Search Results

Search found 3 results on 1 pages for 'user12612705'.

Page 1/1 | 1 

  • Oracle Unveils Oracle Java Embedded Suite 7.0

    - by user12612705
    Today Oracle announced the Oracle Java Embedded Suite 7.0. What is the Java Embedded Suite (JES)? It's a middleware stack designed to be run on embedded devices. It's a suite which includes an application server (Glassfish for Embedded Suite), database (Java DB), and web services (Jersey Web Services Framework). Putting these services on the embedded device gives you the ability to provide a set of services at the device point. It also lets you aggregate data at the device point, which you can later sync with your enterprise systems.

    Read the article

  • Series On Embedded Development (Part 2) - Build-Time Optionality

    - by user12612705
    In this entry on embedded development, I'm going to discuss build-time optionality (BTO). BTO is the ability to subset your software at build-time so you only use what is needed. BTO typically pertains more to software providers rather then developers of final products. For example, software providers ship source products, frameworks or platforms which are used by developers to build other products. If you provide a source product, you probably don't have to do anything to support BTO as the developers using your source will only use the source they need to build their product. If you provide a framework, then there are some things you can do to support BTO. Say you provide a Java framework which supports audio and video. If you provide this framework in a single JAR, then developers who only want audio are forced to ship their product with the video portion of your framework even though they aren't using it. In this case, support providing the framework in separate JARs...break the framework into an audio JAR and a video JAR and let the users of your framework decide which JARs to include in their product. Sometimes this is as simple as packaging, but if, for example, the video functionality is dependent on the audio functionality, it may require coding work to cleanly separate the two. BTO can also work at install-time, and this is sometimes overlooked. Let's say your building a phone application which can use Near Field Communications (NFC) if it's available on the phone, but it doesn't require NFC to work. Typically you'd write one app for all phones (saving you time)...both those that have NFC and those that don't, and just use NFC if it's there. However, for better efficiency, you can detect at install-time if the phone supports NFC and not install the NFC portion of your app if the phone doesn't support NFC. This requires that you write the app so it can run without the optional NFC code and that you write your install app so it can detect NFC and do the right thing at install-time. Supporting install-time optionality will save persistent footprint on the phone, something your customers will appreciate, your app "neighbors" will appreciate, and that you'll appreciate when they save static footprint for you. In the next article, I'll talk about runtime optionality.

    Read the article

  • Series On Embedded Development (Part 1)

    - by user12612705
    This is the first in a series of entries on developing applications for the embedded environment. Most of this information is relevant to any type of embedded development (and even for desktop and server too), not just Java. This information is based on a talk Hinkmond Wong and I gave at JavaOne 2012 entitled Reducing Dynamic Memory in Java Embedded Applications. One thing to remember when developing embeddded applications is that memory matters. Yes, memory matters in desktop and server environments as well, but there's just plain less of it in embedded devices. So I'm going to be talking about saving this precious resource as well as another precious resource, CPU cycles...and a bit about power too. CPU matters too, and again, in embedded devices, there's just plain less of it. What you'll find, no surprise, is that there's a trade-off between performance and memory. To get better performance, you need to use more memory, and to save more memory, you need to need to use more CPU cycles. I'll be discussing three Memory Reduction Categories: - Optionality, both build-time and runtime. Optionality is about providing options so you can get rid of the stuff you don't need and include the stuff you do need. - Tunability, which is about providing options so you can tune your application by trading performance for size, and vice-versa. - Efficiency, which is about balancing size savings with performance.

    Read the article

1