s it’s own little stubbing framework. It’s not really an Isolation framework in the classic sense, because it does not provide any kind of API built in to verify object interactions. You have to use manual flags all on your own to do that. It generates two types of classes per assembly: Manual Stubs(just like you’d hand code them) and Mole classes. Each Mole class is a special API to change and break the behavior that the corresponding type. so MDateTime is how you change behavior for DateTime. In that sense the API is al over the place, and it can become highly unreadable and unmentionable over time in your test. Also, the Moles API isn’t really designed to deal with real Legacy code. It only deals with public types and methods. anything internal or private is ignored and you can’t change its behavior. You also can’t control static constructors. That takes about 95% of legacy scenarios out of the picture if that’s what you’re trying to use it for. Personally, I found it hard to get used to the idea of two parallel APIs for different abilities, and when to choose which. and I know this stuff. I would expect more usability from the API to make it more widely used. I don’t think that Moles in planning to go that route. Publishing it as an Isolation framework is really an afterthought of a tool that was design with a specific task in mind, and generic Isolation isn’t it. it’s only hope is DEQ – a simple code example that shows a simple Isolation API built on the Moles generic engine. Moles can and should be used for very simple cases of detouring functionality such a simple static methods or interfaces and virtual functions (like rhinomock and MOQ do).   Oh, Wait. Ah, good thing I work at Typemock. I won’t write all that. I’ll just write: JustMock and Moles are great tools that enlarge the market space for isolation related technologies, and they prove that the idea of productivity and unit testing can go hand in hand and get people hooked. I look forward to compete with them at this growing market.

    Read the article

  • dotnet Cologne 2010 Whats this all about?

    So far I havent blogged about the dotnet Cologne 2010 conference in English, as its a local community event which Im co-organizing for a German-speaking audience. Typemock, one of our international sponsors, has now published the summary of an interview Britt King of CommunityBlender conducted with me in English about my personal history as a user group leader. The post on the Typemock blog gives a good idea of the history of the .NET community in the Cologne/ Bonn area in general and the dotnet...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Anyone using Moles / Pex in production?

    - by dferraro
    Hi all, I did search the forum and did not find a similar question. I'm looking to make a final decision on our mocking framework of choice moving forward as a best practice - I've decided on Moq... untill I just recently discovered MS has finally created a mocking framework called Moles which seems to work similar to TypeMock via the profiler API sexyness etc.. There's a million 'NMock vs Moq vs TypeMock vs Rhino....' threads on here. But I never see Moles involved.In fact, I did not even know if its existence until a short time ago. Anyone using it? In Production? Anyone dump their old mocking framework for it, and if so, which one? How did it compare to ther mocking frameworks you've used? thanks.. ps, we are using VS2008 and are moving to 2010 shortly.

    Read the article

  • Code excavations, wishful invocations, perimeters and domain specific unit test frameworks

    - by RoyOsherove
    One of the talks I did at QCON London was about a subject that I’ve come across fairly recently , when I was building SilverUnit – a “pure” unit test framework for silverlight objects that depend on the silverlight runtime to run. It is the concept of “cogs in the machine” – when your piece of code needs to run inside a host framework or runtime that you have little or no control over for testability related matters. Examples of such cogs and machines can be: your custom control running inside silverlight runtime in the browser your plug-in running inside an IDE your activity running inside a windows workflow your code running inside a java EE bean your code inheriting from a COM+ (enterprise services) component etc.. Not all of these are necessarily testability problems. The main testability problem usually comes when your code actually inherits form something inside the system. For example. one of the biggest problems with testing objects like silverlight controls is the way they depend on the silverlight runtime – they don’t implement some silverlight interface, they don’t just call external static methods against the framework runtime that surrounds them – they actually inherit parts of the framework: they all inherit (in this case) from the silverlight DependencyObject Wrapping it up? An inheritance dependency is uniquely challenging to bring under test, because “classic” methods such as wrapping the object under test with a framework wrapper will not work, and the only way to do manually is to create parallel testable objects that get delegated with all the possible actions from the dependencies.    In silverlight’s case, that would mean creating your own custom logic class that would be called directly from controls that inherit from silverlight, and would be tested independently of these controls. The pro side is that you get the benefit of understanding the “contract” and the “roles” your system plays against your logic, but unfortunately, more often than not, it can be very tedious to create, and may sometimes feel unnecessary or like code duplication. About perimeters A perimeter is that invisible line that your draw around your pieces of logic during a test, that separate the code under test from any dependencies that it uses. Most of the time, a test perimeter around an object will be the list of seams (dependencies that can be replaced such as interfaces, virtual methods etc.) that are actually replaced for that test or for all the tests. Role based perimeters In the case of creating a wrapper around an object – one really creates a “role based” perimeter around the logic that is being tested – that wrapper takes on roles that are required by the code under test, and also communicates with the host system to implement those roles and provide any inputs to the logic under test. in the image below – we have the code we want to test represented as a star. No perimeter is drawn yet (we haven’t wrapped it up in anything yet). in the image below is what happens when you wrap your logic with a role based wrapper – you get a role based perimeter anywhere your code interacts with the system: There’s another way to bring that code under test – using isolation frameworks like typemock, rhino mocks and MOQ (but if your code inherits from the system, Typemock might be the only way to isolate the code from the system interaction.   Ad-Hoc Isolation perimeters the image below shows what I call ad-hoc perimeter that might be vastly different between different tests: This perimeter’s surface is much smaller, because for that specific test, that is all the “change” that is required to the host system behavior.   The third way of isolating the code from the host system is the main “meat” of this post: Subterranean perimeters Subterranean perimeters are Deep rooted perimeters  - “always on” seams that that can lie very deep in the heart of the host system where they are fully invisible even to the test itself, not just to the code under test. Because they lie deep inside a system you can’t control, the only way I’ve found to control them is with runtime (not compile time) interception of method calls on the system. One way to get such abilities is by using Aspect oriented frameworks – for example, in SilverUnit, I’ve used the CThru AOP framework based on Typemock hooks and CLR profilers to intercept such system level method calls and effectively turn them into seams that lie deep down at the heart of the silverlight runtime. the image below depicts an example of what such a perimeter could look like: As you can see, the actual seams can be very far away form the actual code under test, and as you’ll discover, that’s actually a very good thing. Here is only a partial list of examples of such deep rooted seams : disabling the constructor of a base class five levels below the code under test (this.base.base.base.base) faking static methods of a type that’s being called several levels down the stack: method x() calls y() calls z() calls SomeType.StaticMethod()  Replacing an async mechanism with a synchronous one (replacing all timers with your own timer behavior that always Ticks immediately upon calls to “start()” on the same caller thread for example) Replacing event mechanisms with your own event mechanism (to allow “firing” system events) Changing the way the system saves information with your own saving behavior (in silverunit, I replaced all Dependency Property set and get with calls to an in memory value store instead of using the one built into silverlight which threw exceptions without a browser) several questions could jump in: How do you know what to fake? (how do you discover the perimeter?) How do you fake it? Wouldn’t this be problematic  - to fake something you don’t own? it might change in the future How do you discover the perimeter to fake? To discover a perimeter all you have to do is start with a wishful invocation. a wishful invocation is the act of trying to invoke a method (or even just create an instance ) of an object using “regular” test code. You invoke the thing that you’d like to do in a real unit test, to see what happens: Can I even create an instance of this object without getting an exception? Can I invoke this method on that instance without getting an exception? Can I verify that some call into the system happened? You make the invocation, get an exception (because there is a dependency) and look at the stack trace. choose a location in the stack trace and disable it. Then try the invocation again. if you don’t get an exception the perimeter is good for that invocation, so you can move to trying out other methods on that object. in a future post I will show the process using CThru, and how you end up with something close to a domain specific test framework after you’re done creating the perimeter you need.

    Read the article

  • TestDriven.NET - Free unit test tool for Visual Studio

    - by Guilherme Cardoso
    Developers that use unit testing are familiar with Resharper and his plugin for Unit Testing. For those that like me, don't have a great pc hardware (Pentium 4, 3ghz, 1GB ram) the Resharper can be really slow, and affect the performance of pc. That's why i use TestDriven.NET TestDriven.NET is a freeware license tool (there are others licenses for this product) that gives us the possibility to run unit tests with this plugin, that's integrated with Visual Studio. You can check some screenshots here: http://www.testdriven.net/Screenshots.aspx It's compatible with: NUnit, MbUnit, MSTest, NCover, Reflector, TypeMock, dotTrace and MSBee. More information and free download here: http://www.testdriven.net

    Read the article

  • Is static universally "evil" for unit testing and if so why does resharper recommend it?

    - by Vaccano
    I have found that there are only 3 ways to unit test (mock/stub) dependencies that are static in C#.NET: Moles TypeMock JustMock Given that two of these are not free and one has not hit release 1.0, mocking static stuff is not too easy. Does that make static methods and such "evil" (in the unit testing sense)? And if so, why does resharper want me to make anything that can be static, static? (Assuming resharper is not also "evil".) Clarification: I am talking about the scenario when you want to unit test a method and that method calls a static method in a different unit/class. By most definitions of unit testing, if you just let the method under test call the static method in the other unit/class then you are not unit testing, you are integration testing. (Useful, but not a unit test.)

    Read the article

1 2  | Next Page >