Search Results

Search found 16 results on 1 pages for 'unbox'.

Page 1/1 | 1 

  • Unbox an Object to Its Type

    - by Ngu Soon Hui
    Hello, is there anyway to unbox an object to its real type? Basically I am given an ArrayList, the array list are actually a list of int or double, or maybe other types ( it can be either, but it is either all int or double, no mix). Now, I will have to return a List<double> or List<int> or other list, depending on what is the real type. public List<T> ConvertToList<T>(ArrayList arr) { var list1 = new List<T>(); foreach(var obj in arr) { // how to do the conversion? var objT = ?? list1.Add(objT); } return list1; } Any idea?

    Read the article

  • Why is the VGA Cable attached to new monitors

    - by ahsteele
    When opening a new monitor I am amazed that the VGA cable is always attached. Even with new high end monitors that include Display Port and DVI cables the old VGA cable is always attached while the others are just left in the box. What is the reasoning behind attaching a cable in the first place and why the VGA cable in particular?

    Read the article

  • Problems with generation of dynamic code

    - by user308344
    This code gif an exception: Invocation exception, please help, I don't know what happen, I think is some thing with the Add because he work when I push onto the stack intergers, and when i push lvalue It's didn't work, thanks static void Main(string[] args) { AppDomain dominioAplicacion = System.Threading.Thread.GetDomain(); AssemblyName nombre_Del_Ensamblado = new AssemblyName("ASS"); AssemblyBuilder ensambladoBld = dominioAplicacion.DefineDynamicAssembly(nombre_Del_Ensamblado, AssemblyBuilderAccess.RunAndSave); ModuleBuilder moduloBld = ensambladoBld.DefineDynamicModule("<MOD"); TypeBuilder claseContenedoraBld = moduloBld.DefineType("claseContenedora"); MethodBuilder mainBld = claseContenedoraBld.DefineMethod("main", MethodAttributes.Public | MethodAttributes.Static, typeof(void), Type.EmptyTypes); ILGenerator il = mainBld.GetILGenerator(); FieldBuilder campoBld = claseContenedoraBld.DefineField("x", typeof(int), FieldAttributes.Public | FieldAttributes.Static); il.Emit(OpCodes.Ldc_I4, 2); il.Emit(OpCodes.Stsfld, campoBld); FieldBuilder campoBld1 = claseContenedoraBld.DefineField("x1", typeof(int), FieldAttributes.Public | FieldAttributes.Static); il.Emit(OpCodes.Ldc_I4, 2); il.Emit(OpCodes.Stsfld, campoBld1); il.Emit(OpCodes.Ldftn, campoBld); //il.Emit(OpCodes.Unbox, typeof(int)); //il.Emit(OpCodes.Stloc_0); il.Emit(OpCodes.Ldloc_0); il.Emit(OpCodes.Ldftn, campoBld1); //il.Emit(OpCodes.Unbox, typeof(int)); il.Emit(OpCodes.Stloc_1); il.Emit(OpCodes.Ldloc_1); //il.Emit(OpCodes.Box, typeof(int)); //il.Emit(OpCodes.Ldftn, campoBld1); //il.Emit(OpCodes.Unbox, typeof(int)); il.Emit(OpCodes.Add); il.Emit(OpCodes.Pop); //il.Emit(OpCodes.Stsfld, campoBld1); il.Emit(OpCodes.Ret); Type t = claseContenedoraBld.CreateType(); object ptInstance = Activator.CreateInstance(t, new Type[] { }); t.InvokeMember("main", BindingFlags.InvokeMethod | BindingFlags.Static | BindingFlags.Public, null, ptInstance, new object[0]); var x = t.GetField("x"); }

    Read the article

  • How to write function where argument is type but not typed value?

    - by ssp
    I want to convert a string representations of few dozen enum types to enum values. It's easy to convert string to concrete type: Enum.Parse(typeof<FontStyle>,"Bold") |> unbox<FontStyle> but for now i want to write function where type and string are parameters. The best one i can write is: > let s2e (_: 'a) s = Enum.Parse(typeof<'a>,s) |> unbox<'a>;; val s2e : 'a -> string -> 'a > s2e FontStyle.Regular "Bold";; val it : FontStyle = Bold Is there any option to write something like this but with type itself as first argument?

    Read the article

  • Converting an integer to a boxed enum type only known at runtime

    - by Marc Gravell
    Imagine we have an enum: enum Foo { A=1,B=2,C=3 } If the type is known at compile-time, a direct cast can be used to change between the enum-type and the underlying type (usually int): static int GetValue() { return 2; } ... Foo foo = (Foo)GetValue(); // becomes Foo.B And boxing this gives a box of type Foo: object o1 = foo; Console.WriteLine(o1.GetType().Name); // writes Foo (and indeed, you can box as Foo and unbox as int, or box as int and unbox as Foo quite happily) However (the problem); if the enum type is only known at runtime things are... trickier. It is obviously trivial to box it as an int - but can I box it as Foo? (Ideally without using generics and MakeGenericMethod, which would be ugly). Convert.ChangeType throws an exception. ToString and Enum.Parse works, but is horribly inefficient. I could look at the defined values (Enum.GetValues or Type.GetFields), but that is very hard for [Flags], and even without would require getting back to the underlying-type first (which isn't as hard, thankfully). But; is there a more direct to get from a value of the correct underlying-type to a box of the enum-type, where the type is only known at runtime?

    Read the article

  • Some non-generic collections

    - by Simon Cooper
    Although the collections classes introduced in .NET 2, 3.5 and 4 cover most scenarios, there are still some .NET 1 collections that don't have generic counterparts. In this post, I'll be examining what they do, why you might use them, and some things you'll need to bear in mind when doing so. BitArray System.Collections.BitArray is conceptually the same as a List<bool>, but whereas List<bool> stores each boolean in a single byte (as that's what the backing bool[] does), BitArray uses a single bit to store each value, and uses various bitmasks to access each bit individually. This means that BitArray is eight times smaller than a List<bool>. Furthermore, BitArray has some useful functions for bitmasks, like And, Xor and Not, and it's not limited to 32 or 64 bits; a BitArray can hold as many bits as you need. However, it's not all roses and kittens. There are some fundamental limitations you have to bear in mind when using BitArray: It's a non-generic collection. The enumerator returns object (a boxed boolean), rather than an unboxed bool. This means that if you do this: foreach (bool b in bitArray) { ... } Every single boolean value will be boxed, then unboxed. And if you do this: foreach (var b in bitArray) { ... } you'll have to manually unbox b on every iteration, as it'll come out of the enumerator an object. Instead, you should manually iterate over the collection using a for loop: for (int i=0; i<bitArray.Length; i++) { bool b = bitArray[i]; ... } Following on from that, if you want to use BitArray in the context of an IEnumerable<bool>, ICollection<bool> or IList<bool>, you'll need to write a wrapper class, or use the Enumerable.Cast<bool> extension method (although Cast would box and unbox every value you get out of it). There is no Add or Remove method. You specify the number of bits you need in the constructor, and that's what you get. You can change the length yourself using the Length property setter though. It doesn't implement IList. Although not really important if you're writing a generic wrapper around it, it is something to bear in mind if you're using it with pre-generic code. However, if you use BitArray carefully, it can provide significant gains over a List<bool> for functionality and efficiency of space. OrderedDictionary System.Collections.Specialized.OrderedDictionary does exactly what you would expect - it's an IDictionary that maintains items in the order they are added. It does this by storing key/value pairs in a Hashtable (to get O(1) key lookup) and an ArrayList (to maintain the order). You can access values by key or index, and insert or remove items at a particular index. The enumerator returns items in index order. However, the Keys and Values properties return ICollection, not IList, as you might expect; CopyTo doesn't maintain the same ordering, as it copies from the backing Hashtable, not ArrayList; and any operations that insert or remove items from the middle of the collection are O(n), just like a normal list. In short; don't use this class. If you need some sort of ordered dictionary, it would be better to write your own generic dictionary combining a Dictionary<TKey, TValue> and List<KeyValuePair<TKey, TValue>> or List<TKey> for your specific situation. ListDictionary and HybridDictionary To look at why you might want to use ListDictionary or HybridDictionary, we need to examine the performance of these dictionaries compared to Hashtable and Dictionary<object, object>. For this test, I added n items to each collection, then randomly accessed n/2 items: So, what's going on here? Well, ListDictionary is implemented as a linked list of key/value pairs; all operations on the dictionary require an O(n) search through the list. However, for small n, the constant factor that big-o notation doesn't measure is much lower than the hashing overhead of Hashtable or Dictionary. HybridDictionary combines a Hashtable and ListDictionary; for small n, it uses a backing ListDictionary, but switches to a Hashtable when it gets to 9 items (you can see the point it switches from a ListDictionary to Hashtable in the graph). Apart from that, it's got very similar performance to Hashtable. So why would you want to use either of these? In short, you wouldn't. Any gain in performance by using ListDictionary over Dictionary<TKey, TValue> would be offset by the generic dictionary not having to cast or box the items you store, something the graphs above don't measure. Only if the performance of the dictionary is vital, the dictionary will hold less than 30 items, and you don't need type safety, would you use ListDictionary over the generic Dictionary. And even then, there's probably more useful performance gains you can make elsewhere.

    Read the article

  • Why can't the JVM just make autoboxing "just work"?

    - by Pyrolistical
    Autoboxing is rather scary. While I fully understand the difference between == and .equals I can't but help have the follow bug the hell out of me: final List<Integer> foo = Arrays.asList(1, 1000); final List<Integer> bar = Arrays.asList(1, 1000); System.out.println(foo.get(0) == bar.get(0)); System.out.println(foo.get(1) == bar.get(1)); That prints true false Why did they do it this way? It something to do with cached Integers, but if that is the case why don't they just cache all Integers used by the program? Or why doesn't the JVM always auto unbox to primitive? Printing false false or true true would have been way better.

    Read the article

  • DynamicMethod NullReferenceException

    - by Jeff
    Can anyone tell me what's wrong with my IL code here? IL_0000: nop IL_0001: ldarg.1 IL_0002: isinst MyXmlWriter IL_0007: stloc.0 IL_0008: ldloc.0 IL_0009: ldarg.2 IL_000a: ldind.ref IL_000b: unbox.any TestEnum IL_0010: ldfld Int64 value__/FastSerializer.TestEnum IL_0015: callvirt Void WriteValue(Int64)/System.Xml.XmlWriter IL_001a: nop IL_001b: ret I'm going crazy here, since I've written a test app which does the same thing as above, but in C#, and in reflector the IL code from that looks just like my DynamicMethod's IL code above (except my test C# app uses a TestStruct with a public field instead of the private value field on the enum above, but I have skipVisibility set to true)... I get a NullReferenceException. My DynamicMethod's signature is: public delegate void DynamicWrite(IMyXmlWriter writer, ref object value, MyContract contract); And I'm definitely not passing in anything null. Thanks in advance!

    Read the article

  • Generic unboxing of boxed value types

    - by slurmomatic
    I have a generic function that is constrained to struct. My inputs are boxed ("objects"). Is it possible to unbox the value at runtime to avoid having to check for each possible type and do the casts manually? See the above example: public struct MyStruct { public int Value; } public void Foo<T>(T test) where T : struct { // do stuff } public void TestFunc() { object o = new MyStruct() { Value = 100 }; // o is always a value type Foo(o); } In the example, I know that o must be a struct (however, it does not need to be MyStruct ...). Is there a way to call Foo without tons of boilerplate code to check for every possible struct type? Thank you.

    Read the article

  • User Group Policy in Server 2008 to set Default Profile settings

    - by Chris
    I have computers to deploy and want to apply changes to the default user policy on these PCs automatically. What's the best way to do this? Our current procedure is: Create the computer account in an OU called "Deployment" on our server Unbox the PC Login as the user who will be receiving the PC Change settings (pre-configure outlook, authorize Office, etc.) move computer account to correct OU Place the PC on the users desk. I would like to make as many of the changes in step #4 with Group Policies applied to the Deployment OU if possible since they're largely repeated for every computer. There are a dozen policies created and the computer ones apply correctly but the user policies do not. I understand this is because the end user is not in our "Deployment" OU. I don't want to apply these settings to the user at their current station just the new PC I'm working on. I believe I have the desired effect with Group Policy Loopback Replace enabled on policies that need user policies changed but this just feels wrong/inefficient/complicated to maintain. Am I doing this correctly? Is Group Policy Loopback the only way to change user accounts on one computer? What do you do to setup a user on a new PC?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Why can't the compiler/JVM just make autoboxing "just work"?

    - by Pyrolistical
    Autoboxing is rather scary. While I fully understand the difference between == and .equals I can't but help have the follow bug the hell out of me: final List<Integer> foo = Arrays.asList(1, 1000); final List<Integer> bar = Arrays.asList(1, 1000); System.out.println(foo.get(0) == bar.get(0)); System.out.println(foo.get(1) == bar.get(1)); That prints true false Why did they do it this way? It something to do with cached Integers, but if that is the case why don't they just cache all Integers used by the program? Or why doesn't the JVM always auto unbox to primitive? Printing false false or true true would have been way better. EDIT I disagree about breakage of old code. By having foo.get(0) == bar.get(0) return true you already broke the code. Can't this be solved at the compiler level by replacing Integer with int in byte code (as long as it is never assigned null)

    Read the article

  • Extension Method for copying properties form object to another, with first attempt

    - by James
    Hi All, Im trying to write an extension method that I can use to copy values from one object property to another object of a different type, as long as the property names and types match exactly. This is what I have: public static T CopyFrom<T>(this T toObject, object fromObject) { var fromObjectType = fromObject.GetType(); var fromProperties = fromObjectType.GetProperties(); foreach (PropertyInfo toProperty in toObject.GetType().GetProperties()) { PropertyInfo fromProperty = fromObjectType.GetProperty(toProperty.Name); if (fromProperty != null) // match found { // check types var fromType = fromProperty.PropertyType.UnderlyingSystemType; var toType = toProperty.PropertyType.UnderlyingSystemType; if (toType.IsAssignableFrom(fromType)) { toProperty.SetValue(toObject, fromProperty.GetValue(fromObject, null), null); } } } return toObject; } This is working great for non boxed types, but Nullable<T> returns false when I call toType.IsAssignableFrom(fromType) because its type is Nullable<T> and is not the underlying type T. I read here that GetType() should unbox the Nullable<T> so it returns T but if I call that on PropertyInfo.PropertyType I get ReflectedMemberInfo and not the type T im looking for. I think im missing something obvious here, so I thought I would throw it open to SO to get some advice. Anyone have any ideas? Thanks, Jamee

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • C#/.NET Little Wonders: Use Cast() and TypeOf() to Change Sequence Type

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. We’ve seen how the Select() extension method lets you project a sequence from one type to a new type which is handy for getting just parts of items, or building new items.  But what happens when the items in the sequence are already the type you want, but the sequence itself is typed to an interface or super-type instead of the sub-type you need? For example, you may have a sequence of Rectangle stored in an IEnumerable<Shape> and want to consider it an IEnumerable<Rectangle> sequence instead.  Today we’ll look at two handy extension methods, Cast<TResult>() and OfType<TResult>() which help you with this task. Cast<TResult>() – Attempt to cast all items to type TResult So, the first thing we can do would be to attempt to create a sequence of TResult from every item in the source sequence.  Typically we’d do this if we had an IEnumerable<T> where we knew that every item was actually a TResult where TResult inherits/implements T. For example, assume the typical Shape example classes: 1: // abstract base class 2: public abstract class Shape { } 3:  4: // a basic rectangle 5: public class Rectangle : Shape 6: { 7: public int Widtgh { get; set; } 8: public int Height { get; set; } 9: } And let’s assume we have a sequence of Shape where every Shape is a Rectangle… 1: var shapes = new List<Shape> 2: { 3: new Rectangle { Width = 3, Height = 5 }, 4: new Rectangle { Width = 10, Height = 13 }, 5: // ... 6: }; To get the sequence of Shape as a sequence of Rectangle, of course, we could use a Select() clause, such as: 1: // select each Shape, cast it to Rectangle 2: var rectangles = shapes 3: .Select(s => (Rectangle)s) 4: .ToList(); But that’s a bit verbose, and fortunately there is already a facility built in and ready to use in the form of the Cast<TResult>() extension method: 1: // cast each item to Rectangle and store in a List<Rectangle> 2: var rectangles = shapes 3: .Cast<Rectangle>() 4: .ToList(); However, we should note that if anything in the list cannot be cast to a Rectangle, you will get an InvalidCastException thrown at runtime.  Thus, if our Shape sequence had a Circle in it, the call to Cast<Rectangle>() would have failed.  As such, you should only do this when you are reasonably sure of what the sequence actually contains (or are willing to handle an exception if you’re wrong). Another handy use of Cast<TResult>() is using it to convert an IEnumerable to an IEnumerable<T>.  If you look at the signature, you’ll see that the Cast<TResult>() extension method actually extends the older, object-based IEnumerable interface instead of the newer, generic IEnumerable<T>.  This is your gateway method for being able to use LINQ on older, non-generic sequences.  For example, consider the following: 1: // the older, non-generic collections are sequence of object 2: var shapes = new ArrayList 3: { 4: new Rectangle { Width = 3, Height = 13 }, 5: new Rectangle { Width = 10, Height = 20 }, 6: // ... 7: }; Since this is an older, object based collection, we cannot use the LINQ extension methods on it directly.  For example, if I wanted to query the Shape sequence for only those Rectangles whose Width is > 5, I can’t do this: 1: // compiler error, Where() operates on IEnumerable<T>, not IEnumerable 2: var bigRectangles = shapes.Where(r => r.Width > 5); However, I can use Cast<Rectangle>() to treat my ArrayList as an IEnumerable<Rectangle> and then do the query! 1: // ah, that’s better! 2: var bigRectangles = shapes.Cast<Rectangle>().Where(r => r.Width > 5); Or, if you prefer, in LINQ query expression syntax: 1: var bigRectangles = from s in shapes.Cast<Rectangle>() 2: where s.Width > 5 3: select s; One quick warning: Cast<TResult>() only attempts to cast, it won’t perform a cast conversion.  That is, consider this: 1: var intList = new List<int> { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 }; 2:  3: // casting ints to longs, this should work, right? 4: var asLong = intList.Cast<long>().ToList(); Will the code above work?  No, you’ll get a InvalidCastException. Remember that Cast<TResult>() is an extension of IEnumerable, thus it is a sequence of object, which means that it will box every int as an object as it enumerates over it, and there is no cast conversion from object to long, and thus the cast fails.  In other words, a cast from int to long will succeed because there is a conversion from int to long.  But a cast from int to object to long will not, because you can only unbox an item by casting it to its exact type. For more information on why cast-converting boxed values doesn’t work, see this post on The Dangers of Casting Boxed Values (here). OfType<TResult>() – Filter sequence to only items of type TResult So, we’ve seen how we can use Cast<TResult>() to change the type of our sequence, when we expect all the items of the sequence to be of a specific type.  But what do we do when a sequence contains many different types, and we are only concerned with a subset of a given type? For example, what if a sequence of Shape contains Rectangle and Circle instances, and we just want to select all of the Rectangle instances?  Well, let’s say we had this sequence of Shape: 1: var shapes = new List<Shape> 2: { 3: new Rectangle { Width = 3, Height = 5 }, 4: new Rectangle { Width = 10, Height = 13 }, 5: new Circle { Radius = 10 }, 6: new Square { Side = 13 }, 7: // ... 8: }; Well, we could get the rectangles using Select(), like: 1: var onlyRectangles = shapes.Where(s => s is Rectangle).ToList(); But fortunately, an easier way has already been written for us in the form of the OfType<T>() extension method: 1: // returns only a sequence of the shapes that are Rectangles 2: var onlyRectangles = shapes.OfType<Rectangle>().ToList(); Now we have a sequence of only the Rectangles in the original sequence, we can also use this to chain other queries that depend on Rectangles, such as: 1: // select only Rectangles, then filter to only those more than 2: // 5 units wide... 3: var onlyBigRectangles = shapes.OfType<Rectangle>() 4: .Where(r => r.Width > 5) 5: .ToList(); The OfType<Rectangle>() will filter the sequence to only the items that are of type Rectangle (or a subclass of it), and that results in an IEnumerable<Rectangle>, we can then apply the other LINQ extension methods to query that list further. Just as Cast<TResult>() is an extension method on IEnumerable (and not IEnumerable<T>), the same is true for OfType<T>().  This means that you can use OfType<TResult>() on object-based collections as well. For example, given an ArrayList containing Shapes, as below: 1: // object-based collections are a sequence of object 2: var shapes = new ArrayList 3: { 4: new Rectangle { Width = 3, Height = 5 }, 5: new Rectangle { Width = 10, Height = 13 }, 6: new Circle { Radius = 10 }, 7: new Square { Side = 13 }, 8: // ... 9: }; We can use OfType<Rectangle> to filter the sequence to only Rectangle items (and subclasses), and then chain other LINQ expressions, since we will then be of type IEnumerable<Rectangle>: 1: // OfType() converts the sequence of object to a new sequence 2: // containing only Rectangle or sub-types of Rectangle. 3: var onlyBigRectangles = shapes.OfType<Rectangle>() 4: .Where(r => r.Width > 5) 5: .ToList(); Summary So now we’ve seen two different ways to get a sequence of a superclass or interface down to a more specific sequence of a subclass or implementation.  The Cast<TResult>() method casts every item in the source sequence to type TResult, and the OfType<TResult>() method selects only those items in the source sequence that are of type TResult. You can use these to downcast sequences, or adapt older types and sequences that only implement IEnumerable (such as DataTable, ArrayList, etc.). Technorati Tags: C#,CSharp,.NET,LINQ,Little Wonders,TypeOf,Cast,IEnumerable<T>

    Read the article

  • Performance surprise with "as" and nullable types

    - by Jon Skeet
    I'm just revising chapter 4 of C# in Depth which deals with nullable types, and I'm adding a section about using the "as" operator, which allows you to write: object o = ...; int? x = o as int?; if (x.HasValue) { ... // Use x.Value in here } I thought this was really neat, and that it could improve performance over the C# 1 equivalent, using "is" followed by a cast - after all, this way we only need to ask for dynamic type checking once, and then a simple value check. This appears not to be the case, however. I've included a sample test app below, which basically sums all the integers within an object array - but the array contains a lot of null references and string references as well as boxed integers. The benchmark measures the code you'd have to use in C# 1, the code using the "as" operator, and just for kicks a LINQ solution. To my astonishment, the C# 1 code is 20 times faster in this case - and even the LINQ code (which I'd have expected to be slower, given the iterators involved) beats the "as" code. Is the .NET implementation of isinst for nullable types just really slow? Is it the additional unbox.any that causes the problem? Is there another explanation for this? At the moment it feels like I'm going to have to include a warning against using this in performance sensitive situations... Results: Cast: 10000000 : 121 As: 10000000 : 2211 LINQ: 10000000 : 2143 Code: using System; using System.Diagnostics; using System.Linq; class Test { const int Size = 30000000; static void Main() { object[] values = new object[Size]; for (int i = 0; i < Size - 2; i += 3) { values[i] = null; values[i+1] = ""; values[i+2] = 1; } FindSumWithCast(values); FindSumWithAs(values); FindSumWithLinq(values); } static void FindSumWithCast(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = 0; foreach (object o in values) { if (o is int) { int x = (int) o; sum += x; } } sw.Stop(); Console.WriteLine("Cast: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } static void FindSumWithAs(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = 0; foreach (object o in values) { int? x = o as int?; if (x.HasValue) { sum += x.Value; } } sw.Stop(); Console.WriteLine("As: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } static void FindSumWithLinq(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = values.OfType<int>().Sum(); sw.Stop(); Console.WriteLine("LINQ: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } }

    Read the article

1